JP3073573B2 - Connection method of carbon coated optical fiber - Google Patents

Connection method of carbon coated optical fiber

Info

Publication number
JP3073573B2
JP3073573B2 JP29864391A JP29864391A JP3073573B2 JP 3073573 B2 JP3073573 B2 JP 3073573B2 JP 29864391 A JP29864391 A JP 29864391A JP 29864391 A JP29864391 A JP 29864391A JP 3073573 B2 JP3073573 B2 JP 3073573B2
Authority
JP
Japan
Prior art keywords
optical fiber
carbon
heating
coated optical
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29864391A
Other languages
Japanese (ja)
Other versions
JPH05134128A (en
Inventor
晴彦 相川
真弘 浜田
勇 藤田
信幸 吉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sumitomo Electric Industries Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP29864391A priority Critical patent/JP3073573B2/en
Publication of JPH05134128A publication Critical patent/JPH05134128A/en
Application granted granted Critical
Publication of JP3073573B2 publication Critical patent/JP3073573B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はカーボンコート光ファイ
バの融着接続、特に接続部の被覆に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to fusion splicing of a carbon coated optical fiber, and more particularly to coating of a spliced portion.

【0002】[0002]

【従来の技術】カーボンコート光ファイバは、ガラス表
面を熱分解法等で形成されたカーボン層で覆った光ファ
イバで、そのカーボン膜により水や水素のガラスヘの浸
入が抑えられるため、疲労による強度低下や水素浸入に
よる損失増加を防止でき、光ファイバの長期信頼性を向
上できるという優れた特性を有する光ファイバである。
このようなカーボンコート光ファイバを融着接続する
際、融着部へのカーボン等の不純物の混入を避けるた
め、あらかじめ接続部のカーボン層を酸化等により除去
した後、融着するという方法が一般的である。この場
合、接続部にもカーボン被覆を施しガラス表面に水の吸
着を抑える必要がある。この防止策として、C02レー
ザーによって接続部(通常5〜20mm)のみ局所的に
加熱し、密閉した容器に炭化水素等の原料ガスを導入し
て化字蒸着(CVD法)により再度カーボンコーティン
グを施すという試みがなされている。
2. Description of the Related Art A carbon-coated optical fiber is an optical fiber in which the glass surface is covered with a carbon layer formed by a pyrolysis method or the like. The optical fiber has excellent characteristics that can prevent a decrease and an increase in loss due to hydrogen intrusion, and can improve long-term reliability of the optical fiber.
When such a carbon-coated optical fiber is fusion-spliced, in order to avoid mixing of impurities such as carbon into the fusion-bonded portion, a method is generally adopted in which the carbon layer at the connection portion is removed in advance by oxidation or the like and then fused. It is a target. In this case, it is necessary to apply a carbon coating to the connection portion to suppress the adsorption of water on the glass surface. As a preventive measure, C0 2 connecting section by laser heating (typically 5 to 20 mm) only locally, again carbon coating by a sealed container to reduction shaped evaporation introducing a material gas such as hydrocarbon (CVD method) Attempts have been made to do so.

【0003】一方、光ファイバに金属を被覆して、ガラ
ス表面への水の吸着を防止し、強度低下を抑えるという
方法も従来からなされている。光ファイバ表面に金属を
被覆する方法としては、ディップ法、物理蒸着法(PV
D法)、CVD法等がある。この中でPVD法が均一な
薄膜を比較的容易に形成できるという点で多く検討がな
されており、例えば特開昭62-143848に示されている様
に、PVDで金属を被覆した後、ヒータで加熱し、再結
晶を起こさせ緻密化させるという試みがなされている。
[0003] On the other hand, a method of coating an optical fiber with a metal to prevent water from adsorbing to the glass surface and to suppress a decrease in strength has been conventionally performed. As a method for coating a metal on the surface of an optical fiber, a dipping method, a physical vapor deposition method (PV
D method) and CVD method. Among them, many studies have been made on the point that the PVD method can relatively easily form a uniform thin film. For example, as shown in JP-A-62-143848, after coating a metal with PVD, Attempts have been made to cause recrystallization and densification by heating.

