JPS60126871A - Semiconductor pressure-sensitive device and manufacture thereof - Google Patents
Semiconductor pressure-sensitive device and manufacture thereofInfo
- Publication number
- JPS60126871A JPS60126871A JP23427683A JP23427683A JPS60126871A JP S60126871 A JPS60126871 A JP S60126871A JP 23427683 A JP23427683 A JP 23427683A JP 23427683 A JP23427683 A JP 23427683A JP S60126871 A JPS60126871 A JP S60126871A
- Authority
- JP
- Japan
- Prior art keywords
- diaphragm
- pressure
- semiconductor
- substrate
- thin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 23
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 239000000758 substrate Substances 0.000 claims abstract description 24
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 18
- 239000010703 silicon Substances 0.000 claims abstract description 18
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 17
- 238000005530 etching Methods 0.000 claims abstract description 13
- 239000013078 crystal Substances 0.000 claims abstract description 9
- 239000012212 insulator Substances 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims 2
- 229910052757 nitrogen Inorganic materials 0.000 claims 2
- 239000001301 oxygen Substances 0.000 claims 2
- 229910052760 oxygen Inorganic materials 0.000 claims 2
- 229910052581 Si3N4 Inorganic materials 0.000 claims 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims 1
- 230000003213 activating effect Effects 0.000 claims 1
- -1 nitrogen ions Chemical class 0.000 claims 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims 1
- 229910052814 silicon oxide Inorganic materials 0.000 claims 1
- 238000009792 diffusion process Methods 0.000 abstract description 8
- 239000012535 impurity Substances 0.000 abstract description 4
- 230000002093 peripheral effect Effects 0.000 abstract description 2
- 238000007373 indentation Methods 0.000 abstract 3
- 150000002500 ions Chemical class 0.000 abstract 1
- 239000012670 alkaline solution Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 229910005091 Si3N Inorganic materials 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
- G01L9/0041—Transmitting or indicating the displacement of flexible diaphragms
- G01L9/0051—Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
- G01L9/0052—Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements
- G01L9/0054—Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements integral with a semiconducting diaphragm
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
- G01L9/0041—Transmitting or indicating the displacement of flexible diaphragms
- G01L9/0042—Constructional details associated with semiconductive diaphragm sensors, e.g. etching, or constructional details of non-semiconductive diaphragms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/84—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Pressure Sensors (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
Description
〔技術分野〕
本発明は半導体感圧装置における半導体ダイヤフラム形
成技術に関し、主としてシリコン・ダイヤフラム膨圧力
センサを対象とする。
〔背景技術〕
牛導体圧力センサはかってのブルドン管やベローズを用
いた機械式圧力センサと異なって超小型化、ならびに高
性能化が期待でき、その代表的なものにシリコン・ダイ
ヤフラム膨圧力センサがある。
シリコン・ダイヤフラム膨圧力センサの構造は第1図に
断面図で及び第2図に底面図で示すように、シリコン単
結晶ベレット1の裏面側(IB)に凹陥部2を掘って薄
肉のダイヤフラムとなし、ダイヤフラム薄肉部3の表面
(IA)に細長形のゲージ用拡散抵抗層4を配設(平行
