JPS60128316A - Infrared sensor - Google Patents

Infrared sensor

Info

Publication number
JPS60128316A
JPS60128316A JP58237583A JP23758383A JPS60128316A JP S60128316 A JPS60128316 A JP S60128316A JP 58237583 A JP58237583 A JP 58237583A JP 23758383 A JP23758383 A JP 23758383A JP S60128316 A JPS60128316 A JP S60128316A
Authority
JP
Japan
Prior art keywords
infrared
electrode
bodies
constant potential
volts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58237583A
Other languages
Japanese (ja)
Other versions
JPH0238894B2 (en
Inventor
Kosuke Takeuchi
孝介 竹内
Toshiaki Yokoo
横尾 敏昭
Kenichi Shibata
賢一 柴田
Yukinori Kuwano
桑野 幸徳
Masami Ikeda
池田 雅巳
Yasuhiro Yamada
山田 育宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP58237583A priority Critical patent/JPS60128316A/en
Publication of JPS60128316A publication Critical patent/JPS60128316A/en
Publication of JPH0238894B2 publication Critical patent/JPH0238894B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0803Arrangements for time-dependent attenuation of radiation signals
    • G01J5/0805Means for chopping radiation

Abstract

PURPOSE:To improve S/N and reliability by setting the surface electrode to a constant potential, and also applying a driving signal which becomes an AC with respect to the constant potential, to the center electrode. CONSTITUTION:Vibrating bodies 48, 49 are vibrated basing on a voltage applied to the third and the fourth terminals 22c, 22d. That is to say, a DC constant- voltage of about +5 volts is applied to the fourth terminal 22d so that each surface electrode 53a, 53b and 54a, 54b becomes a constant potential. On the other hand, voltages of about +35 and -25 volts are applied alternately and periodically to the third terminal 22c in order to apply a driving signal which becomes an AC with respect to the constant potential, to center electrodes 50a, 50b. As a result, a state that the center electrodes 50a, 50b become 30 volts higher than the surface electrode, and a state that the former becomes lower by 30 volts are repeated alternately. As a result, an infrared-ray detecting body varies periodically an incident infrared-ray quantity, and outputs a signal corresponding to a temperature difference of an object to be detected and opposed bodies 56, 57.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は例えば被検知物の温度を赤外線にで検知するた
めの赤外線センサ番ζ関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to an infrared sensor number ζ for detecting the temperature of an object to be detected using infrared rays, for example.

(ロ)従来技術 第11亀及びbにおいて、近時の赤外線センサ(1)で
は、例えば焦電型の赤外線検出体が内蔵されている。斯
る赤外線検出体は入射赤外線の変化量に基づいて電荷を
発生する特性を有し、又上記赤外線検出体の検出精度は
入射赤外線量の変化が周期的である程向上し、従って上
記赤外線検出体に入射する赤外線を周期的に変化せしめ
る必要があり、このために赤外線センサ(1)の前方に
は同期モータ(2)によって周期的に回転駆動される金
属チョ噌パ(3)が配置されている。而して、斯るチB
−Vパ(3)の回動にて、上記赤外線検出体に被検知物
からの赤外線とチ9噌パ(3)からの赤外線とが交互に
周期的に入射すると、赤外線検出体は入射赤外線量が周
期的に変化して電荷を発生する。斯る電荷は被検知物の
温度測定用として利用される。
(b) Prior Art In No. 11 and b, the recent infrared sensor (1) has a built-in infrared detector, for example, a pyroelectric type. Such an infrared detector has a characteristic of generating electric charge based on the amount of change in incident infrared light, and the detection accuracy of the infrared detector improves as the amount of incident infrared light changes more periodically. It is necessary to periodically change the infrared rays incident on the body, and for this purpose, a metal chopper (3) that is rotated periodically by a synchronous motor (2) is placed in front of the infrared sensor (1). ing. Therefore, such ChiB
- When the infrared rays from the object to be detected and the infrared rays from the tip 9 (3) are alternately and periodically incident on the infrared detecting body by rotating the V pass (3), the infrared detecting body detects the incident infrared rays. The amount changes periodically to generate a charge. Such charges are used to measure the temperature of the object to be detected.

しかし乍ら、上記構成においては、上記モータ(2)及
びチBwuパ(3)はかなり大きな形状を有し、スペー
ス上の問題などがある。
However, in the above configuration, the motor (2) and the chip (3) have a fairly large shape, and there are problems in terms of space.

そこで、第2図及び第3図に示す如き赤外線センサ(4
)が考え出さすている。斯る赤外線センサ(4)は、外
形寸法としてあ長さ、幅、高さが夫々60、′ 20.
151mである水型の直方体形状をなし、そして新規な
チ9・リパ機構が内蔵されており、よって上述の如きモ
ータ(2)及びチシ噌パ(3)が不要となり、スペース
上の問題が解決されている。
Therefore, an infrared sensor (4
) has come up with the idea. The infrared sensor (4) has external dimensions of 60 mm in length, 60 mm in width, and 20 mm in height, respectively.
It has a water-shaped rectangular parallelepiped shape with a length of 151 m, and has a built-in new chi9/ripa mechanism, which eliminates the need for the motor (2) and chishipa (3) as described above, solving the space problem. has been done.

以下、その赤外線センサ(4)の具体的構造を説明する
The specific structure of the infrared sensor (4) will be explained below.

金属製のへ・リプ(5)及び赤外線透過部(6)を有す
るキヤ・リプ(7)からなるセンサケース(8)の内部
には、シールド体(9)に囲まれ、入射赤外線変化量に
基づいて電荷を発生する焦電型の赤外線検出体制と、該
検出体に入射する赤外線を変jヒせしめるチ日・リバ機
構とが設けられている。該チョ・リパ槻構iま、一対の
圧電麺動体圓、(i21及び該振動体の各々の端部に固
定された一対の対向体(13,α勾からなっている。斯
る対向体Q3 、 (14)には各々赤外線を通過せし
める複数の同形状、同寸法のスリ・リド■、α9・・−
・・・・・が形成されている。
The interior of the sensor case (8), which consists of a metal lip (5) and a carrier lip (7) having an infrared transmitting part (6), is surrounded by a shield body (9) and is A pyroelectric type infrared detection system that generates an electric charge based on the detection object, and a beam/reverse mechanism that changes the infrared rays incident on the detection object are provided. The configuration consists of a pair of piezoelectric noodle moving bodies (i21) and a pair of opposing bodies (13, α-shaped) fixed to each end of the vibrating body.Such opposing bodies Q3 , (14) has a plurality of pick-up lenses of the same shape and size that allow infrared rays to pass through ■, α9...-
...is formed.