【0004】[0004]

【発明が解決しようとする課題】上記の従来技術におい
て、CO2レーザーを使用する理由は、通常の光ファイ
バは有機樹脂を被覆してあり、接続はこの樹脂を除去し
た後に行なわれるが、この樹脂は熱に弱いため、接続部
のみ局所的に加熱する必要があるからである。しかしな
がら密閉した容器を使用する等装置が大がかりで高価に
なるばかりで無く、化学反応を制御する必要があるた
め、再現性を得るのが難しいという問題があった。又、
PVD法で形成された薄膜は粒子構造が細かな粒状ある
いは柱状となりやすく、そのため単に加熱するだけでは
十分緻密な膜が形成されるとはかぎらないという問題が
あった。
In the above prior art, the reason for using a CO 2 laser is that an ordinary optical fiber is coated with an organic resin, and connection is made after removing this resin. This is because the resin is weak to heat, and it is necessary to locally heat only the connection portion. However, there is a problem that not only equipment such as the use of a sealed container is large-scale and expensive, but also it is difficult to obtain reproducibility because it is necessary to control a chemical reaction. or,
The thin film formed by the PVD method tends to have a fine grain or columnar particle structure, so that there is a problem that simply heating does not always form a sufficiently dense film.

【0005】[0005]

【課題を解決するための手段】本発明は上述の問題点を
解決するカーボンコート光ファイバの接続方法を提供す
るものでその特徴は図1,2に示す如く、カーボンコー
トされた光ファイバ1の端部カーボンを除去して融着接
続し、除去された接続部2に金属被膜3を形成した後、
該金属被膜を一次加熱し引続き二次加熱する方法であ
る。
SUMMARY OF THE INVENTION The present invention provides a method for connecting a carbon-coated optical fiber which solves the above-mentioned problems, and has a feature as shown in FIGS. After removing the end carbon and performing the fusion splicing, and forming the metal coating 3 on the removed joint 2,
This is a method in which the metal coating is firstly heated and then secondarily heated.

【0006】ここで、一次加熱及び二次加熱の手段が赤
外線加熱、高周波誘導加熱又はレーザー光加熱であれば
金属被膜の部分のみを局部的に加熱することができるの
で好ましい。
Here, if the means for primary heating and secondary heating is infrared heating, high-frequency induction heating or laser light heating, it is preferable because only the metal coating can be locally heated.

【0007】又、一次加熱温度が被膜金属の融点(絶対
温度)の0.1〜1.0倍、好ましくは0.3〜0.6
倍であること、二次加熱温度が一次加熱温度の少なくと
も50℃以上であると効果的である。
The primary heating temperature is 0.1 to 1.0 times the melting point (absolute temperature) of the coating metal, preferably 0.3 to 0.6.
It is effective that the secondary heating temperature is at least 50 ° C. or higher than the primary heating temperature.

【0008】金属被覆の方法として無電解メッキ法、ス
パッタリング法、真空蒸着法又はプラズマCVD法は上
記接続部分近傍のみを被覆できるので本発明の実現に対
して好ましいものである。
As a metal coating method, an electroless plating method, a sputtering method, a vacuum evaporation method, or a plasma CVD method is preferable for realizing the present invention because it can coat only the vicinity of the connection portion.

【0009】[0009]

【作用】無電解メッキやスパッタリング等の方法は比較
的簡便な装置で、しかも低温で金属薄膜を形成すること
ができる。このため接続部両脇の有機樹脂に与えるダメ
ージはほとんどない。この金属薄膜をその金属の融点
(絶対温度)の0.1倍以上1倍以下、好ましくは0.
3倍以上0.6倍以下の温度(この温度範囲は再結晶の
進行速度が大きい)で加熱し再結晶させる。再結晶(1
次再結晶)直後の結晶粒径は一般に小さく、更に高温で
長時間の加熱により大きくなるので、さらにこれより高
温で加熱を行ない、2次再結晶(コースニング)を起こ
す。この様な熱処理により粒径の大きい、すなわち粒界
面積の小さい、しかも粒界間隙のほとんどない緻密な金
属薄膜が形成できる。
The method such as electroless plating and sputtering can form a metal thin film at a relatively low temperature with a relatively simple apparatus. Therefore, there is almost no damage to the organic resin on both sides of the connection portion. This metal thin film is formed in a range of 0.1 to 1 times the melting point (absolute temperature) of the metal, preferably 0.1 to 1 times.
The recrystallization is performed by heating at a temperature of 3 times or more and 0.6 times or less (this temperature range has a high recrystallization progress rate). Recrystallization (1
The crystal grain size immediately after (secondary recrystallization) is generally small, and becomes larger by heating at a higher temperature for a long time. Therefore, heating is performed at a higher temperature to cause secondary recrystallization (coarsening). By such a heat treatment, a dense metal thin film having a large grain size, that is, a small grain boundary area, and having almost no grain boundary gap can be formed.