に4個配列)し、ダイヤプラム上下の圧力差から薄肉部
の変形(歪)による上記拡散抵抗層の伸縮をブリッジ結
合した抵抗値め変化として電気的に検出するものである
。
このようなシリコン・ダイヤフラム形圧力センサにおい
て、拡散抵抗層の配設置されるダイヤフラム薄肉部の厚
さのコントロールはダイヤフラム形圧力センサの性能上
きわめて重要である。圧力センサとなる半導体基体にダ
イヤフラムの凹陥部を形成するには、通常、シリコン単
結晶基板の方位による異方性エツチング技術が利用され
る。たとえば、シリコン単結晶基板(ウェハ)主面の(
100)lfiを使用してKOHなどのアルカリ液を用
いる異方性エッチを行うと急峻な斜面を側面1□
にもつ凹陥部が得られるが、結晶欠陥などにより必ずし
も均一性の(平面性の良い)ダイヤフラムを得ることは
できない。とくに薄肉部の厚さ即ち凹陥部の深さを所要
の寸法に掘るためには、エッチ液の濃度、処理温度及び
処理時間のコントロールが必要であるが、この方法では
±4μmの誤差を避けられず、このため精度の良いダイ
ヤフラムを得ることは困難であったということが発明者
によってあきらかとされた。
〔発明の目的〕
本発明は上記[Technical Field] The present invention relates to a technology for forming a semiconductor diaphragm in a semiconductor pressure-sensitive device, and is mainly directed to a silicon diaphragm expansion pressure sensor. [Background technology] Unlike mechanical pressure sensors that used bourdon tubes or bellows, conductor pressure sensors can be expected to be ultra-miniaturized and have higher performance.A typical example is a silicon diaphragm bulge pressure sensor. be. The structure of the silicon diaphragm bulge pressure sensor is as shown in the cross-sectional view in FIG. 1 and in the bottom view in FIG. None, an elongated gauge diffusion resistance layer 4 is arranged on the surface (IA) of the diaphragm thin wall portion 3 (four pieces arranged in parallel), and the above diffusion is caused by the deformation (strain) of the thin wall portion due to the pressure difference between the upper and lower sides of the diaphragm. The expansion and contraction of the resistive layer is electrically detected as a change in the bridge-coupled resistance value. In such a silicon diaphragm pressure sensor, controlling the thickness of the thin portion of the diaphragm where the diffusion resistance layer is disposed is extremely important for the performance of the diaphragm pressure sensor. To form a diaphragm recess in a semiconductor substrate serving as a pressure sensor, an anisotropic etching technique based on the orientation of a silicon single crystal substrate is usually used. For example, on the main surface of a silicon single crystal substrate (wafer) (
100) When performing anisotropic etching using an alkaline solution such as KOH using lfi, a recess with a steep slope on the side surface 1□ can be obtained, but due to crystal defects etc. ) diaphragm cannot be obtained. In particular, in order to excavate the thickness of the thin wall part, that is, the depth of the recessed part, to the required dimensions, it is necessary to control the concentration of the etchant, the processing temperature, and the processing time, but with this method, an error of ±4 μm can be avoided. The inventor found that it was difficult to obtain a highly accurate diaphragm for this reason. [Object of the invention] The present invention
【7た問題を解決したものであり、その目
的とするところは、ダイヤフラム薄肉部の平面性と厚さ
のコントロールの容易な半導体ダイヤフラム形成技術の
提供にある。
本発明の前記ならびにその他の目的と新規な特徴は本明
細書の記載および添付図面よりあきらかになるであろう
。
〔発明の概要〕
本顯において開示される発明のうち代表的なものの概要
を簡単に説明すれば、下記のとおりである。すなわち、
シリコン半導体基体の一生弐面に感圧部として複数の拡
散抵抗層を形成し、この感圧部かダイヤフラム薄肉部と
なるように基体の他主面をエッチして凹陥部を掘る半導
体感圧装置の製造法であって、上記薄肉部となる半導体
層の底部にあらかじめ絶縁膜を埋め込み、この絶縁膜の
存在により凹陥部エッチ際のエッチ深さを精度よくコン
トロールし発明の目的を達成するものである。
〔実施例〕
第3図乃至第7図は本発明の一実施例を示すものであっ
て、シリコン結晶基板を用いてダイヤフラムセンサを製
造する場合のプロセスの工程断面図である。以下各工程