而して、上記振動体間、(121は互いに逆方向(A又
はB方向)に周期的に振動し、これ)こより上記 2対
向体+1:l) 、 (14)は相対的位置関係が周期
的に変化し、上記対向体(1り、α勾の各々のスリット
115+ 、 (15)・・・が重畳し合ってほぼ完全
に開放する状塞と各々のスリッ)(151,α訃・・が
重虹合わずほぼ一塞する状態とが周期的に繰返される。
Therefore, between the above-mentioned vibrating bodies, (121 vibrates periodically in mutually opposite directions (A or B direction), and from this), the above two opposing bodies +1:l) and (14) have a periodic relative positional relationship. The above-mentioned opposing body (1, α-gradient slits 115+, (15)... overlap each other and almost completely open, and each slit) (151, α-gradient... The state in which the rainbows do not overlap and are almost completely occluded is periodically repeated.

すると、上記重畳する状態において−は被検知物からの
赤外線がケース(8)の赤外線透過部(6)及び両対向
体α3 、 (14)のスリット(2)、(至)・・・
を経て上記赤外線検出体(1■に入射し、一方上記重畳
しない状態においては対向体(13) 、 (14)か
らの赤外線のみが上記赤外線検出体制に入射し、よって
赤外線検出体αeは入・射赤外線量が周期的に変化し、
例えば被検知物の温度測定用としての電荷を発生する。
Then, in the above superimposed state, the infrared rays from the object to be detected pass through the infrared transmitting part (6) of the case (8) and the slits (2) of both opposing bodies α3, (14), (to)...
On the other hand, in the non-overlapping state, only the infrared rays from the opposing bodies (13) and (14) enter the infrared detection system, so that the infrared detector αe enters the infrared detection body (1). The amount of infrared radiation changes periodically,
For example, a charge is generated for measuring the temperature of the object to be detected.

さて、上記圧電振動体aυ、a2Jは基本的構造として
各々表面型J1i(11a)、(11b)及び(121
)、(12b)を有している。そして、上記振動体(1
1)はその表面電極(11す(11b)に各々交流的駆
動信号電圧が印加すh、コノ場合表面型1!i+(11
aX11b)各々への駆動信号電圧の電位の大小関係が
周期的に反転する状態が得られ、これにより上記振動体
αυはA。
Now, the basic structures of the piezoelectric vibrators aυ and a2J are surface types J1i (11a), (11b) and (121
), (12b). Then, the vibrating body (1
1) is the surface type 1!i+(11
aX11b) A state is obtained in which the magnitude relationship of the potentials of the drive signal voltages to each is periodically reversed, so that the vibrating body αυ is A.

B方向に撓み振動するのである。一方、上記振動体0泪
こあって同様に表面電極(12す(12b)に交流的駆
動信号電圧が印加され、この場合上記振動体02!は上
述の如(上記振動体α1)とは逆にIs、A方向に撓み
振動するようになっている。
It bends and vibrates in the B direction. On the other hand, when the vibrating body 0 is turned on, an AC drive signal voltage is similarly applied to the surface electrode (12b), and in this case, the vibrating body 02! is opposite to the vibrating body α1 as described above. It is designed to bend and vibrate in the Is and A directions.

ここに、上記表面電極(11す(11b)及び(12a
)(12b)に印加される駆動信号電圧は交流的である
ので、その交流成分に基づいたノイズが上記表面電極(
11aX11b)及び(1,zaX12b)から発生し
、而して斯るノイズは上記シールド体(9)内にも侵入
し上記赤外線検出体(10)にまで伝播し、よって赤外
線検出体(1■のSN比の低下を招くと云う欠点がある
Here, the above surface electrodes (11s (11b) and (12a)
) (12b) is alternating current, so noise based on the alternating current component is generated on the surface electrode (12b).
11 aX11b) and (1, za This has the disadvantage of causing a decrease in the S/N ratio.

3号 発明の目的 本発明の目的は、振動体に印加される交流的駆動信号に
基づいたノイズに影響されず、SN比の低下を招かない
、信頼性の高い赤外線センサを得ることにある。
No. 3 OBJECT OF THE INVENTION An object of the present invention is to obtain a highly reliable infrared sensor that is not affected by noise based on an AC drive signal applied to a vibrating body and does not cause a decrease in the S/N ratio.

←)発明の構成 本発明赤外線センサにおいては、上記目的を達成すべく
、入射赤外線変化量に応じて電荷を発生する赤外線検出
体と、該赤外線検出体の赤外線入射域に位置し、複数の
赤外線通過部及び赤外線非通過部を有する一対の対向体
と、該一対の対向体の赤外線通過部の開閉度を周期的に
変位せしめるべく振動する。振動体とを備え、該振動体
を、中央電極と、該中央電極の両側面に各々配置された
圧電体と、該圧電体の各4の外側面に配置暴れた表面電
極とから構成し、該表面電極を一定電位となすと共に上
記中央電極には上記一定電位に対して交流となる駆動信
号を印加せしめることにより、上記振動体を振動せしめ
ることを特徴とする。
←) Structure of the Invention In order to achieve the above object, the infrared sensor of the present invention includes an infrared detector that generates an electric charge according to the amount of change in incident infrared radiation, and a plurality of infrared detectors located in the infrared incident area of the infrared detector. A pair of opposing bodies having a passing portion and an infrared ray non-passing portion are vibrated to periodically change the opening/closing degree of the infrared passing portion of the pair of opposing bodies. a vibrating body, the vibrating body comprising a central electrode, piezoelectric bodies disposed on both sides of the central electrode, and protruding surface electrodes disposed on each four outer surfaces of the piezoelectric body; It is characterized in that the vibrating body is made to vibrate by setting the surface electrode at a constant potential and applying a drive signal that is an alternating current with respect to the constant potential to the center electrode.

