JPH0795600B2 - Method for manufacturing semiconductor pressure sensor - Google Patents
Method for manufacturing semiconductor pressure sensorInfo
- Publication number
- JPH0795600B2 JPH0795600B2 JP62310511A JP31051187A JPH0795600B2 JP H0795600 B2 JPH0795600 B2 JP H0795600B2 JP 62310511 A JP62310511 A JP 62310511A JP 31051187 A JP31051187 A JP 31051187A JP H0795600 B2 JPH0795600 B2 JP H0795600B2
- Authority
- JP
- Japan
- Prior art keywords
- gauge
- pressure sensor
- diaphragm
- mask
- stopper layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Measuring Fluid Pressure (AREA)
- Pressure Sensors (AREA)
- Weting (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ゲージ抵抗の配置されるダイヤフラム部をス
トップエッチング法を用いて形成する半導体圧力センサ
の製造方法に関する。Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a semiconductor pressure sensor in which a diaphragm portion where a gauge resistor is arranged is formed by using a stop etching method.
半導体圧力センサは、半導体ウエハに薄いダイヤフラム
部を形成し、圧力によるダイヤフラム部の変形の際にダ
イヤフラム部に設けられたゲージ抵抗の抵抗値変化を利
用して圧力を検出する。第2図(a)〜(c)は従来の
ダイヤフラム形成工程の一例を示し、N形シリコン基板
1にエピタキシャル法によりストッパ層としてのP層2
およびN層3を積層し、このN層3にP形のゲージ抵抗
層4を形成したものに、先ずストッパ層2の近くまでド
ライエッチング等で粗加工を行い凹部5を形成する(図
a)。次いで図bのように基板1の面にマスク6を形成
したのち、電気化学エッチングによりストッパ層2まで
のストップエッチングを行う(図c)。The semiconductor pressure sensor forms a thin diaphragm portion on a semiconductor wafer and detects the pressure by utilizing the resistance value change of a gauge resistance provided in the diaphragm portion when the diaphragm portion is deformed by the pressure. 2 (a) to 2 (c) show an example of a conventional diaphragm forming process, in which a P layer 2 as a stopper layer is formed on an N-type silicon substrate 1 by an epitaxial method.
Then, the N-layer 3 is laminated, and the P-type gauge resistance layer 4 is formed on the N-layer 3. First, rough processing is performed by dry etching or the like up to the vicinity of the stopper layer 2 to form the recess 5 (FIG. A). . Then, after forming a mask 6 on the surface of the substrate 1 as shown in FIG. B, stop etching up to the stopper layer 2 is performed by electrochemical etching (FIG. C).
上記の方法でダイヤフラム部を形成する場合、第2図
(a)に示す粗加工でのウエハ内あるいはウエハ間の凹
部5のばらつきが大きく、第2図(c)に示す仕上げ加
工後の凹部5の深さや形状もばらつきが大きくなり、従
って圧力センサの特性のばらつきが大きいという問題が
あった。When the diaphragm portion is formed by the above method, there is a large variation in the recesses 5 in the wafer or between the wafers in the rough processing shown in FIG. 2 (a), and the recesses 5 after the finishing processing shown in FIG. 2 (c). There is a problem that the depth and shape of the pressure sensor also vary greatly, and thus the characteristics of the pressure sensor also vary widely.
第3図(a)は上記の方法を用いて製造された半導体圧
力センサの仕上げ加工後のダイヤフラム部7の直径Dと
感度との関係、第3図(b)はDとセンサ出力非直線性
の関係を示し、特性のばらつきの大きいことがわかる。FIG. 3 (a) is a relationship between the diameter D of the diaphragm portion 7 after finishing of the semiconductor pressure sensor manufactured by the above method and the sensitivity, and FIG. 3 (b) is D and the sensor output nonlinearity. It can be seen that there is a large variation in characteristics.
本発明の目的は、ゲージ抵抗の形成されるダイヤフラム
部の厚さおよび形状のばらつきを小さくして、特性のば
らつきを小さくすることのできる半導体圧力センサの製
造方法を提供することにある。An object of the present invention is to provide a method for manufacturing a semiconductor pressure sensor, which can reduce variations in thickness and shape of a diaphragm portion in which a gauge resistance is formed to reduce variations in characteristics.