【0010】加熱時間は被覆する金属及び被覆厚さ等に
よっても異なるが、1次再結晶の場合は30秒以上、2
次再結晶の場合は10分以上が好ましい。被覆する金属
の厚さは目的により任意でよいが、成膜時間、ガラスフ
ァイバヘのダメージ等を考慮すると0.05〜5μm程
度が適当である。被覆金属としてはAu,Ag,Ni,
W,Mo,Zn,Sn,Cd,Pb,Pt,Mg,ln
等の金属及び合金を用いることができるが、実際には融
点がなるべく低く、貴な金属を用いることが望ましい。
The heating time varies depending on the metal to be coated and the thickness of the coating, but in the case of primary recrystallization, the heating time is 30 seconds or more.
In the case of the next recrystallization, the time is preferably 10 minutes or more. The thickness of the metal to be coated may be arbitrarily set depending on the purpose. Au, Ag, Ni,
W, Mo, Zn, Sn, Cd, Pb, Pt, Mg, ln
However, in practice, it is desirable to use a noble metal having a melting point as low as possible.

【0011】ここで重要なのは、その加熱方法であり、
両脇の樹脂に影響を与えず、接続後の被覆部のみ加熱す
る方法として、赤外線ランプによる集中加熱、高周波誘
導による加熱、C02レーザー等による加熱方法が考え
られるが、この中でも赤外線を集光させて加熱する方法
は、簡便でしかも装置が安価であるため好ましい。
What is important here is the heating method.
Without affecting both sides of the resin, as a method of heating only the coating portion after connection, intensive heating by infrared lamp, heating by high frequency induction, C0 2 but the heating method by laser or the like can be considered, condensing the infrared Among this The heating method is preferable because it is simple and the apparatus is inexpensive.

【0012】[0012]