捧) 実施例 #c4図乃至第12図は本発明実施例赤外線センサQ6
1の構造を示す。斯るセンサαQは外形寸法としての長
さ、幅、高さが夫々24,16.15mであり上記セン
サ(4)と同様にかなりの小型化がなされている。
Embodiment #c4 to FIG. 12 are infrared sensor Q6 according to the embodiment of the present invention.
The structure of 1 is shown. The length, width, and height of this sensor αQ are 24 m and 16.15 m, respectively, and it is considerably miniaturized like the above-mentioned sensor (4).

まず、センサケース0′I)は金属製のキャ噌プロ印及
びへ・リプ(19)からなる。上記キャップα(至)に
は、赤外線透過性のシリコン板■にて閉塞され、被検知
物の放射する外部赤外線を上記ケースαη内に導くため
の直径3.5 tpmの外部赤外線入射口(211が形
成されている。又、上記へ・リプα■こは、第1〜第5
端子(22a)〜(22e)が絶縁物を介して植設され
ていると共に第6端子(22りが直接植設されている。
First, the sensor case 0'I) consists of a metal cap and cover (19). The cap α (to) has an external infrared entrance port (211 is formed.Also, refer to the above for the first to fifth
The terminals (22a) to (22e) are implanted through an insulator, and the sixth terminal (22) is implanted directly.

更に、ダミーとして第7、第8端子(22g)(22h
)が植設されている。
Furthermore, the 7th and 8th terminals (22g) (22h
) have been planted.

而して、上記ケースαη内にて、上記へ・リプα湧上に
は、例えば長さ20m1幅11m、厚み11gIのアル
ミナ主基板器がエポキシ系の絶縁性接着剤(財)にて接
着配置されている。この場合、上記主基板(2)は第1
〜第8端子孔(250〜(25h)を有しており、これ
ら端子孔(251〜(25h)に夫々上記第1〜第8端
子(22a)〜(22h)が嵌入している。更に、上記
主基板日上面には第1〜第7電極(261)〜(26g
)が銀パラジウムをスクリーン印刷して焼結することに
よりパターン形成されている。これら第1〜第6電II
 (26m)〜(26f) 1cGi夫/r上記jF1
〜第6゛端子(22す〜(22f)が半田接続されてい
る。上記第6電J!i (26りには更に上記第7、第
8i子、(22g)(22h)か半田接続されている。
Therefore, in the above case αη, an alumina main board with a length of 20 m, a width of 11 m, and a thickness of 11 gI, for example, is glued and placed on the above upwelling with an epoxy-based insulating adhesive. ing. In this case, the main board (2) is the first
-8th terminal holes (250 - (25h)), and the above-mentioned first - eighth terminals (22a) - (22h) are fitted into these terminal holes (251 - (25h), respectively. The first to seventh electrodes (261) to (26g
) is patterned by screen printing and sintering silver palladium. These 1st to 6th trains II
(26m) ~ (26f) 1cGi husband/r above jF1
~6th terminal (22~(22f)) is connected by solder.The above 6th terminal J! ing.

 ′。 ′.

そして、上記ケースαη内にて上記主基板(ハ)上には
赤外線検出体鰭及びチBtvパ機楕部(支)等がハイブ
リーノド的に構成されており、コンパクト化が図られて
いる。
In the case αη, an infrared detector fin, a chip ellipse (support), etc. are arranged in a hybrid-like manner on the main substrate (c), thereby achieving compactness.

まず、上記赤外線検出部(イ)について説明するに、表
、裏面電極(支)、C1)を有し、入射赤外線変化量に
基づいて電荷を発生するタンタル酸リチウム(LiTa
gs)単結晶からなる約1.5調角の焦電型赤外線検出
体Cl1)が設けられ、該検出体Lゴ燐青銅からなる金
属製支持台■上に銀ペース、ト等の導電性接着剤−にで
接着固定されている。そして、上記支持台(至)は同じ
く銀ペースト等の導電性接着剤(至)にて上記第6電J
i!1(26f)の幅広部(26f)に固定され、これ
により上記裏面型WA(30)は接着剤C(31、C1
41,支持台(2)及び第6電@(26りを介して上記
第6端子(22f)に電気的に連なっており、一方上記
表面電@■は上記第7電t!i(26g)に電気的に連
なっている。
First, to explain the infrared detection section (a), it has front and back electrodes (support), C1), and is made of lithium tantalate (LiTa) that generates electric charge based on the amount of change in incident infrared rays.
gs) A pyroelectric infrared detector Cl1) made of a single crystal with a tuning angle of about 1.5 is provided, and conductive adhesive such as silver paste or t is placed on a metal support base made of phosphor bronze. It is fixed with adhesive. Then, the above-mentioned support stand (to) is also attached to the above-mentioned 6th electric conductor by using conductive adhesive (to) such as silver paste.
i! 1 (26f), and thereby the back type WA (30) is fixed to the wide part (26f) of the adhesive C (31, C1
41, is electrically connected to the sixth terminal (22f) via the support base (2) and the sixth terminal (26), while the surface terminal (2) is electrically connected to the seventh terminal (26g). is electrically connected to.

又、上記赤外線検出体(31と共に抵抗用チップ(ト)
疎びFET□□□が設けられている。斯る抵抗用チップ
c35)は特に第11図に示す如く構成されており、ア
ルミナ片(転)が用いられ、該片の片面両端に銀パラジ
ウムをスクリーン印刷、ζ焼結することにより一対の抵
抗型!li (,58a)(38b)が形成され、該電
極間に跨るように1010〜10″′Ωの抵抗層□□□
がスクリーン印刷形成されている。そして、上記抵抗用
チ・リプf351は両抵抗電極(58す(38b)をク
リーム半田にて上記第6、第7電極(26f)(26g
)に接着することにより上記主基板(2)上に固定され
ている。
In addition, the above-mentioned infrared detector (31 as well as a resistor chip (T))
An isolated FET□□□ is provided. Such a resistor chip c35) is particularly constructed as shown in FIG. 11, and a piece of alumina is used, and a pair of resistors is formed by screen-printing silver-palladium on both ends of one side of the piece and ζ-sintering it. Type! li (, 58a) (38b) are formed, and a resistance layer of 1010 to 10''Ω is formed across the electrodes □□□
is formed by screen printing. Then, for the resistor chip F351, connect both the resistor electrodes (58 (38b) with cream solder to the sixth and seventh electrodes (26f) (26g).
) is fixed on the main substrate (2).