上記の目的を達成するために、本発明の方法は、複数の
ゲージ抵抗の配置されるダイヤフラム部をストップエッ
チング法でストッパ層まで形成する際に、ゲージ抵抗の
配置される面と反対側の半導体基板面から加工し、ゲー
ジ抵抗の配置領域より広い底部を有する凹部を前記スト
ッパ層より上方で圧力によるダイヤフラム変形効果が及
ばない領域まで形成したのち、ゲージ抵抗と該ゲージ抵
抗間を結ぶ領域を外周とし、該外周上のみに開口部を有
するマスクにより被覆してストップエッチング法により
マスク開口部からストッパ層面までエッチングするもの
とする。In order to achieve the above-mentioned object, the method of the present invention is a semiconductor on the side opposite to the surface on which the gauge resistance is arranged, when the diaphragm portion where a plurality of gauge resistances is arranged is formed up to the stopper layer by the stop etching method. After processing from the substrate surface and forming a recess having a bottom part wider than the gauge resistance arrangement area up to the area above the stopper layer where the diaphragm deformation effect due to pressure does not reach, the area connecting the gauge resistance and the gauge resistance is surrounded. It is assumed that the mask is covered with a mask having an opening only on the outer periphery, and etching is performed from the mask opening to the stopper layer surface by a stop etching method.
粗加工後にゲージ抵抗と該ゲージ抵抗間を結ぶ領域を外
周とし、該外周上のみに開口部を有するマスクを形成す
ることによりストップエッチングは、限定されたダイヤ
フラム部領域の深さ方向のみに行われるため、ゲージ抵
抗形成領域の形状および厚さのばらつきが小さくなる。Stop etching is performed only in the depth direction of the limited diaphragm portion region by forming a mask having an opening only on the outer periphery with a region connecting the gauge resistor and the gauge resistor as the outer periphery after rough processing. Therefore, variations in the shape and thickness of the gauge resistance formation region are reduced.
第1図(a),(b)は本発明の一実施例の工程を示
し、第2図と共通の部分には同一の符号が付されてい
る。第2図(a)におけるように他面にPエピタキシャ
ル層2,N-エピタキシャル層3を積層したN形シリコン基
板1の一面からドライエッチングで粗加工を施すが、そ
の際凹部5の底面51はゲージ抵抗4の配置領域よりも広
い面積を有する。しかし、底面51はストッパP層2との
界面からの距離が可能な限り小さくなるようにする。そ
して第1図(a)に示すようにゲージ抵抗4の配置領域
の上方にのみ開口部61を有するレジストマスク6を形成
する。次いで、基板1を陽極,エッチ駅を陰極とする電
気化学エッチングによってストップエッチングを行う
と、第1図(b)に示すようにマスク開口部61の下部の
みがエッチングされ、ストッパ層2の界面でエッチング
がとまる。この結果、ダイヤフラムのゲージ抵抗配置領
域7の厚さはP層2とN-層3の厚さの和に正確に保た
れ、その形状はマスク開口部61の寸法で殆ど決定される
のでばらつきは非常に小さくなる。このばらつきは、粗
加工による凹部5の底面51がストッパ層2に近づけば近
づくほど小さくなるが、その部分の厚さが50μmより小
さくなると圧力によるダイヤフラム変形効果がこの部分
にまで及ぶので避けなれげばならない。1 (a) and 1 (b) show the steps of one embodiment of the present invention, and the same parts as those in FIG. 2 are designated by the same reference numerals. As shown in FIG. 2 (a), rough processing is performed by dry etching from one surface of the N-type silicon substrate 1 in which the P epitaxial layer 2 and the N - epitaxial layer 3 are laminated on the other surface. The area is larger than the arrangement area of the gauge resistor 4. However, the bottom surface 51 is arranged so that the distance from the interface with the stopper P layer 2 is as small as possible. Then, as shown in FIG. 1A, a resist mask 6 having an opening 61 is formed only above the area where the gauge resistor 4 is arranged. Then, when stop etching is performed by electrochemical etching using the substrate 1 as an anode and the etch station as a cathode, only the lower portion of the mask opening 61 is etched as shown in FIG. Etching stops. As a result, the thickness of the gauge resistance arrangement region 7 of the diaphragm is accurately maintained at the sum of the thicknesses of the P layer 2 and the N − layer 3, and its shape is almost determined by the size of the mask opening 61, so there is no variation. Very small This variation becomes smaller as the bottom surface 51 of the recess 5 closer to the stopper layer 2 becomes closer to the stopper layer 2. However, when the thickness of that portion becomes smaller than 50 μm, the diaphragm deformation effect due to pressure extends to this portion, which is unavoidable. I have to.
第4図(a)は感度とダイヤフラム部7の直径Dとの関
係、第4図(b)は出力非直線性とDとの関係を示し、
第3図(a),(b)と比較して感度,非直線性ともば
らつきが著しく小さくなっている。また第4図(a)か
らわかるようにマスク6の開口部61の寸法を調整するこ
とにより、感度の値を任意に制御することが可能であ
る。図示はしなかったが、感度,非直線性のほか零点温
度特性の傾き,曲りなどのばらつきも小さくなる。4 (a) shows the relationship between the sensitivity and the diameter D of the diaphragm portion 7, and FIG. 4 (b) shows the relationship between the output nonlinearity and D,
Compared to FIGS. 3A and 3B, variations in sensitivity and non-linearity are extremely small. Further, as can be seen from FIG. 4 (a), the value of sensitivity can be arbitrarily controlled by adjusting the size of the opening 61 of the mask 6. Although not shown, variations in sensitivity, non-linearity, slope of the zero-point temperature characteristic, bending, etc. are also small.
なお、上記の実施例では粗加工法としてドライエッチン
グを採用したがウエットエッチング法でもよい。また仕
上げ加工のためのストップエッチング法として電気化学
エッチングを採用したが、不純物濃度差を利用した化学
エッチング法でもよい。Although dry etching is adopted as the rough processing method in the above-described embodiments, a wet etching method may be used. Although electrochemical etching is adopted as a stop etching method for finishing, a chemical etching method using a difference in impurity concentration may be used.
本発明によれば、半導体圧力センサのダイヤフラム形成
の際、粗加工によりゲージ抵抗の配置されるゲージ抵抗
の配置領域より広い底部を有する凹部を形成し、ゲージ
抵抗と該ゲージ抵抗間を結ぶ領域を外周とし、該外周上
のみに開口部を有するマスクにより被覆して開口部から
ストッパ層までストップエッチングを行って凹形状を形
成することにより、ダイヤフラム部の厚さおよび形状の
ウエハ内,ウエハ間のばらつきを小さくできるので、圧
力センサの特性値のばらつきも小さくなった。また、そ
の結果としてダイヤフラム部の寸法と感度間の相関関係
が明確になり、マスク寸法の調整により感度値を任意に
制御できるようになった。According to the present invention, when a diaphragm of a semiconductor pressure sensor is formed, a concave portion having a bottom portion wider than an arrangement region of a gauge resistor in which the gauge resistor is arranged is formed by roughing, and a region connecting the gauge resistor and the gauge resistor is formed. The outer periphery is covered with a mask having an opening only on the outer periphery, and stop etching is performed from the opening to the stopper layer to form a concave shape. Since the variation can be reduced, the variation in the characteristic value of the pressure sensor is also reduced. Further, as a result, the correlation between the size of the diaphragm and the sensitivity has been clarified, and the sensitivity value can be arbitrarily controlled by adjusting the mask size.
第1図(a),(b)は本発明の一実施例の製造工程の
一部を示し、(a)は粗加工,(b)は仕上げ加工を示
す断面図、第2図(a)〜(c)は従来の製造工程の一
部を示し、(a)は粗加工,(b)は仕上げ加工の準
備,(c)は仕上げ加工を示す断面図、第3図(a),
(b)は従来の方法で製造された圧力センサの感度およ
び出力非直線性とダイヤフラム部直径との関係をそれぞ
れ示す図、第4図(a),(b)は本発明の実施例によ
り製造された圧力センサの感度および出力非直線性とダ
イヤフラム部直径との関係をそれぞれ示す図である。 1:N形Si基板、2:ストッパP層、3:N-層、4:ゲージ抵
抗、5:凹部、6:マスク、7:ダイヤフラム部。1 (a) and 1 (b) show a part of the manufacturing process of one embodiment of the present invention, (a) is a roughing process, (b) is a cross-sectional view showing a finishing process, and FIG. 2 (a). (C) shows a part of conventional manufacturing process, (a) is roughing, (b) is preparation for finishing, (c) is a sectional view showing finishing, FIG. 3 (a),
FIG. 4B is a diagram showing the relationship between the sensitivity and output nonlinearity of the pressure sensor manufactured by the conventional method and the diameter of the diaphragm portion, and FIGS. 4A and 4B are manufactured by the embodiment of the present invention. It is a figure which respectively shows the relationship of the sensitivity of a pressure sensor and output nonlinearity, and the diameter of a diaphragm part. 1: N-type Si substrate, 2: Stopper P layer, 3: N - layer, 4: Gauge resistance, 5: Recess, 6: Mask, 7: Diaphragm part.
Claims (1)
ム部をストップエッチング法でストッパ層まで形成する
際に、ゲージ抵抗の配置される面と反対側の半導体基板
面から加工し、ゲージ抵抗の配置領域より広い底部を有
する凹部を前記ストッパ層より上方で圧力によるダイヤ
フラム変形効果が及ばない領域まで形成したのち、ゲー
ジ抵抗と該ゲージ抵抗間を結ぶ領域を外周とし、該外周
上のみに開口を有するマスクにより被覆してストップエ
ッチング法によりマスク開口部からストッパ層面までエ
ッチングすることを特徴とする半導体圧力センサの製造
方法。1. When forming a diaphragm portion in which a plurality of gauge resistors are arranged up to a stopper layer by a stop etching method, processing is carried out from the surface of a semiconductor substrate opposite to the surface where the gauge resistors are arranged, and the gauge resistors are arranged. After forming a concave portion having a bottom portion wider than the region up to the region above the stopper layer where the diaphragm deformation effect due to pressure does not reach, the region connecting the gauge resistance and the gauge resistance is the outer circumference, and the opening is formed only on the outer circumference. A method for manufacturing a semiconductor pressure sensor, which comprises covering with a mask and etching from a mask opening to a stopper layer surface by a stop etching method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62310511A JPH0795600B2 (en) | 1987-12-08 | 1987-12-08 | Method for manufacturing semiconductor pressure sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62310511A JPH0795600B2 (en) | 1987-12-08 | 1987-12-08 | Method for manufacturing semiconductor pressure sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01151272A JPH01151272A (en) | 1989-06-14 |
JPH0795600B2 true JPH0795600B2 (en) | 1995-10-11 |
Family
ID=18006105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62310511A Expired - Lifetime JPH0795600B2 (en) | 1987-12-08 | 1987-12-08 | Method for manufacturing semiconductor pressure sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0795600B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE1025681B1 (en) * | 2018-03-23 | 2019-05-28 | Universite Catholique De Louvain | Method of processing a substrate and integrated circuit device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57190366A (en) * | 1981-05-20 | 1982-11-22 | Hitachi Ltd | Manufacture of semiconductor pressure sensor |
JPS6281775A (en) * | 1985-10-04 | 1987-04-15 | Sumitomo Electric Ind Ltd | Manufacture of semiconductor pressure sensor |
-
1987
- 1987-12-08 JP JP62310511A patent/JPH0795600B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH01151272A (en) | 1989-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4618397A (en) | Method of manufacturing semiconductor device having a pressure sensor | |
US6861276B2 (en) | Method for fabricating a single chip multiple range pressure transducer device | |
US5296730A (en) | Semiconductor pressure sensor for sensing pressure applied thereto | |
JP3506932B2 (en) | Semiconductor pressure sensor and method of manufacturing the same | |
US6263740B1 (en) | CMOS compatible integrated pressure sensor | |
EP0340022A1 (en) | Mechanical sensor for high temperature environments | |
JPH0349267A (en) | Semiconductor type acceleration sensor and its manufacture | |
JPS60158675A (en) | Diaphragm sensor | |
JPH05281252A (en) | Manufacture of semiconductor acceleration sensor | |
JP3551527B2 (en) | Method for manufacturing semiconductor strain-sensitive sensor | |
US5946549A (en) | Method for manufacturing sensor using semiconductor | |
GB2151398A (en) | A semiconductor pressure sensor and a method of manufacture thereof | |
US5324688A (en) | Method of fabricating a semiconductor acceleration sensor | |
JPH0795600B2 (en) | Method for manufacturing semiconductor pressure sensor | |
JPH0626254B2 (en) | Method for manufacturing semiconductor pressure sensor | |
JP2803321B2 (en) | Semiconductor strain sensor | |
JP4821839B2 (en) | Manufacturing method of semiconductor pressure sensor | |
JPH06291335A (en) | Pressure sensor device, its preparation and etching liquid | |
JPH05304304A (en) | Semiconductor pressure sensor and manufacture thereof | |
JPH06221945A (en) | Semiconductor pressure sensor and manufacture thereof | |
JP4178585B2 (en) | Manufacturing method of semiconductor substrate | |
JP3473462B2 (en) | Semiconductor acceleration sensor and method of manufacturing the same | |
JPS6398156A (en) | Manufacture of semiconductor pressure sensor | |
JPH11220135A (en) | Semiconductor acceleration sensor and manufacture thereof | |
JPH1140820A (en) | Manufacture of semiconductor dynamic sensor |