【実施例】【Example】

(実施例1)図1は接続部に金属被覆を施したカーボン
コート光ファイバの断面図である。カーボンコート光フ
ァイバ1の端部のカーボン被膜を除去して融着接続した
接続部2の表面には被覆金属3として銅を用い、無電解
メッキ法によって、厚さ約1μmにコーティングした。
無電解メッキ法は対象物の表面で金属イオンを還元析出
させて金属の薄膜をつける方法で、外部電源を必要とせ
ず、非導電性の素材をも対象物とすることができるとい
った利点がある。この金属被覆部分を図2に示すような
装置で加熱した。尚、図2に示す装置は一例であり、方
法を制限するものではない。チャンバー11には窓1
2、パージガス導入管14、排気管15、シール部材兼
ファイバ保持部材13、遮光材16がそれぞれ取付けら
れている。チャンバー11にはステンレス、窓材12に
は石英ガラス、シール部材13にはバイトン等のゴムを
それぞれ用いた。パージガス導入管14からはHe,A
r,N2等の不活性ガスを導入し、チャンバー内部を無
酸素雰囲気に保つ。これはカーボンの酸化を防ぐためで
ある。もちろんこの目的のために排気管15から真空ポ
ンプ(図示せず)で引き、チャンバー内部を真空に保つ
ことも可能である。赤外線ランプ10をミラー17(通
常金メッキを施してある)で集光し、接続部2の両脇の
樹脂4やカーボン被覆部1を加熱しないように被覆金属
部に焦点を合わせ約200℃で約1分間加熱し、さらに
約600℃で約30分間加熱した。念のために遮光材1
6を据えつけた。樹脂の部分を水冷等で冷却する装置
(図示せず)を付設しても良い。
(Embodiment 1) FIG. 1 is a cross-sectional view of a carbon-coated optical fiber in which a connecting portion is provided with a metal coating. The carbon coating at the end of the carbon-coated optical fiber 1 was removed, and the surface of the fusion spliced connection 2 was coated with copper as a coating metal 3 to a thickness of about 1 μm by electroless plating.
The electroless plating method is a method in which metal ions are reduced and deposited on the surface of an object to form a thin film of metal, and has the advantage that no external power source is required and non-conductive materials can be used as an object. . This metal-coated portion was heated by an apparatus as shown in FIG. Note that the apparatus shown in FIG. 2 is an example, and does not limit the method. Window 1 in chamber 11
2. A purge gas introduction pipe 14, an exhaust pipe 15, a seal member / fiber holding member 13, and a light shielding material 16 are respectively attached. Stainless steel was used for the chamber 11, quartz glass was used for the window material 12, and rubber such as Viton was used for the seal member 13. He, A from the purge gas introduction pipe 14
An inert gas such as r or N 2 is introduced to keep the inside of the chamber in an oxygen-free atmosphere. This is to prevent oxidation of carbon. Of course, for this purpose, the inside of the chamber can be kept at a vacuum by pulling from the exhaust pipe 15 with a vacuum pump (not shown). The infrared lamp 10 is condensed by a mirror 17 (usually plated with gold) and focused on the coated metal part so as not to heat the resin 4 and the carbon coated part 1 on both sides of the connection part 2 at about 200 ° C. Heated for 1 minute and then at about 600 ° C. for about 30 minutes. Shading material 1 just in case
6 was installed. A device (not shown) for cooling the resin portion by water cooling or the like may be additionally provided.

【0013】加熱する前と加熱後とで顕微鏡観察及びX
線回折により組織を調べた結果、結晶粒径が増大し、配
向性が増加していることを確認した。また接続部を保護
するため図3に示すように合成樹脂5でモールドした。
耐水性を確認するため、23℃、湿度50%の雰囲気
で、歪み速度:1%/min,10%/min,50%
/min,100%/minの4水準で引張試験を行な
い、動疲労特性を調べた結果、図4に示す様に、疲労に
対する抵抗力を示すパラメータ”n”は150以上で、
ガラス表面への水分吸着による疲労の加速現象は認めら
れず、優れた耐水性を有していることを確認した。これ
に対して接続部に被覆のないものはn=25であり、カ
ーボンコーティングを施していない通常のファイバと同
等であった。
Microscopic observation and X before and after heating
As a result of examining the structure by line diffraction, it was confirmed that the crystal grain size was increased and the orientation was increased. In order to protect the connection part, it was molded with a synthetic resin 5 as shown in FIG.
In order to confirm the water resistance, strain rate: 1% / min, 10% / min, 50% in an atmosphere of 23 ° C. and 50% humidity.
As a result of performing a tensile test at four levels of / min and 100% / min and examining dynamic fatigue characteristics, as shown in FIG. 4, a parameter “n” indicating a resistance to fatigue is 150 or more.
No accelerated fatigue phenomenon due to moisture adsorption on the glass surface was observed, confirming that the glass had excellent water resistance. On the other hand, those having no coating on the connection portion had n = 25, which was equivalent to a normal fiber without carbon coating.

【0014】また直径5mm〜30mmの種々の径を有
した金属棒の外周に以下に示す種々のファイバを巻きつ
け、60℃の温水中に浸漬して、n値を測定したとこ
ろ、接続部に被覆のないものはn=18〜24、接続部
に被覆を施し加熱を行わなかったものはn=35〜4
0、接続部に被覆を行い、かつ1次加熱のみ行ったもの
はn=50〜60、そして本発明の如く接続部に被覆を
行い、1次加熱及び2次加熱を行ったものはn≧100
と他のものより優れていることを確認した。
The following various fibers were wound around metal rods having various diameters of 5 mm to 30 mm and immersed in warm water at 60 ° C., and the n value was measured. N = 18 to 24 without coating, n = 35 to 4 with coating applied to the connection and not heated
0, n = 50 to 60 when the connection portion was coated and only the primary heating was performed, and n ≧ 50 when the connection portion was coated and the primary heating and the secondary heating were performed as in the present invention. 100
And confirmed that it is better than others.