に従って詳述する。
(1)厚さ400μm程度のP型不純物ドープ高比抵抗
シリコン基板1を用意し、第3・図に示すようにその表
面IAのダイヤフラム領域にO,又はN2をマスク5を
通してイオン打込みにより導入する。
このときのイオン打込みエネルギは250KeV。
不純物濃度は1016atoms10x”、打込み深さ
は0.2μm程度とする。
(21次いで低圧低温(800℃)条件下でシリコンの
エピタキシャル区長を行い、嬉4図に示すように20μ
m程度の厚さにn型不純物ドープ・シリコン結晶層(n
isi層)6を形成する。
(3)この後通常の選択的不純物拡散技術を利用して第
5図に示すようにダイヤフラム領域にP型拡散抵抗層7
を形成するとともに周辺部にも必要とするICの半導体
素子領域(図示されない)を形成する。このときの拡散
に伴う熱処理(1200℃)によって前記(1)工程で
導入された0、又はN、が活性化されてpfi8i基板
とエピタキシャルn型Si層6との界面部分にSin、
又は51gN4のごとき絶縁物の膜8が形成される。
(4)この後、上記半導体基板】の裏面IBを鏡面研磨
し、レジスト(耐食性樹脂)又は酸化膜(Sin、)’
によるマスク9を形成し、このマスクの円形の窓を通し
てダイヤフラム形成のための異方性エッチを行う。この
異方性エッチはあらかじめシリコン結晶基板の主面が(
100)面となるように選び、KOHなどのアルカリ液
をエッチ液として使用することにより、傾斜角θ−57
°の凹陥部(円形に近い六角形の凹陥部)2を基板の裏
面に掘る。このとぎ基板1とエピタキシャル層6との間
に形成されている5iOz又はSi3N、膜等の絶縁膜
8がエッチストッパとなって凹陥部2の深さがコントロ
ールされ、所要とする薄肉部をもつダイヤフラムが形成
される。
また、ダイヤフラム薄肉部の厚さはエピタキシャル層の
厚さにより決定される。しかし、エピタキシャル層の膜
厚は高精度にコントロール可能であるため、所望の膜厚
が得られる。すなわち、エツチングによるダイヤフラム
薄肉部の#A膜厚精度±4μmの範囲であるのに対し、
エピタキシャル成長の膜厚精度は11μmの範囲で膜厚
のコントロールが可能である。
〔効果〕
以上実施例で述べた本発明によれば下記のように効果が
得られる。
(1)牛導体基体内に絶縁膜を形成した状態で基体裏面
からアルカリ液を用いて異方性エツチングを行うことに
より、上記絶縁膜はアルカリ液にほとんどエッチされな
いためこれがストッパとなって所要の深さ所要形状の凹
陥部が得られることより、ダイヤフラムの平面性及び厚
さの均一性が得られ特性に優れた感圧センサを提供でき
る。
(2)タイヤフラム薄肉部の厚さはエピタキシャル層の
厚さによりコントロールできるため、所望のダイヤフラ
ム薄肉部の膜厚を得ることができる。
(31上記(2)により極めて薄い薄肉部のダイヤフラ
ムを持つ高感度の感圧センサを提供できる。又、厚いダ
イヤフラムであれば高圧に使用できる感圧センサを提供
できる。
(4)上記(11〜(3)により量産性と高精度化を備
えた圧力センサを提供できる。
以上発明者によってなされた発明を実施例にもとづき具
体的に説明したが本発明は上記実施例に限定されるもの
ではなく、その要旨を逸脱しない範囲で種々変更可能で
あることはいうまでもない。
〔利用分野〕
以上の説明では主として本発明者によってなされた発明
をその背景となった利用分野である半導体感圧装置技術
に適用した場合について説明したが、それに限定される
ものではなく、少なくとも、エツチングにより高精度の
膜厚を得る条件のものには適用できる。
本発明は同じチップ内にICを共有させた半導体圧力セ
ンサのすべてに適用できる。[7] The purpose is to provide a semiconductor diaphragm forming technique that allows easy control of the flatness and thickness of the thin portion of the diaphragm. The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings. [Summary of the Invention] A brief outline of typical inventions disclosed in this paper is as follows. That is,
A semiconductor pressure-sensitive device in which a plurality of diffused resistance layers are formed as a pressure-sensitive part on the second surface of a silicon semiconductor substrate, and a recess is dug by etching the other main surface of the substrate so that the pressure-sensitive part becomes a thin-walled diaphragm part. This is a manufacturing method in which an insulating film is embedded in advance at the bottom of the semiconductor layer that becomes the thin part, and the presence of this insulating film allows the etch depth when etching the recess to be precisely controlled, thereby achieving the object of the invention. . [Embodiment] FIGS. 3 to 7 show an embodiment of the present invention, and are cross-sectional views of a process in which a diaphragm sensor is manufactured using a silicon crystal substrate. Each step will be explained in detail below. (1) Prepare a P-type impurity-doped high-resistivity silicon substrate 1 with a thickness of about 400 μm, and introduce O or N2 into the diaphragm region of the surface IA through a mask 5 by ion implantation as shown in FIG. . The ion implantation energy at this time was 250 KeV. The impurity concentration is 1016 atoms 10x'', and the implantation depth is approximately 0.2 μm.