史に、上記yET@はンースS1 ドレインD、ゲり上
記主基板(23)上に固定されている。
Historically, the yET@ is fixed on the main substrate (23) with the source S1 and the drain D.

そして、上記赤外線検出体Gυ、抵抗用チ・リプ国及び
FETt361は燐青銅、ブリキからなり内面に黒色艶
消し塗料が塗布された金属製シールド体(イ)にて覆わ
れている。該シールド体は、三角屋根形状いる。而して
、上記シールド体(4〔は、下PjI(40す(40a
)が上記主基板□□□の長辺(25す(2311)に係
合し且つ爪(40b)(40b)が上記主基板因に形成
された切欠部(23b)及び係合孔(23C)に係合し
た状態で上記1N6電極(26f)に半田付けされ、こ
れにより上記シールド体■は上記主基板内上に固定され
外線通過孔(41)が形成されている。
The infrared detector Gυ, the resistor chip, and the FET t361 are covered with a metal shield (A) made of phosphor bronze or tin and whose inner surface is coated with black matte paint. The shield body has a triangular roof shape. Therefore, the above shield body (4 [is lower PjI (40s (40a)
) is engaged with the long side (25 (2311)) of the main board □□□, and the claws (40b) (40b) are formed in the main board (notch part (23b) and engagement hole (23C)) is soldered to the 1N6 electrode (26f) while being engaged with the shield body (26f), thereby fixing the shield body (2) on the inside of the main board and forming an external wire passage hole (41).

次に、上記チ3−wパ槻構部(至)について説明するに
、アルミナ固定板(@が設けられている。該固定板の高
さ、幅、厚みは夫々例えば1t1.10.2■であり、
そして上記固定板禰は、下部両端の保合片(43す(4
3b)が上記主基板(至)の角に形成された切欠部(4
4す(44b)に係合するようにして上記へ噌ダαし更
には上記主基板−に垂直にエポキシ系の絶縁性接着剤(
451にて接着固定されている。又、上配置定板(転)
の上部には例えば長さ41111.幅0.5 wm品一
対の切込み(46す(46b)が互いに5mの間隔をお
いて形成され、そして上記固定板(@の片面には、上記
主基板はと同様に銀パラジウムをスクリーン印刷して焼
結することにより2つの電JM(47a)(47b)が
パターン形成されている。この電1(47b)は上記切
込み(46aX46b)を囲むパターンを有しの−に位
置するパターンを有して参り、これら画題1i (47
a)(47b)は各々上記主基板(2)上の第3、第4
電! (26CX26d)に半田接続されている。
Next, to explain the above-mentioned part 3-w, there is an alumina fixing plate (@).The height, width, and thickness of the fixing plate are, for example, 1t1.10.2mm, respectively. and
The above-mentioned fixing panel has retaining pieces (43 pieces (43 pieces) at both ends of the lower part).
3b) is a notch (4) formed at the corner of the main board (to).
4 (44b), and then apply an epoxy-based insulating adhesive (
It is fixed with adhesive at 451. Also, the upper fixed plate (transfer)
For example, the length 41111. A pair of notches (46b) with a width of 0.5 wm were formed at a distance of 5 m from each other, and one side of the fixing plate (@) was screen printed with silver palladium in the same way as the main board. Two electric JMs (47a) (47b) are patterned by sintering with Now, these paintings 1i (47
a) (47b) are the third and fourth boards on the main board (2), respectively.
Electric! (26CX26d) is soldered connected.

而して、上記両切込み(46a)(46b)には、長さ
高さ、厚みが夫々例えば18.4.0.5mの一対の振
動体+481. (49)が上記固定板(41に垂直に
なるよう配置され、斯る振動体(48) 、 (491
はエポキシ系の絶縁性接着剤にて固定されている。上M
d振動体囮、器においては、第6図及び第1Q図に詳細
に示す如く、燐青銅などからなる中央電極(50す(s
ob) s存し、該中央電極の各々の両側には圧電体(
51a)(51b)結び(52す(52b)が設けられ
、これら圧電体(51す(51b)及び(52a)(s
2b)の外側表面には銀などからなる表面型4(53す
(53b)及び(54m)(54b)が形成されている
。−上記圧電体(51す(s vb )及び(52m)
(52b) は上記振動体制、na毎に同一方向に且つ
振動体(a、(1間で逆方向となるように分゛極(第6
図分極方向P)されている。そして、上記表面電極(5
3a)(s3b)及び(54a)(54b)ハイずレモ
上記固定板(転)の電極(47b)にクリーム半田接続
され、又上記中央電極(soa) (sob) ハ振動
体(48,(41る。該枝片は上記固定板(転)の電@
(47り側へ折曲され、斯る電極(47りにクリーム半
田接続されている。
In both of the notches (46a) and (46b), a pair of vibrating bodies +481. (49) is arranged perpendicular to the fixed plate (41), and the vibrating bodies (48), (491
is fixed with epoxy-based insulating adhesive. Upper M
d In the vibrating body decoy and vessel, as shown in detail in Fig. 6 and Fig. 1Q, a central electrode (50 s
ob) s, and piezoelectric materials (
51a) (51b) Knots (52s (52b)) are provided, and these piezoelectric bodies (51s (51b) and (52a) (s)
Surface molds 4 (53 (53b) and (54m) (54b)) made of silver or the like are formed on the outer surface of the piezoelectric body (51 (svb) and (52m)).
(52b) is the above vibration regime, the polarization (sixth
Figure polarization direction P). Then, the surface electrode (5
3a) (s3b) and (54a) (54b) are connected with cream solder to the electrode (47b) of the fixed plate (roller) above, and the center electrode (soa) (sob) c vibrator (48, (41) The branch piece is connected to the electric @ of the above fixed plate (roll).
(It is bent toward the 47 side, and the electrode is connected to the 47 side with cream solder.)