【0015】(実施例2)被覆金属にアルミニウムを用
い、スパッタリング法により、厚さ約1μmにコーティ
ングを施した。スパッタリングは10-2〜10-3[P
a]程度の低圧下でArイオンにより行った。これを実
施例1と同様に赤外線ランプで約230℃に1分間加熱
し、更に500℃で1時間加熱した。実施例1と同様の
評価を行なった結果、この場合も耐水性の優れた緻密な
金属膜の形成を確認できた。
Example 2 A coating was applied to a thickness of about 1 μm by sputtering using aluminum as a coating metal. The sputtering is 10 -2 to 10 -3 [P
a] with Ar ions under low pressure. This was heated with an infrared lamp to about 230 ° C. for 1 minute and further at 500 ° C. for 1 hour as in Example 1. As a result of performing the same evaluation as in Example 1, formation of a dense metal film having excellent water resistance was also confirmed in this case.

【0016】[0016]

【発明の効果】本発明の方法によりカーボンコート光フ
ァイバを接続することにより接続部には緻密な金属被膜
を形成することができ、信頼性の高い光ファイバを得る
ことができる。
By connecting a carbon coated optical fiber according to the method of the present invention, a dense metal coating can be formed on the connecting portion, and a highly reliable optical fiber can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法により接続した光ファイバの断面
図である。
FIG. 1 is a sectional view of an optical fiber connected by the method of the present invention.

【図2】本発明における加熱方法の具体例の説明図であ
る。
FIG. 2 is an explanatory diagram of a specific example of a heating method according to the present invention.

【図3】本発明の方法により接続した光ファイバの他の
断面図である。
FIG. 3 is another sectional view of an optical fiber connected by the method of the present invention.

【図4】ひずみ速度に対する引張破断強度試験結果の一
例を示す図である。
FIG. 4 is a diagram showing an example of a tensile breaking strength test result with respect to a strain rate.

【符号の説明】[Explanation of symbols]

1:カーボンコート光ファイバ 2:光ファイバの接続部 3:金属被覆膜 4:樹脂を被覆した光ファイバ 5:樹脂モールド 10:赤外線ランプ 11:チャンバ 12:窓 13:シール兼ファイバ保持部 14:パージガス導入管 15:排気管 16:遮光材 17:ミラー 1: Carbon coated optical fiber 2: Optical fiber connecting part 3: Metal coating film 4: Resin coated optical fiber 5: Resin mold 10: Infrared lamp 11: Chamber 12: Window 13: Seal and fiber holding part 14: Purge gas inlet pipe 15: Exhaust pipe 16: Light shielding material 17: Mirror

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤田 勇 神奈川県横浜市栄区田谷町1番地 住友 電気工業株式会社横浜製作所内 (72)発明者 吉澤 信幸 東京都千代田区内幸町一丁目1番6号 日本電信電話株式会社内 (56)参考文献 特開 昭62−143848(JP,A) 特開 平2−195304(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02B 6/24 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Isamu Fujita 1-chome, Taya-cho, Sakae-ku, Yokohama-shi, Kanagawa Prefecture Sumitomo Electric Industries, Ltd. Yokohama Works (72) Inventor Nobuyuki Yoshizawa 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Japan (56) References JP-A-62-143848 (JP, A) JP-A-2-195304 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G02B 6 /twenty four