An n-type impurity-doped silicon crystal layer (n
isi layer) 6 is formed. (3) After this, using the usual selective impurity diffusion technique, as shown in FIG.
At the same time, a necessary IC semiconductor element region (not shown) is also formed in the peripheral portion. At this time, the heat treatment (1200° C.) accompanying the diffusion activates the 0 or N introduced in the step (1) above, and the interface between the PFI8i substrate and the epitaxial n-type Si layer 6 becomes Si,
Alternatively, a film 8 of an insulator such as 51gN4 is formed. (4) After this, the back surface IB of the above semiconductor substrate is polished to a mirror surface, and a resist (corrosion-resistant resin) or oxide film (Sin, )'
A mask 9 is formed according to the method described above, and anisotropic etching is performed to form a diaphragm through a circular window of this mask. This anisotropic etch is performed in advance so that the main surface of the silicon crystal substrate (
100) and using an alkaline solution such as KOH as an etchant, the inclination angle θ-57
A concave portion (a hexagonal concave portion close to a circle) 2 of ° is dug on the back surface of the substrate. The insulating film 8, such as 5iOz or Si3N film, formed between the scraping substrate 1 and the epitaxial layer 6 acts as an etch stopper to control the depth of the recessed part 2, thereby forming a diaphragm with a desired thin part. is formed. Further, the thickness of the diaphragm thin portion is determined by the thickness of the epitaxial layer. However, since the thickness of the epitaxial layer can be controlled with high precision, a desired thickness can be obtained. In other words, while the #A film thickness accuracy of the thin diaphragm part due to etching is within ±4 μm,
The film thickness accuracy of epitaxial growth can be controlled within a range of 11 μm. [Effects] According to the present invention described in the examples above, the following effects can be obtained. (1) By performing anisotropic etching using an alkaline solution from the back side of the substrate with an insulating film formed inside the conductor substrate, the insulating film is hardly etched by the alkaline solution, so this acts as a stopper and allows the required etching to be performed. Since a concave portion having a desired depth and shape is obtained, the flatness and uniformity of the thickness of the diaphragm can be obtained, and a pressure-sensitive sensor with excellent characteristics can be provided. (2) Since the thickness of the thin portion of the tire phragm can be controlled by the thickness of the epitaxial layer, a desired thickness of the thin portion of the diaphragm can be obtained. (31) According to (2) above, a highly sensitive pressure-sensitive sensor having an extremely thin diaphragm can be provided. Also, if the diaphragm is thick, a pressure-sensitive sensor that can be used at high pressures can be provided. (4) (11-- (3) makes it possible to provide a pressure sensor that is mass-producible and highly accurate.The invention made by the inventor has been specifically described above based on examples, but the present invention is not limited to the above-mentioned examples. , it goes without saying that various changes can be made without departing from the gist of the invention. [Field of Application] The above description will mainly focus on the invention made by the present inventor with reference to the field of application, which is the semiconductor pressure-sensitive device. Although the description has been made regarding the case where the application is applied to the technology, the present invention is not limited thereto, and can be applied at least to conditions where highly accurate film thickness can be obtained by etching. Applicable to all pressure sensors.
第1図はダイヤフラム膨圧力センサの形状を示す断面図
である。
第2図は第】図のダイヤフラム圧力センサの凹陥部の形
状を示す底面図である。
第3図乃至第7図は本発明の一実施例であって、シリコ
ン基板を用いてダイヤフラム膨圧力センサを製造する場
合のプロセス工程断面図である。
1・・・P型シリコン基板、2・・・凹陥部、3・・・
ダイヤフラム(薄肉部)、4・・・ゲージ用拡散抵抗、
5・・・酸化膜マスク、6・・・n!エピタキシャルシ
リコン層、7・・・P型拡散抵抗、8・・・絶縁膜、9
・・・マスク。
第 1 図
第 2 図
第 3 図
第 4 図
第 5 図FIG. 1 is a sectional view showing the shape of a diaphragm expansion pressure sensor. FIG. 2 is a bottom view showing the shape of the recessed portion of the diaphragm pressure sensor shown in FIG. FIGS. 3 to 7 are cross-sectional views of process steps in manufacturing a diaphragm swelling pressure sensor using a silicon substrate, which is an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... P-type silicon substrate, 2... Recessed part, 3...