面して、上記振動体(ω、(0の自由端側には、上記外
部赤外線入射口C!υに約1.1■の間隔をおいて近接
して臨む一対の対向体■、@が互いに手行状態となるよ
うにスミキ噌) SG210M(住人化学■図)により
接着固定されている。この場合、上記中央型、[175
0a)(50b)の接着部分には例えば長さ2.7W1
深さ0.17閣の凹み(58す(58b)が形成され、
この部分−に上記アクリル系絶縁性接着剤が溜り、上記
対向体[株]、@と振動体(48) 、 taとの間に
対向体側、 [の接着固定強度は充分なものとなってい
る。
On the free end side of the vibrating body (ω, They are glued and fixed with SG210M (Sumiki Miso) so that they are in a hand-to-hand state.In this case, the above central type, [175
For example, the length of the adhesive part of 0a) (50b) is 2.7W1.
A depression (58b) with a depth of 0.17 is formed,
The acrylic insulating adhesive accumulates in this part, and the adhesive fixing strength of [ on the opposing body side] is sufficient between the opposing body [Co., Ltd.] and the vibrating body (48), ta. .

そして、上記両対向体側、@はアルミニウムなどの赤外
線非透過材料からなり、第12図1.bに詳細に示す如
く扇形線状に延設された複数のスリ・リドとしての赤外
線通過部側、−が形成され、該通過部の各々の間には夫
々赤外線非通過部Iυ。
And, on both opposing body sides, @ is made of an infrared opaque material such as aluminum, as shown in FIG. As shown in detail in FIG. 1B, a plurality of fan-shaped linear extensions are formed on the infrared passing portion side, and between each of the passing portions, an infrared non-passing portion Iυ is formed.

(@が位置している。これら赤外線通過部(511)、
+1Xll及び非通過部Ill 、 (6mは共に同一
寸法、同一形状を有している。
(@ is located.These infrared passing parts (511),
+1Xll and the non-passing part Ill (6m) both have the same dimensions and the same shape.

上記ケースaη内における上記主基板日上には、上記赤
外線通過部鰭及びチBT”Jパ機構部■と共に更に上記
対向体□□□、@の温度に等しい上記ケースαη内の温
度を測定するための測温ダイオード(ホ)がハイブリッ
ド的に構成されている。斯るダイオード霞は直立状態に
してアノード及びカソードが夫々上記主基板(2)上の
第5.第6電Fi(26e)(2sf)に半田接続され
ている。
On the main board in the case aη, the temperature inside the case αη, which is equal to the temperature of the infrared passing part fin and the tipper mechanism part ■, of the opposing bodies □□□, @ is measured. The temperature-measuring diode (E) is configured in a hybrid manner.The diode haze is placed in an upright state, and its anode and cathode are connected to the fifth and sixth electric currents Fi (26e) (26e) on the main board (2), respectively. 2sf).

次に、上記センサ(161の具体的動作について説明す
る。
Next, the specific operation of the sensor (161) will be explained.

上記振動体(411t) 、 (4!51は上記第3及
び第4端子(22C)(22d)に印加される電圧化基
づいて振動する。即ち、上記第4端子(22d)には、
上記各表面電極(53す(53b)及び(54す(54
b)を一定電位となすべく、直流定電圧約+5ボルトが
印加され、一方上記第3端子(22C)には、上記中央
電極(50a)(sob)に上記一定電位に対して交流
となる駆動信号を印加せしめるべく、約+35及び−2
5ボルトの電圧が交互に周期的(周波数3〜5Hz)に
印加される。すると、斯る第3、第4端子(22C)(
22d)に上記固定板(転)上の電11 (47す(4
7b)を介して連なっている上記振動体(48)、(a
の中央電極(50す(sob)及び表面電極(53す(
53b)に関し、中央型fii (5oa)(sob)
ノ方カ表iii114(ssa)(s3b)(54m)
 (54b)に較べて30ボルトだけ高くなる状態(以
下H状態という)と30ボルトだけ低くなくなる状態(
以下り状態という)とが、第14図3に示す如く周波数
3〜5Hzにて交互に繰返さ、れる。而して、上記H状
態の場合、上記振動体(a、 (491の圧電体(51
11)(52a)が縮むと共に圧電体(51b)(52
b)が伸び、両振動体14gI、 (aは夫々S。
The vibrating bodies (411t) and (4!51 vibrate based on the voltage applied to the third and fourth terminals (22C) (22d). That is, the fourth terminal (22d) has
Each of the above surface electrodes (53 (53b) and (54 (54)
b) A constant DC voltage of approximately +5 volts is applied to maintain a constant potential, while a voltage of approximately +5 volts is applied to the third terminal (22C) to drive the center electrode (50a) (sob) to an alternating current with respect to the constant potential. Approximately +35 and -2 to apply the signal.
A voltage of 5 volts is applied alternately and periodically (frequency 3-5 Hz). Then, the third and fourth terminals (22C) (
22d) on the fixed plate (roller) 11 (47s(4)
The vibrating bodies (48) and (a
center electrode (50 sob) and surface electrode (53 sob)
53b), central type fii (5oa) (sob)
nogataka table iii114 (ssa) (s3b) (54m)
(54b), a state in which the voltage is higher by 30 volts (hereinafter referred to as the H state) and a state in which the voltage is no longer lower by 30 volts (
(hereinafter referred to as "low state") are alternately repeated at a frequency of 3 to 5 Hz as shown in FIG. 14. Therefore, in the case of the H state, the vibrating body (a), (491 piezoelectric body (51
11) As the (52a) shrinks, the piezoelectric body (51b) (52
b) is extended, both vibrators 14gI, (a is S respectively).

S方向(第6図)に撓む。一方、上記り状態の場合、両
振動体(48+ 、 (4(ト)は上述とは逆に夫々S
、S方向に撓む。これにより、上記振動体(481,t
n引を互いに逆方向に周期的に振動する。
Deflects in the S direction (Figure 6). On the other hand, in the above state, both vibrators (48+, (4(g)) are S
, deflects in the S direction. As a result, the vibrating body (481, t
The n pulls are periodically vibrated in opposite directions.