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 カーボンコートされた光ファイバの端部
のカーボンを除去して融着接続し、除去された接続部に
金属被膜を形成した後、該金属被膜を一次加熱し、引続
き二次加熱することを特徴とするカーボンコート光ファ
イバの接続方法。
An optical fiber coated with carbon is removed from the end portion by removing carbon and fusion-spliced. After forming a metal film on the removed connection portion, the metal film is firstly heated and subsequently subjected to secondary heating. A method for connecting a carbon-coated optical fiber.
【請求項2】 一次加熱及び二次加熱の手段が赤外線加
熱、高周波誘導加熱又はレーザ光加熱であり、前記金属
被膜の部分のみを局部的に加熱することを特徴とする請
求項1記載のカーボンコート光ファイバの接続方法。
2. The carbon according to claim 1, wherein the means for the primary heating and the secondary heating is infrared heating, high-frequency induction heating or laser beam heating, and only the portion of the metal coating is locally heated. How to connect coated optical fiber.
【請求項3】 一次加熱温度が被膜金属の融点(絶対温
度)の0.1〜1.0倍、好ましくは0.3〜0.6倍
であることを特徴とする請求項1又は2記載のカーボン
コート光ファイバの接続方法。
3. The method according to claim 1, wherein the primary heating temperature is 0.1 to 1.0 times, preferably 0.3 to 0.6 times, the melting point (absolute temperature) of the coating metal. Connection method of carbon coated optical fiber.
【請求項4】 二次加熱温度が一次加熱温度の少なくと
も50℃以上であることを特徴とする請求項1,2又は
3記載のカーボンコート光ファイバの接続方法。
4. The method for connecting a carbon-coated optical fiber according to claim 1, wherein the secondary heating temperature is at least 50 ° C. or higher than the primary heating temperature.
【請求項5】 金属被覆の方法が無電解メッキ法、スパ
ッタリング法、真空蒸着法又はプラズマCVD法である
ことを特徴とする請求項1記載のカーボンコート光ファ
イバの接続方法。
5. The method for connecting a carbon coated optical fiber according to claim 1, wherein the metal coating method is an electroless plating method, a sputtering method, a vacuum deposition method, or a plasma CVD method.
JP29864391A 1991-11-14 1991-11-14 Connection method of carbon coated optical fiber Expired - Fee Related JP3073573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29864391A JP3073573B2 (en) 1991-11-14 1991-11-14 Connection method of carbon coated optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29864391A JP3073573B2 (en) 1991-11-14 1991-11-14 Connection method of carbon coated optical fiber

Publications (2)

Publication Number Publication Date
JPH05134128A JPH05134128A (en) 1993-05-28
JP3073573B2 true JP3073573B2 (en) 2000-08-07

Family

ID=17862395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29864391A Expired - Fee Related JP3073573B2 (en) 1991-11-14 1991-11-14 Connection method of carbon coated optical fiber

Country Status (1)

Country Link
JP (1) JP3073573B2 (en)

Also Published As

Publication number Publication date
JPH05134128A (en) 1993-05-28

Similar Documents

Publication Publication Date Title
US4402993A (en) Process for coating optical fibers
US4530750A (en) Apparatus for coating optical fibers
US7466892B2 (en) Optical and optoelectronic articles
US5093880A (en) Optical fiber cable coated with conductive metal coating and process therefor
JP2797335B2 (en) Splicing method of hermetic coated optical fiber
US6731849B1 (en) Coating for optical fibers
JP3073573B2 (en) Connection method of carbon coated optical fiber
US5068020A (en) Coated substrates and process
KR940011128B1 (en) Method and apparatus for continuous sputter coating of fibers
US6047660A (en) Apparatus and method to form coated shielding layer for coaxial signal transmission cables
DE19848524C1 (en) Platinum thin film resistor for temperature measurement purposes
WO1986000747A1 (en) Temperature resistant coated article
JP4268579B2 (en) Optical fiber pigtail and manufacturing method thereof
SE514324C2 (en) Procedure for surface treatment of a diamond surface with surface defects
JPS5835942B2 (en) Method of coating metal layer on optical fiber
JPH05249353A (en) Metal coated optical fiber and its production
SU1019965A1 (en) Method of enhancing adhesion of thin metallic films to substrates
JP2003322773A (en) Structure of heat-resisting and high-strength optical fiber and method for manufacturing the same
SU1053184A1 (en) Evaporator of photosensitive material
JPH04158312A (en) Metal-covered optical fiber cable and manufacture thereof
JPS62143848A (en) Production of metal-coated optical fiber
JP4162919B2 (en) Deposition method on optical fiber
CN117510099A (en) Manufacturing method of fiber core metal film of optical fiber sensor
JPS63103061A (en) Deposition and formation of thin metallic film on plastic film surface
Rogers High-temperature sputtered coatings for optical fiber

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees