JPS60126822A - Method and apparatus for optical vapor growth - Google Patents

Method and apparatus for optical vapor growth

Info

Publication number
JPS60126822A
JPS60126822A JP23538283A JP23538283A JPS60126822A JP S60126822 A JPS60126822 A JP S60126822A JP 23538283 A JP23538283 A JP 23538283A JP 23538283 A JP23538283 A JP 23538283A JP S60126822 A JPS60126822 A JP S60126822A
Authority
JP
Japan
Prior art keywords
light
gas
substrate
raw material
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23538283A
Other languages
Japanese (ja)
Other versions
JPH0644553B2 (en
Inventor
Masahiko Akiyama
政彦 秋山
Masahiko Hirose
広瀬 昌彦
Takaaki Kamimura
孝明 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23538283A priority Critical patent/JPH0644553B2/en
Publication of JPS60126822A publication Critical patent/JPS60126822A/en
Publication of JPH0644553B2 publication Critical patent/JPH0644553B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/488Protection of windows for introduction of radiation into the coating chamber

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To enable to perform continuously projection of light, to enable to curtail film forming time, and moreover to enable to form a crystalline film of favorable quality by a method wherein formation of film onto a light introducing window or the surface of the wall of a light source is checked or reduced. CONSTITUTION:A substrate holder 2 provided with a heater is set up inside of a reaction chamber 1, and a substrate 3 is arranged thereon. Incident light 5 projected from a light source provided outside is introduced into the reaction chamber 1 through a light introducing window 4. A lattice 6 manufactured of a metal thin plate is provided between the light introducing window 4 and the substrate holder 2. The lattice 6 thereof is fixed to a ring type vessel 7, and cooled according to conduction of heat when a refrigerant is put therein. Raw material gas and a mercury sensitizer are introduced into the reaction chamber 1 from a gas introducing port 8 provided on the substrate side than the lattice 6. A purging gas introducing port 9 is provided on the light introducing window side than the lattice 6, and purging gas is exhausted from an exhaust vent 10 together with the raw material gas through gaps between the lattice 6. The substrate holder 2 is rotatable.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は光気相成長方法及び光気相成長装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a photovapor phase growth method and a photovapor phase growth apparatus.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

光気相成長法は原料ガスの分解に光子のエネルギーを使
用するため、基板の温度は通常の気相成長法に比較して
低温で良い。したがってこの方法は半導体産業における
ゾロセスの低温化に有効な製膜方法として期待されてい
る。さらに原理的に荷電粒子を使用しないことから形成
した膜の損傷がなくアモルファスシリコン膜など構造敏
感な半導体膜の形成に特に有効な方法と考えられている
Since the optical vapor phase epitaxy method uses photon energy to decompose the source gas, the temperature of the substrate may be lower than that in the normal vapor phase epitaxy method. Therefore, this method is expected to be an effective film forming method for lowering the temperature of Zorrothe in the semiconductor industry. Furthermore, since the method does not use charged particles in principle, the formed film is not damaged, and it is considered to be a particularly effective method for forming structurally sensitive semiconductor films such as amorphous silicon films.

上記の特徴を有する光気相成長法であるが、光導入窓上
での製膜に起因する問題がある。一部の絶縁膜を除いて
目的とする膜は使用する光の波長に対し不透明であり、
光照射の時間と共に反応室中の光強度が低下してしまう
。この問題から、光導入窓部の頻繁な清浄が必要になり
、著しい場合には1回の光照射では十分な膜厚を得るこ
とができず窓7〃浄と光照射を数回反復して要求される
膜厚の膜を形成することになる。
Although the optical vapor phase epitaxy method has the above-mentioned characteristics, there are problems caused by film formation on the light introduction window. The target film, except for some insulating films, is opaque to the wavelength of the light used.
The light intensity in the reaction chamber decreases with the time of light irradiation. Due to this problem, frequent cleaning of the light introduction window is required, and in severe cases, it may not be possible to obtain a sufficient film thickness with one light irradiation, so cleaning and light irradiation of the window 7 may be repeated several times. A film with the required thickness is formed.

窓fN#)の除に基板を外気にさらさない工夫がアモル
ファスシリコン膜の形成で試みられているが、連続的に
製膜できないことは堆積の長時間化や膜質の劣化をもた
らし、結果的に光気相成長で形成できる膜の種類を者し
く制限している。
Efforts have been made to form an amorphous silicon film to prevent the substrate from being exposed to the outside air, except through a window fN This clearly limits the types of films that can be formed by photovapor phase growth.

一方使用する光の波長を真空紫外部にとると、光導入窓
の種類が制約される。フッ化リチウム窓は105 nm
までの紫外光を透過するが機械的強度が小さく大面積の
窓を作ることは装置を複雑にするなどの問題が起こる。
On the other hand, when the wavelength of the light used is in the vacuum ultraviolet range, the type of light introduction window is restricted. Lithium fluoride window is 105 nm
However, the mechanical strength is low, and creating a large-area window causes problems such as complicating the device.

またさらに短波長の光の使用には、窓なしで光源から直
接光導入できれば良いが、これでは光源部への原料ガス
の混入が起こシ光源部壁面に製膜してしまい、放電の不
安定化等の問題が起こる。
In order to use even shorter wavelength light, it would be better if the light could be introduced directly from the light source without a window, but this would cause raw material gas to enter the light source and form a film on the wall of the light source, making the discharge unstable. Problems such as oxidation occur.

〔発明の目的〕[Purpose of the invention]

この発明は、光導入窓または光源部壁面への製膜を防止
または低減して前述の問題を解決した光気相成長方法及
び装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method and apparatus for optical vapor phase growth that solves the above-mentioned problems by preventing or reducing film formation on the light introduction window or the wall surface of the light source section.

〔発明の概要〕[Summary of the invention]

光気相成長法では、■原料ガスを直接光により分解する
方法と、■光増感剤を原料ガスに混合し、光照射で励起
した増感剤の原子または分子との衝突を経て間接的に原
料ガスを分解する方法、がある。光導入窓での膜形成を
抑制するには、■の場合は原料ガスの濃度、■の場合は
原料ガス以外に増感剤の濃度が窓近傍で低ければよい。
In the photovapor phase growth method, two methods are used: (1) decomposition of the raw material gas by direct light; and (2) indirect decomposition by mixing a photosensitizer with the raw material gas and colliding with atoms or molecules of the sensitizer excited by light irradiation. There is a method to decompose raw material gas. In order to suppress film formation at the light introduction window, it is sufficient that the concentration of the raw material gas is low in the case of (1), and the concentration of the sensitizer in addition to the raw material gas is low in the case of (2) near the window.

いいかえれば薄膜形成に必要不可欠なガスの原子または
分子の密度が窓近傍で十分低ければよい。
In other words, it is sufficient that the density of gas atoms or molecules essential for thin film formation is sufficiently low near the window.

以上の知見に基づき、本発明では、反応室内の基板よシ
光源側に、光透過を妨げない物体を配置する。そしてこ
の物体の表面に前記薄膜形成に不可欠なガスを物理的ま
だは化学的に吸着する機能を持たせる。この膜形成に不
可欠なガスは通常物体配置部を含みその基板側に導入さ
れる。
Based on the above findings, in the present invention, an object that does not impede light transmission is placed on the light source side of the substrate in the reaction chamber. The surface of this object is given a function to physically or chemically adsorb the gas essential for forming the thin film. The gas essential for film formation is usually introduced into the substrate side of the object placement section.

さて膜形成に不可欠なガスの原子または分子は前記物体
の間の空間を基板側から光導入窓側に拡散していく。物
体の表面はこのガスを吸着するから、その間の空間内で
は空間中心部から物体表面に向ってのガスの拡散も起と
シ、表面の間隔と表面の光導入方向の長さを適当にとる
ことによって膜形成に不可欠なガスの大部分は光導入窓
側に拡散する過程でこの物体表面に吸着させることがで
きる。
Now, gas atoms or molecules essential for film formation diffuse through the space between the objects from the substrate side to the light introduction window side. Since the surface of the object adsorbs this gas, in the space between them, the gas also diffuses from the center of the space toward the surface of the object, so the distance between the surfaces and the length of the surface in the direction of light introduction must be set appropriately. As a result, most of the gas essential for film formation can be adsorbed onto the surface of the object in the process of diffusing toward the light introduction window.

物体表面に、膜形成に不可欠なガスを吸着させるには、
次の3つの方法が有効である。
In order to adsorb gases essential for film formation on the surface of an object,
The following three methods are effective.

第1は、原料ガスが分解し表面上で製膜するのに十分な
温度に物体表面を昇温する方法である。嬉2は、薄膜形
成に必要不可欠なガスの蒸気圧が基板近傍の分圧に比べ
十分小さく、その他のガスの凝縮は無視できる温度に表
面を冷却する方法である。この方法は水銀増感法の場合
には特に有効であシ、原料ガスの種類と冷却温度を適当
に選択すれば水銀のみを選択的に物体表面に凝縮させる
ことが可能である。第3は、物体の材料ないし表面材料
を原料ガス又は増感剤を選択的に吸着する物質とする方
法である。
The first method is to raise the temperature of the object surface to a temperature sufficient to decompose the source gas and form a film on the surface. The second method is to cool the surface to a temperature where the vapor pressure of the gas essential for thin film formation is sufficiently low compared to the partial pressure near the substrate, and condensation of other gases can be ignored. This method is particularly effective in the case of mercury sensitization, and by appropriately selecting the type of raw material gas and the cooling temperature, it is possible to selectively condense only mercury onto the surface of the object. The third method is to use a substance that selectively adsorbs the raw material gas or the sensitizer as the material of the object or the surface material.

前述のように、膜形成に不可欠なガスは前記物体配置部
にトラップされ、光導入窓側に到達しにくくすることが
できるが、特に有効なのは膜形成に不可欠なガスとして
光増感剤を考えた場合である。通常増感剤は原料ガスに
比べ分圧が小さくて良く表面にトラップされる量も少量
にすぎないからである。一方膜形成に不可欠なガスとし
て原料ガスを考える場合は前述のままではトラップ量が
多く、またトラップ効果も完全とはいえない々どの問題
が出現する場合もある。このため光導入窓側から基板側
への気流を作ることは窓への膜形成を抑制するに有効と
々る。このよう々気流は、光化学反応に不活性なガスを
光導入窓側に導入して作る他に、原料ガスのうち直接光
分解しないガスを導入しても良い。
As mentioned above, the gas essential for film formation can be trapped in the object placement part and can be made difficult to reach the light introduction window, but what is particularly effective is the use of photosensitizers as gases essential for film formation. This is the case. This is because the sensitizer usually has a lower partial pressure than the raw material gas, and only a small amount is trapped on the surface. On the other hand, when considering the raw material gas as an essential gas for film formation, problems may arise, such as the amount of traps being large and the trapping effect not being perfect, if left as described above. Therefore, creating an airflow from the light introduction window side to the substrate side is effective in suppressing film formation on the window. Such an air flow may be created by introducing a gas inert to the photochemical reaction into the light introduction window, or alternatively, a gas that does not directly photodecompose among the raw material gases may be introduced.

まだ前述の物体表面によるトラップおよび物体間を通る
気流を作る方法は、光源を光導入窓のある反応室の外部
に設ける装置に限らず、光源が直接反応室内に配置され
て光導入窓を持たない光気相成長装置にも適用しうる。
The above-mentioned method of creating a trap on the surface of an object and an air flow passing between objects is not limited to devices in which the light source is placed outside the reaction chamber with a light introduction window, but also in devices in which the light source is placed directly inside the reaction chamber and has a light introduction window. It can also be applied to photo-vapor phase growth equipment that does not have a

この光導入窓のない装置では、光源部の圧力と基板配置
部の圧力がほぼ同じか光源部側の圧力が高い場合に特に
有効と女る。
This device without a light introduction window is particularly effective when the pressure in the light source section and the pressure in the substrate placement section are approximately the same or the pressure on the light source section side is high.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、光導入窓への製膜が防止または低減さ
れるだめ、光照射が継続的に行なえる。この結果光導入
窓の清浄比と膜堆積を反復する方法に比べ、膜形成時間
が短縮できる。また膜形成を中断する必要がないことか
ら、形成した膜中の不純物が少なく良好な特性の膜を十
分な膜厚で得ることができる。さらに結晶性の膜を形成
する際に膜形成を中断すると核形成が阻害されることが
あるが、この発明により結晶化が良好に起こり結果的に
良質な結晶性膜が得られる。
According to the present invention, since film formation on the light introduction window is prevented or reduced, light irradiation can be performed continuously. As a result, the film formation time can be shortened compared to a method in which the cleaning ratio of the light introducing window and the film deposition are repeated. Furthermore, since there is no need to interrupt film formation, a film with sufficient thickness and good characteristics can be obtained with few impurities in the formed film. Furthermore, if film formation is interrupted when forming a crystalline film, nucleation may be inhibited, but according to the present invention, crystallization occurs favorably and, as a result, a crystalline film of good quality is obtained.

また光導入窓のない光気相成長装置では光源部での製膜
が防止または低減できる。この結果マイクロ波放電で光
源部を動作させる場合に放電条件の変化が少なくなる。
Furthermore, in a photo-vapor phase growth apparatus without a light introduction window, film formation at the light source can be prevented or reduced. As a result, when the light source section is operated by microwave discharge, changes in discharge conditions are reduced.

〔発明の実施例〕[Embodiments of the invention]

第1図に本発明の一実施例の装置を示す。 FIG. 1 shows an apparatus according to an embodiment of the present invention.

(−)は縦断面図、(b)はそのA −A’位置での横
断面図である。図において、1力(反応室であり、その
内部に加熱ヒーi伺き基板ホルダ2が設けられ、この上
に基板3が配置される。4は光導入窓であり、外部に設
けられた光源(図示せず)からの照射光5がこの光導入
窓4を通って反応室1内に導かれるように’fxツてい
る。
(-) is a longitudinal cross-sectional view, and (b) is a cross-sectional view at the A-A' position. In the figure, 1 is a reaction chamber, in which a heating heating substrate holder 2 is provided, and a substrate 3 is placed on top of it. 4 is a light introduction window, and a light source provided outside. The irradiation light 5 from a (not shown) is guided into the reaction chamber 1 through the light introduction window 4.

光導入窓4と基板ホルダ2の間には、金属例えば無酸素
銅製の薄板でできた格子6が設けられている。この格子
6は、冷媒を入れるリング状容器7に固定され、熱伝導
で冷却できるようになっている。原料ガスと水銀増感剤
は格子6より基板側に設けられたガス導入口8から反応
室1内に導入される。まだ格子6よシ光導入窓側にパー
ジガスの導入口9があって、パージガスは格子6の間を
通って原料ガスと共に排気口10から排気されるように
なっている。基板ホルダ2は回転できるようになってお
り、光照射のむらに対して均一性を向上させている。
A grid 6 made of a thin plate of metal, for example oxygen-free copper, is provided between the light introduction window 4 and the substrate holder 2. This grid 6 is fixed to a ring-shaped container 7 containing a refrigerant, so that it can be cooled by heat conduction. The raw material gas and the mercury sensitizer are introduced into the reaction chamber 1 through a gas inlet 8 provided closer to the substrate than the grid 6 . There is still a purge gas inlet 9 on the light introduction window side of the grating 6, and the purge gas passes between the grates 6 and is exhausted from the exhaust port 10 together with the raw material gas. The substrate holder 2 is rotatable to improve the uniformity of light irradiation.

本装置では、原料ガスとしてモノシランを用い、低圧水
銀灯を光源として254 nm 、185nmの波長の
紫外光を得てこれを照射してアモルファスシリコン膜を
形成することができた。パージガスとして水素を用いた
。冷媒は液体窒素を蒸発させて作った低温の窒素ガスで
、これによ如格子6の温度を一50℃とした。水銀の蒸
気圧は10 ”−6Torr以丁で、十分格子6に吸着
でき、しかも沸点−111,9℃のモノシランはほとん
ど凝縮しない状態を実現できている。
In this apparatus, monosilane was used as a raw material gas, and an amorphous silicon film could be formed by irradiating ultraviolet light with wavelengths of 254 nm and 185 nm using a low-pressure mercury lamp as a light source. Hydrogen was used as a purge gas. The refrigerant was low-temperature nitrogen gas made by evaporating liquid nitrogen, and the temperature of the grid 6 was set at -50°C. The vapor pressure of mercury is 10''-6 Torr, which is sufficient to adsorb onto the grid 6, and monosilane, which has a boiling point of -111.9°C, is hardly condensed.

上記実施例では冷媒により格子6を冷却したが、冷却の
方法はどのようなものでもよく、たとえば電子冷凍機を
使用してもよい。また格子6は、光透過面積を大きくと
ると中央部まで十分冷却できなくなる場合がある。これ
を解決するには、光透過面積は減少してしまうが格子を
厚くしたシ、細いパイプを溶接して格子を形成し、その
パイプ中に冷媒を流すようにするとよい。この場合は特
に基板ホルダーの回転を行なうことが均一な膜を得るの
に有効である。
In the above embodiment, the grid 6 was cooled by a refrigerant, but any cooling method may be used, for example, an electronic refrigerator may be used. Furthermore, if the grating 6 has a large light transmission area, it may not be possible to sufficiently cool the central portion. To solve this problem, it is recommended to make the grid thicker, or weld thin pipes to form a grid, and allow the coolant to flow through the pipes, although this will reduce the light transmission area. In this case, it is particularly effective to rotate the substrate holder to obtain a uniform film.

また格子6よシ光導入窓4側にあるガス導入口9から導
入するパージがスとしては前記格子温度ではモノシラン
ガスをその捷ま使用してもよい。
Furthermore, as the purge gas introduced from the gas inlet 9 located on the side of the light introduction window 4 from the grid 6, monosilane gas may be used after being separated at the above-mentioned grid temperature.

綴 この場合はむしろ原料がスの供倶が基板3上で均一と々
シ、膜厚の均一性向上に有効である。
In this case, the raw material is rather uniform on the substrate 3, which is effective in improving the uniformity of the film thickness.

又、ノクージガスとして水素を用い、ガス導入口8から
水銀ガスを混ぜないトリメチルシランガスを原料ガスと
して導入するようにしてもよい。
Alternatively, hydrogen may be used as the gas, and trimethylsilane gas, which is not mixed with mercury gas, may be introduced from the gas inlet 8 as the raw material gas.

第2図は他の実施例装置を第1図に対応させて示すもの
である。
FIG. 2 shows another example device corresponding to FIG. 1.

第1図では、冷却した格子6によりガスの吸着を図るの
に対し、第2図は薄板を加熱してこれに製膜することで
ガスを吸着する方法である。
In FIG. 1, gas is adsorbed using a cooled grid 6, whereas in FIG. 2, gas is adsorbed by heating a thin plate and forming a film thereon.

RIJち渦巻状にしたタングステンの板状ヒータ11を
基板3と光導入窓40間に設け、このヒータ11の中心
と外周部の間に電流を流し通電加熱できるようになって
いる。この装置はフシランを原料ガスとする膜形成に使
用した。ヒータ11の加熱の温度は400℃程屓で良か
った。
A spiral tungsten plate heater 11 is provided between the substrate 3 and the light introduction window 40, and a current is passed between the center and the outer periphery of the heater 11 to perform electrical heating. This equipment was used for film formation using fusilane as a raw material gas. The heating temperature of the heater 11 was approximately 400°C.

ガス導入口9から導入するパージガスは水素で2ノ/ 
rnjn以上流しだ。この構成は、原料ガス分解温度が
比較的低いものが特に有効である。
The purge gas introduced from the gas inlet 9 is hydrogen at 2 NO/
It's more than rnjn. This configuration is particularly effective when the raw material gas decomposition temperature is relatively low.

なお通電加熱以外にシースヒータを溶接した薄板や紡導
加熱した薄板もヒータ11の代りとなる。
In addition to the heater 11, a thin plate welded with a sheath heater or a thin plate heated by spinning can be used in place of the heater 11.