そして、斯る振動に基づいて、上記対向体(イ)。Then, based on such vibration, the above-mentioned opposing body (a).

印は相対的位置関係が変位し、両対向体(至)、tnの
赤外線通過部曽、■がほぼ重畳し合って開放する状態(
上記H状態に対応する)と、殆ど重畳し合わず閉塞する
状態(上記り状態に対応する)とか周期的に繰返される
。すると、上記赤外線検出体G11lは、外部赤外線入
射口(21)を通過してセンサケ−スミη内に入ってく
る被検知物からの赤外線と対向体側、(支)からの赤外
線とに基づいて、入射赤外線社が周期的に変化し、よっ
て被検知物の温度に応じた電荷、更に詳しくは被検知物
と対向体側、@との温度差に対応した信号を出力する。
The mark indicates a state in which the relative positional relationship is displaced, and both opposing bodies (to), the infrared passing portion of tn, and ■ are almost overlapped and open (
(corresponding to the above-mentioned H state) and a state in which they are occluded with almost no overlap (corresponding to the above-mentioned state) are periodically repeated. Then, the infrared detector G11l detects the infrared rays from the object passing through the external infrared entrance (21) and entering the sensor case η and the infrared rays from the opposing body side (support). The incident infrared light changes periodically, and therefore outputs a charge corresponding to the temperature of the object to be detected, more specifically, a signal corresponding to the temperature difference between the object to be detected and the opposing body side.

斯る信号は上記FET0i9のゲートGにへヵし、そし
て斯るFET([のソースSから上記第1端子(22a
)を経て上記赤外線センサ(16)外へ出力される。
Such a signal is passed to the gate G of the FET0i9, and from the source S of the FET ([) to the first terminal (22a
) is output to the outside of the infrared sensor (16).

第13図は斯るセンサα0を含む回路を示す。FIG. 13 shows a circuit including such a sensor α0.

上記第4端子(22d)には定電圧回路(ホ)より上記
定電圧約+5ボルトが印加され、上記iJ3端子(22
C)には発振器(資)からの出力が増幅回路−を介して
増幅され上記電圧約+35及び−25ボルトが交互に周
期的に印加される。これにより上記振動体(4印、14
!は上述の如く振動し、斯る振動時には上記第1端子(
22りから被検知物と対向体[有]、@との温度差に対
応した信号を出力する。斯る信号は実際は第14図すの
如き交流eをなし、その振幅が上記温度差に応じたもの
となっている。そして、上記第1端子(22a)からの
信号はフィルタ増幅器−を介して同期検波器(至)に入
力される。尚讐上記フィルタ増幅器−の入力側には約1
0にΩの抵抗fflが接続されている。斯る抵抗ffυ
は上記センサαeの抵抗(至)及びFl”1@と共にイ
ンピーダンス変換回路(2)を構成している。
The constant voltage of about +5 volts is applied to the fourth terminal (22d) from the constant voltage circuit (E), and the iJ3 terminal (22
C), the output from the oscillator is amplified via an amplifier circuit, and the above voltages of approximately +35 and -25 volts are alternately and periodically applied. This causes the vibrating body (marked 4, 14
! vibrates as described above, and during such vibration the first terminal (
22 outputs a signal corresponding to the temperature difference between the object to be detected and the opposing body. Such a signal actually forms an alternating current e as shown in FIG. 14, and its amplitude corresponds to the above-mentioned temperature difference. The signal from the first terminal (22a) is input to the synchronous detector (to) via the filter amplifier. Approximately 1 is connected to the input side of the above filter amplifier.
A resistor ffl of Ω is connected to 0. Such resistance ffυ
constitutes an impedance conversion circuit (2) together with the resistance (to) of the sensor αe and Fl''1@.

而して、上記検波器側は、上記交流信号eと上za発振
器(67)の出力との同期をとり、被検知物の温度が対
向体ω)、(5ηの温度より高い場合はその温度差に応
じた正の直流信号を検波出力し、被検知物の温度が対同
体(5Efl 、 (57)の温度より低い場合はその
温度差に応じた負の直流信号を検波出力する。即ち、上
記交流信号Cとしては、被検知物の温度が対向体(!@
、(57)の温度より高いと正側半サイクルe十が上記
H状態と一致、しシフ被検知物の温度が対向体制)、@
の温度より低いと負側半サイクルe−が上記H状態と一
致する。そして、上記検波器(2)からは、前者の一致
がとれると被検知物と対向体■、印との温度差に応じた
正の直流信号が出力され、後者の一致がとれると斯る温
度差に応じた負の直流信号が出力される。
The detector side synchronizes the AC signal e with the output of the upper za oscillator (67), and when the temperature of the object to be detected is higher than the temperature of the opposing body ω), (5η), the temperature is A positive DC signal corresponding to the difference is detected and output, and if the temperature of the object to be detected is lower than the temperature of the object (5Efl, (57)), a negative DC signal corresponding to the temperature difference is detected and output. That is, As the above AC signal C, the temperature of the object to be detected is the temperature of the opposing object (!@
, if the temperature is higher than (57), the positive half cycle e0 coincides with the above H state, and the temperature of the detected object is in the opposite regime), @
When the temperature is lower than , the negative half cycle e- coincides with the above H state. When the former matches, the detector (2) outputs a positive DC signal corresponding to the temperature difference between the detected object and the opposing body (■), and when the latter matches, the temperature A negative DC signal corresponding to the difference is output.

而して、上記検波器(2)からの出力は直流増幅器(2
)を介して合成回路υ金に入力される。該合成回路には
更に上記測温ダイオード缶からの出力、即ち対向体間、
(5ηの温度に応じた信号が直流増幅器(社)を介して
入力される。そして、上記合成回路園はこれら2つの入
力を加算し実際の被検知物の温度に応じた信号を出力す
る。斯る出力は直流増幅器(至)を介して所望回路へ出
方するためり出力端子面に導かれる。
Then, the output from the detector (2) is sent to the DC amplifier (2).
) is input into the synthesis circuit υ gold. The synthesis circuit further includes the output from the temperature-measuring diode can, that is, between the opposing bodies,
(A signal corresponding to the temperature of 5η is inputted via a DC amplifier (Co., Ltd.).The above-mentioned synthesis circuit adds these two inputs and outputs a signal corresponding to the actual temperature of the object to be detected. Such an output is led to an output terminal surface for outputting to a desired circuit via a DC amplifier.

さて、上記第3端子(22c)、第3電極(26c)及
び固定板(@の電極(47りを介して上記振動体(嫂。
Now, the third terminal (22c), the third electrode (26c) and the fixed plate (@ electrode (47) are connected to the vibrating body (other).

禰の中央電極(5(1a)(50b)に上述の如く交流
的な駆動信号電圧(+35ボルト及び−25ボルト)を
印加すると、その交流成分に基づいたノイズが上記中央
型@(50λ)(50b)から発生する。しかるに、こ
の場合、上記中央電極(′50す(50b)は夫々表面
電准(53す(53b)及ヒ(s4a)(s4b) i
c挾t した状態にあり、斯る構成にあっては上記中央
電極(50a) (50b)からノノイスハ表面電極(
53a)(53b)及び(54す(54b)にて顕著に
シールドされ、よって斯るノイズが上記シールド体(転
)内に赤外線通過向、上記構造においては、上記対向体
側、(支)は定されており、この場合中央型1% (5
oa)(50b)からのノイズの放射作用をし得る対向
体間、@は上記中央電極(50す(sob)と絶縁され
ており、この点でのノイズシールドも充分なものとなっ
ている。
When the AC drive signal voltages (+35 volts and -25 volts) are applied to the center electrodes (5(1a) and 50b) of the wire as described above, noise based on the AC component is generated as described above at the center type @(50λ)( 50b). However, in this case, the central electrode (50b) is generated from the surface electric potentials (53S (53b) and H (s4a) (s4b) i
In such a configuration, from the central electrode (50a) (50b) to the surface electrode (
53a), (53b) and (54), and therefore, such noise is transmitted in the infrared rays passing direction within the shield body (transfer), and in the above structure, the opposite body side (support) is fixed. In this case, the central type is 1% (5
The opposing bodies that can radiate noise from the central electrode (50b) are insulated from the center electrode (50sob), and the noise shielding at this point is also sufficient.

又、上記振動体帳、(4のを振動させるための電圧が印
加される第3.第4電極(26,C)(26d)と上記
温度差に応じた信号を出力するための第1電11i(2
6a)との間には接地された第6電極(26りの横断部
(26f)が存在している。更に、上記第3.第4電極
(26C)(26d)と連なっている上記固定板(41
上の電i (47a)(47b)と上記第1電6(26
りとの間の空間、には接地された上記第6電[1(26
りにカソードが連なった測温ダイオード霞が存在してい
る。斯る構成であると、上記シールド体■の存在と相俟
って上記第1電極(26a)等は上記第3.第4電@(
2sc)(26d)及び上記固定板(転)の電極(47
a)(47b)との静電的結合が顕著に弱められるもの
と思われ、これにより、上述の如き交流的駆動信号電圧
が加わる上記第3端子(22C)、第3電[1(26C
)及び固定板(@の電極(47りから上述と同様のノイ
ズが発生しても、斯乞ノイズもシールド体(a内に侵入
するのが顕著に防止される。
In addition, the vibrating body (4) has third and fourth electrodes (26, C) (26d) to which a voltage is applied for vibrating the body, and a first electrode (26, C) (26d) for outputting a signal according to the temperature difference. 11i(2
6a), there is a grounded sixth electrode (26) crossing section (26f).Furthermore, there is a grounded sixth electrode (26f) between the fixed plate and the third and fourth electrodes (26C) and (26d). (41
The upper electric wire i (47a) (47b) and the above first electric wire 6 (26
In the space between the
There is a temperature-measuring diode haze with a series of cathodes. With such a configuration, together with the presence of the shield body (2), the first electrode (26a) etc. are connected to the third electrode (26a). 4th Electric Railway @(
2sc) (26d) and the electrode (47) of the fixed plate (roller)
It is thought that the electrostatic coupling with a) (47b) is significantly weakened, and as a result, the third terminal (22C) and the third terminal [1 (26C) to which the above-mentioned AC drive signal voltage is applied
) and the fixing plate (@ electrode (47). Even if noise similar to that described above occurs, the noise is significantly prevented from entering the shield body (a).

ここに、上記赤外線センサαeと従来の赤外線センサ(
4)とを総合的に数値比較すると、下表の通りとなる。
Here, the above infrared sensor αe and the conventional infrared sensor (
A comprehensive numerical comparison of 4) shows the results shown in the table below.

線検出体と、該赤外線検出体の赤外線入射域に装置し、
複数の赤外線通過部及び赤外線非通過部を体とを備え、
該振動体を、中央電極と、該中央電極の両側面に各々配
置された圧電体と、該圧電体の各々の外側面に配置され
た表面電価とから構成し、該表面電極を一定電位となす
と共に上記中央電極には上記一定電位に対して交流とな
る駆動信号を印加せしめることにより、上記振動体を振
動せしめるから、振動体に印加される交流的駆動信の影
響を受けず、よってSN 比が向上し、信頼性の高い赤外線センサを得ることがで
きる。
a radiation detector, and a device installed in the infrared incident area of the infrared detector,
a body including a plurality of infrared passing parts and a plurality of infrared non-passing parts;
The vibrating body is composed of a central electrode, piezoelectric bodies disposed on both sides of the central electrode, and surface charges disposed on the outer surfaces of each piezoelectric body, and the surface electrodes are kept at a constant potential. At the same time, the vibrating body is made to vibrate by applying a driving signal that is an alternating current to the constant potential to the central electrode, so that it is not affected by the alternating current driving signal applied to the vibrating body. The SN ratio is improved and a highly reliable infrared sensor can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a及びbは夫々従来の赤外線検出機構の側面図及
びモ面図、第2図及びs3図は夫々改良された従、来の
赤外線センサの断面図及び要部≠面図、第4図乃至第1
2図は本発明実施例赤外線センサの構造を示し、第4図
は分解斜視図、第5図は側面から見た断面図、第6図は
第5図における■−■線断面図、第7図は第5−におけ
る■−■線断面図、第8図は第5図における■−■線断
面図、第9図は主基板のt面図、第10図は要部斜視図
、第11図は抵抗用チップの下面図、第12図a、bは
夫々対向体のt面図、第13図は上記実施例の赤外線セ
ンサを含む回路′図、第14図3、bは夫々第15図に
おける要部信号波形図である。 αη・・・センサケース、α訃・・キャップ、α(支)
・・・へ噌グ、(21) ・・・外部赤外線入射口、C
11ll ・・・赤外線検出体、(a ・・・シールド
体、(a−・・固定板、(50す(50b)・・・中央
電極、(51aX51b)(szす(52b )・・・
圧電体、(53a)(53b) (54す(54b)−
・・表面電極、囮(榔・・・振動体、@(資)・・・対
向体、@輸・・・赤外線通過部、@I)lB21−・・
赤外線非通過部。
Figures 1a and b are a side view and top view of a conventional infrared detection mechanism, respectively; Figures 2 and s3 are a sectional view and a top view of the main parts of an improved conventional infrared sensor; Figure to 1st
2 shows the structure of an infrared sensor according to an embodiment of the present invention, FIG. 4 is an exploded perspective view, FIG. 5 is a sectional view seen from the side, FIG. 6 is a sectional view taken along the line ■-■ in FIG. The figure is a sectional view taken along the line ■-■ in FIG. 5, FIG. 8 is a sectional view taken along the line ■-■ in FIG. The figure is a bottom view of the resistor chip, FIGS. 12a and 12b are t-plane views of the opposing body, FIG. 13 is a circuit diagram including the infrared sensor of the above embodiment, and FIGS. FIG. 4 is a diagram of main signal waveforms in the figure. αη...Sensor case, α-cap, α (support)
・・・Here, (21) ・・・External infrared entrance, C
11ll...Infrared detector, (a...Shield body, (a-...Fixing plate, (50s(50b)...Central electrode, (51aX51b)(szsu(52b)...
Piezoelectric body, (53a) (53b) (54s (54b)-
...Surface electrode, decoy (Sakura...vibrating body, @( capital)...opposite body, @import...infrared passing section, @I)lB21-...
Infrared non-passage section.

Claims (1)

【特許請求の範囲】[Claims] (1)入射赤外線変化量に応じて電荷を発生する赤外線
検出体と、該赤外線検出体の赤外線入射域に位置し、複
数の赤外線通過部及び赤外線非通過部を有する一対の対
向体と、該一対の対向体の赤外線通過部の開閉度を周期
的に変位せしめるべく振動する振動体とを備え、該振動
体を、中央電極と、該中央電極の両側面に各々配置され
た圧電体と、該圧電体の各々の外側面に配置された表面
電極とから構成し、該表面電極を一定電位となすと共に
上記中央電極には上記一定電位に対して交流となる駆動
信号を印加せしめることにより、上記振動体を振動せし
めることを特徴とする赤外線センサ。
(1) An infrared detector that generates a charge according to the amount of change in incident infrared radiation; a pair of opposing bodies that are located in the infrared incident area of the infrared detector and have a plurality of infrared passing parts and infrared non-passing parts; A vibrating body that vibrates to periodically change the opening/closing degree of the infrared passing portion of the pair of opposing bodies, the vibrating body being connected to a center electrode, a piezoelectric body disposed on both sides of the center electrode, and a surface electrode disposed on the outer surface of each of the piezoelectric bodies, by setting the surface electrode at a constant potential and applying a drive signal that is an alternating current with respect to the constant potential to the center electrode, An infrared sensor characterized by causing the vibrating body to vibrate.
JP58237583A 1983-12-15 1983-12-15 Infrared sensor Granted JPS60128316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58237583A JPS60128316A (en) 1983-12-15 1983-12-15 Infrared sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58237583A JPS60128316A (en) 1983-12-15 1983-12-15 Infrared sensor

Publications (2)

Publication Number Publication Date
JPS60128316A true JPS60128316A (en) 1985-07-09
JPH0238894B2 JPH0238894B2 (en) 1990-09-03

Family

ID=17017466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58237583A Granted JPS60128316A (en) 1983-12-15 1983-12-15 Infrared sensor

Country Status (1)

Country Link
JP (1) JPS60128316A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4868015A (en) * 1987-05-09 1989-09-19 Olympus Optical Co., Ltd. Method for marking on an insertable portion of an endoscope
JPWO2019131642A1 (en) * 2017-12-28 2020-11-19 株式会社村田製作所 Photodetector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4868015A (en) * 1987-05-09 1989-09-19 Olympus Optical Co., Ltd. Method for marking on an insertable portion of an endoscope
JPWO2019131642A1 (en) * 2017-12-28 2020-11-19 株式会社村田製作所 Photodetector

Also Published As

Publication number Publication date
JPH0238894B2 (en) 1990-09-03

Similar Documents

Publication Publication Date Title
US4205267A (en) High speed electrostatic voltmeter
US4763078A (en) Sensor for electrostatic voltmeter
US4631406A (en) Infrared ray detector
JPS60128316A (en) Infrared sensor
CN113048967B (en) Method for manufacturing physical quantity detection device
JPS622246B2 (en)
JPH0313707Y2 (en)
JPH0262810B2 (en)
JPH0234592Y2 (en)
JPH0414290B2 (en)
JPH0240172B2 (en)
JPH0156367B2 (en)
JPH0334668Y2 (en)
JPH0230740Y2 (en)
JPS58129334A (en) Infrared detector
US2788516A (en) Capacitative type measuring system
JPH0127069Y2 (en)
JPH051793Y2 (en)
JPH053957Y2 (en)
JPH0448513Y2 (en)
JPS58213259A (en) Detecting apparatus of surface electric potential
KR100243078B1 (en) Apparatus and method for detecting
JPH0720568Y2 (en) Walk detection sensor of electronic pedometer
JPH0251033A (en) Infrared detector
JPH01170862A (en) Sensor for electrostatic voltmeter