Diaphragm (thin wall part), 4... Diffusion resistor for gauge,
5...Oxide film mask, 6...n! Epitaxial silicon layer, 7... P-type diffused resistance, 8... Insulating film, 9
···mask. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5
Claims (1)
散抵抗層が形成され、この感圧部がダイヤフラム薄肉部
となるように、上記基体の他主面に凹陥部が掘られてい
る半導体感圧装置であって、上記ダイヤフラム薄肉部の
半導体層底部に絶縁物層が形成されていることを特徴と
する半導体感圧装置。 2、上記絶縁物層はシリコン酸化物またはシリコン窒化
物からなる特許請求の範囲第1項記載の牛導体感圧装置
0 3、シリコン半導体結晶基体の一生表面に感圧部として
複数の拡散抵抗層を形成し、この感圧部がダイヤフラム
薄肉部となるように基体の他主面をエッチして凹陥部を
掘る半導体感圧装置の製造法であって、上記ダイヤフラ
ム薄肉部となる半導体層底部に予め絶縁膜を埋め込み、
この絶縁膜によって凹陥部エッチの際にその深さをコン
トロールすることを特徴とする半導体感圧装置の製造法
。 4、上記絶縁膜は半導体基体表面に酸素又は窒素イオン
打ち込みを行い、その上に半導体層を成長させた後、上
記酸素又は窒素を活性化して半導体と結合させることに
より形成するものである特許請求の範囲第3項記載の半
導体感圧装置の製造法。[Scope of Claims] 1. A plurality of diffused resistance layers are formed as pressure sensitive parts on the surface of the semiconductor crystal substrate, and a recessed part is formed on the other main surface of the substrate so that the pressure sensitive parts become thin parts of the diaphragm. What is claimed is: 1. A semiconductor pressure-sensitive device in which an insulator layer is formed at the bottom of the semiconductor layer in the thin portion of the diaphragm. 2. The insulator layer is made of silicon oxide or silicon nitride. 3. A plurality of diffused resistance layers are provided as pressure sensitive parts on the surface of the silicon semiconductor crystal substrate. A method for manufacturing a semiconductor pressure-sensitive device in which a recess is dug by etching the other main surface of the base so that the pressure-sensitive part becomes a thin-walled diaphragm part, the method comprising: Embed an insulating film in advance,
A method for manufacturing a semiconductor pressure-sensitive device, characterized in that the depth of the recess is controlled by this insulating film when etching the recess. 4. The above-mentioned insulating film is formed by implanting oxygen or nitrogen ions into the surface of the semiconductor substrate, growing a semiconductor layer thereon, and then activating the oxygen or nitrogen to combine with the semiconductor. A method for manufacturing a semiconductor pressure-sensitive device according to item 3.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23427683A JPS60126871A (en) | 1983-12-14 | 1983-12-14 | Semiconductor pressure-sensitive device and manufacture thereof |
GB08429621A GB2151398A (en) | 1983-12-14 | 1984-11-23 | A semiconductor pressure sensor and a method of manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23427683A JPS60126871A (en) | 1983-12-14 | 1983-12-14 | Semiconductor pressure-sensitive device and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60126871A true JPS60126871A (en) | 1985-07-06 |
Family
ID=16968428
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23427683A Pending JPS60126871A (en) | 1983-12-14 | 1983-12-14 | Semiconductor pressure-sensitive device and manufacture thereof |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPS60126871A (en) |
GB (1) | GB2151398A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008270797A (en) * | 1992-04-08 | 2008-11-06 | Glenn J Leedy | Manufacturing of insulating film layer isolation ic |
US7705466B2 (en) | 1997-04-04 | 2010-04-27 | Elm Technology Corporation | Three dimensional multi layer memory and control logic integrated circuit structure |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2207804B (en) * | 1987-08-06 | 1990-08-15 | Stc Plc | Pressure sensor and manufacturing process therefor |
JPH01315172A (en) * | 1988-06-15 | 1989-12-20 | Komatsu Ltd | Stress converting element and its manufacture |
US5245504A (en) * | 1989-02-28 | 1993-09-14 | United Technologies Corporation | Methodology for manufacturing hinged diaphragms for semiconductor sensors |
US5225377A (en) * | 1991-05-03 | 1993-07-06 | Honeywell Inc. | Method for micromachining semiconductor material |
JP3261544B2 (en) * | 1991-10-03 | 2002-03-04 | キヤノン株式会社 | Method for manufacturing cantilever drive mechanism, method for manufacturing probe drive mechanism, cantilever drive mechanism, probe drive mechanism, multi-probe drive mechanism using same, scanning tunneling microscope, information processing apparatus |
AU660358B2 (en) * | 1992-03-30 | 1995-06-22 | Awa Microelectronics Pty Limited | Silicon transducer |
DE4309917A1 (en) * | 1992-03-30 | 1993-10-07 | Awa Microelectronics | Process for the production of silicon microstructures and silicon microstructure |
DE4309207C2 (en) * | 1993-03-22 | 1996-07-11 | Texas Instruments Deutschland | Semiconductor device with a piezoresistive pressure sensor |
DE69512544T2 (en) * | 1994-03-18 | 2000-05-25 | The Foxboro Co., Foxboro | Semiconductor pressure transducer with single crystal silicon membrane and single crystal strain gauges and manufacturing process therefor |
DE102017108582A1 (en) * | 2017-04-21 | 2018-10-25 | Epcos Ag | Sheet resistance and thin film sensor |
-
1983
- 1983-12-14 JP JP23427683A patent/JPS60126871A/en active Pending
-
1984
- 1984-11-23 GB GB08429621A patent/GB2151398A/en not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008270797A (en) * | 1992-04-08 | 2008-11-06 | Glenn J Leedy | Manufacturing of insulating film layer isolation ic |
JP2009218606A (en) * | 1992-04-08 | 2009-09-24 | Taiwan Semiconductor Manufacturing Co Ltd | Manufacture of membrane dielectric insulation ic |
JP4648979B2 (en) * | 1992-04-08 | 2011-03-09 | 台湾積體電路製造股▲ふん▼有限公司 | Insulating layer separation IC manufacturing |
JP4730672B2 (en) * | 1992-04-08 | 2011-07-20 | 台湾積體電路製造股▲ふん▼有限公司 | Insulating layer separation IC manufacturing |
US7705466B2 (en) | 1997-04-04 | 2010-04-27 | Elm Technology Corporation | Three dimensional multi layer memory and control logic integrated circuit structure |
Also Published As
Publication number | Publication date |
---|---|
GB8429621D0 (en) | 1985-01-03 |
GB2151398A (en) | 1985-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3506932B2 (en) | Semiconductor pressure sensor and method of manufacturing the same | |
JPS59117271A (en) | Semiconductor device having pressure sensing element and manufacture thereof | |
WO2007058010A1 (en) | Semiconductor pressure sensor and its fabrication method | |
JPS60126871A (en) | Semiconductor pressure-sensitive device and manufacture thereof | |
JPH0462877A (en) | Semiconductor pressure sensor and manufacture of semiconductor device having it | |
JPH0799239A (en) | Semiconductor device and manufacture thereof | |
US20110275192A1 (en) | Fusion bonding process and structure for fabricating silicon-on-insulation (soi) semiconductor devices | |
JPH0626254B2 (en) | Method for manufacturing semiconductor pressure sensor | |
JP2003098025A (en) | Semiconductor sensor and its manufacturing method | |
JPH05275666A (en) | Manufacture of soi structural body | |
JPH06221945A (en) | Semiconductor pressure sensor and manufacture thereof | |
JPH06291335A (en) | Pressure sensor device, its preparation and etching liquid | |
JPS6254477A (en) | Manufacture of semiconductor pressure sensor | |
JPS62266875A (en) | Semiconductor pressure sensor | |
JPS6037177A (en) | Semiconductor pressure sensor | |
JPS5936434B2 (en) | Hand tied diaphragm no. | |
JPH05102494A (en) | Manufacture of silicon diaphragm pressure sensor | |
JPH03208375A (en) | Semiconductor pressure sensor | |
JPH05304304A (en) | Semiconductor pressure sensor and manufacture thereof | |
JP3070118B2 (en) | Semiconductor acceleration sensor | |
JP3244127B2 (en) | Manufacturing method of pressure sensor | |
JPS6376485A (en) | Manufacture of semiconductor device | |
JP3085759B2 (en) | Method for manufacturing semiconductor device | |
JP2726861B2 (en) | Manufacturing method of semiconductor pressure sensor | |
JPS59232466A (en) | Pressure sensitive semiconductor device and manufacture thereof |