その池水発明は種々変形して実施する事ができる。例え
ば第1図(、)において、格子6を、図中A −A’の
位置で上部格子、下部格子に分けfc2段構成としても
よい。更にこの時、1つのリング状容器7に同定せず、
リング状容器7を天々に対応して2つ設け、上段を液体
窒素、下段を水冷構成としてもよい。この様にすれば、
基板からの輻射熱の影響を無視する事が出来る。
The pond water invention can be implemented with various modifications. For example, in FIG. 1(,), the grating 6 may be divided into an upper grating and a lower grating at the position A-A' in the figure, and may have a two-stage fc structure. Furthermore, at this time, without being identified to one ring-shaped container 7,
Two ring-shaped containers 7 may be provided corresponding to each other, with the upper stage being liquid nitrogen and the lower stage being water-cooled. If you do it like this,
The influence of radiant heat from the board can be ignored.

又、基板ホルダを公転又は自公転させるようにしてもよ
く、回転する方法の他に、水平な面内で格子の薄板と4
5°で交わる方向(第1図中Bで示す)に往復移動させ
る事も可能である。又、格子6も十字のみならず峰の巣
状でもよく、更には薄板をストライプ状に多数並設↓た
ものを格子6の代わりに用いても良い。
In addition, the substrate holder may be made to revolve or revolve around itself.
It is also possible to reciprocate in directions that intersect at 5° (indicated by B in FIG. 1). Furthermore, the grid 6 may be not only cross-shaped but also nest-shaped, and furthermore, a large number of thin plates arranged side by side in a striped pattern may be used instead of the grid 6.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1つの実施例の装置を示す図、第2図
は他の実施例の装置を示す図である。 I・・・反応室、2・・・基板ホルダ、3・・・基板、
4・・・光導入窓、5・・・照射光、6・・・格子(ガ
ス吸着物体)、7・・・リング状容器、8・・・原料ガ
ス導入口、9・・・パージガス導入口、1o・・・排気
口、11・・・板状ヒータ(ガス吸着物体)。 第1図 第2図 (b)
FIG. 1 is a diagram showing an apparatus according to one embodiment of the present invention, and FIG. 2 is a diagram showing an apparatus according to another embodiment. I...Reaction chamber, 2...Substrate holder, 3...Substrate,
4... Light introduction window, 5... Irradiation light, 6... Grid (gas adsorption object), 7... Ring-shaped container, 8... Raw material gas inlet, 9... Purge gas inlet , 1o...Exhaust port, 11...Plate heater (gas adsorption object). Figure 1 Figure 2 (b)

Claims (5)

【特許請求の範囲】[Claims] (1)反応室内に原料ガスを導入すると共に光を照射し
て光化学反応により前記原料ガスを分解して基板上に薄
膜を形成する光気相成長方法において、前記反応室の基
板より光源側に、光の透過を妨げないように薄膜形成に
必要不可欠なガスの原子または分子を吸着させる物体を
設けて光気相成長を行なうことを特徴とする光気相成長
方法。
(1) In a photovapor phase growth method in which a raw material gas is introduced into a reaction chamber and light is irradiated to decompose the raw material gas through a photochemical reaction to form a thin film on a substrate, a portion of the reaction chamber is placed closer to the light source than the substrate. A photovapor phase growth method characterized in that photovapor phase growth is performed by providing an object that adsorbs gas atoms or molecules essential for forming a thin film so as not to impede the transmission of light.
(2)反応室内に原料ガスを導入すると共に光を照射し
て光化学反応により前記原料ガスを分解して基板上に薄
膜を形成する光気相成長装置において、前記反応室の基
板よシ光源側に、光の透過を妨げないように薄膜形成に
必要不可欠なガスの原子または分子を吸着させる物体を
設けたことを特徴とする光気相成長装置。
(2) In a photo-vapor phase growth apparatus that introduces a raw material gas into a reaction chamber and irradiates light to decompose the raw material gas through a photochemical reaction to form a thin film on a substrate, the light source side of the reaction chamber is closer to the substrate. A photo-vapor phase growth apparatus characterized in that an object is provided to adsorb gas atoms or molecules essential for thin film formation so as not to impede transmission of light.
(3) 前記物体は、ガスの原子または分子を物理的に
吸着するものである特許請求の範囲第2項記載の光気相
成長装置。
(3) The optical vapor phase growth apparatus according to claim 2, wherein the object physically adsorbs gas atoms or molecules.
(4)前記物体は、ガスの原子または分子を化学的に吸
着するものである特許請求の範囲第2項記載の光気相成
長装置。
(4) The optical vapor phase growth apparatus according to claim 2, wherein the object chemically adsorbs gas atoms or molecules.
(5)前記物体の間隙を通って光源側から基板側に向う
ガスの流れを作るようにした特許請求の範囲第2項記載
の光気相成長装置。
(5) The optical vapor phase growth apparatus according to claim 2, wherein a gas flow is created from the light source side toward the substrate side through the gap between the objects.
JP23538283A 1983-12-14 1983-12-14 Optical vapor deposition method and optical vapor deposition apparatus Expired - Lifetime JPH0644553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23538283A JPH0644553B2 (en) 1983-12-14 1983-12-14 Optical vapor deposition method and optical vapor deposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23538283A JPH0644553B2 (en) 1983-12-14 1983-12-14 Optical vapor deposition method and optical vapor deposition apparatus

Publications (2)

Publication Number Publication Date
JPS60126822A true JPS60126822A (en) 1985-07-06
JPH0644553B2 JPH0644553B2 (en) 1994-06-08

Family

ID=16985249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23538283A Expired - Lifetime JPH0644553B2 (en) 1983-12-14 1983-12-14 Optical vapor deposition method and optical vapor deposition apparatus

Country Status (1)

Country Link
JP (1) JPH0644553B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60209246A (en) * 1984-04-02 1985-10-21 Ushio Inc Photochemical reaction device
JPS61272384A (en) * 1985-05-27 1986-12-02 Semiconductor Energy Lab Co Ltd Formation of thin film
JPS61271820A (en) * 1985-05-27 1986-12-02 Semiconductor Energy Lab Co Ltd Thin film forming method
JPS6350026A (en) * 1986-08-20 1988-03-02 Nikon Corp Optical pumping processor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60209246A (en) * 1984-04-02 1985-10-21 Ushio Inc Photochemical reaction device
JPS6250553B2 (en) * 1984-04-02 1987-10-26 Ushio Electric Inc
JPS61272384A (en) * 1985-05-27 1986-12-02 Semiconductor Energy Lab Co Ltd Formation of thin film
JPS61271820A (en) * 1985-05-27 1986-12-02 Semiconductor Energy Lab Co Ltd Thin film forming method
JPS6350026A (en) * 1986-08-20 1988-03-02 Nikon Corp Optical pumping processor

Also Published As

Publication number Publication date
JPH0644553B2 (en) 1994-06-08

Similar Documents

Publication Publication Date Title
US4558660A (en) Semiconductor fabricating apparatus
US6150265A (en) Apparatus for forming materials
KR100605799B1 (en) Single substrate heat treating apparatus for semiconductor process system
Hanabusa Photoinduced deposition of thin films
US20100096569A1 (en) Ultraviolet-transmitting microwave reflector comprising a micromesh screen
JPS6150150B2 (en)
JP2001023916A (en) Method for treating material with electromagnetic wave and apparatus
JPH0496226A (en) Manufacture of semiconductor device
JPS60126822A (en) Method and apparatus for optical vapor growth
JPH0329297B2 (en)
JPH01179410A (en) Method and apparatus for forming thin film by cvd
JPS6223450B2 (en)
JP2005063986A (en) Processing device and plasma device
JPS5982732A (en) Manufacture for semiconductor device
US5817559A (en) Production method for a semiconductor device
US5990006A (en) Method for forming materials
JPH09186095A (en) Method and apparatus for forming film and manufacture of semiconductor device
JP4443733B2 (en) Laser ablation deposition method
JPH0429220B2 (en)
JP4097372B2 (en) High concentration ozone-containing gas storage method, high concentration ozone-containing gas storage device, oxidation treatment method and oxidation treatment device
JPH0294430A (en) Photo-assisted cvd apparatus
JP4037535B2 (en) Substrate heat treatment equipment
JPH04127528A (en) Etching process
JPH05243138A (en) Ultraviolet ray emitter and processing method using the same
JPS6118122A (en) Semiconductor manufacturing apparatus