JPS60125598A - Desalting device for condensate - Google Patents

Desalting device for condensate

Info

Publication number
JPS60125598A
JPS60125598A JP23140583A JP23140583A JPS60125598A JP S60125598 A JPS60125598 A JP S60125598A JP 23140583 A JP23140583 A JP 23140583A JP 23140583 A JP23140583 A JP 23140583A JP S60125598 A JPS60125598 A JP S60125598A
Authority
JP
Japan
Prior art keywords
resin
exchange resin
condensate
regeneration
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23140583A
Other languages
Japanese (ja)
Inventor
佐藤 善晃
五十嵐 裕夫
大角 克己
勇作 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP23140583A priority Critical patent/JPS60125598A/en
Publication of JPS60125598A publication Critical patent/JPS60125598A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は粒状の陽イオン交換樹脂と陰イオン交換樹脂を
内蔵する混床式復水脱塩装置を有する復水浄化系に係り
、特にイオン交換樹脂の有効な再生に好適な復水脱塩装
置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a condensate purification system having a mixed bed type condensate desalination device incorporating a granular cation exchange resin and an anion exchange resin, and particularly relates to a condensate purification system having a mixed bed type condensate desalination device containing a granular cation exchange resin and an anion exchange resin. The present invention relates to a condensate desalination device suitable for effective regeneration of resin.

〔発明の背景〕[Background of the invention]

従来の原子炉系、特に沸騰水型原子炉(BWRと称す)
は第1図に示すような構成からなり、炉浄化系lOを備
える原子炉圧力容器1から流出した蒸気は高圧タービン
2、湿分分離器3および低圧タービン4を経て復水器に
おいて凝縮されて復★)−f、sス−mr t’! /
l’F LG々−ピン4ル軽τ作★Pi L: #いて
凝縮されて復水となる。前記低圧タービン4は油気系I
Iを介して給水ヒータ9に連通し、この給水ヒータ9は
ヒータドレン系12を介して復水器に連通している。し
たがって復水器5、抽気系11および給水ヒータ9など
で発生した腐食生成物(主に鉄酸化物であり以下クラッ
ドと称す)及び不純物イオンは復水脱塩装置7で除去さ
れる不純物を除去した復水は給水ヒータ9を経て原子炉
圧力容器1へ流入し、以降はこれと同様にして復水が繰
り返し循環される。
Conventional nuclear reactor systems, especially boiling water reactors (referred to as BWRs)
The system has a configuration as shown in FIG. 1, in which steam flowing out from a reactor pressure vessel 1 equipped with a reactor purification system 10 passes through a high pressure turbine 2, a moisture separator 3, and a low pressure turbine 4, and is condensed in a condenser. ★)-f,s-mr t'! /
l'F LG - pin 4 light τ production★Pi L: # is condensed and becomes condensate. The low pressure turbine 4 is an oil-air system I.
It communicates via I with a feedwater heater 9, which in turn communicates with a condenser via a heater drain system 12. Therefore, corrosion products (mainly iron oxides, hereinafter referred to as crud) and impurity ions generated in the condenser 5, bleed system 11, feed water heater 9, etc. are removed by the condensate desalination device 7. The condensate flows into the reactor pressure vessel 1 via the feed water heater 9, and thereafter the condensate is repeatedly circulated in the same manner.

前記復水脱塩装置7は第2図に示すように給水系18お
よび復水系19に接続する容器13に散水板14と目板
16上に設けられたイオン交換μ脂15およびジョンソ
ンスクリーン17を収納した構造からなり、不純物を含
有する復水は復水系19を経て容器13内の散水板14
に流下し、ついでイオン交換樹脂15上に散布されて不
純物を除去された後に、ジョンソンスクリーン17を経
て経本系18へ流出する。前記イオン交換樹脂15はB
WRではH型陽イオン交換樹脂とOH型陰イオン交換樹
脂を用い、その粒径は概数300〜1200μmでほぼ
同径の陽イオン交換樹脂と陰イオン交換樹脂組合せた混
床であることは周知のとおりである。
As shown in FIG. 2, the condensate desalination apparatus 7 has a container 13 connected to a water supply system 18 and a condensate system 19, and an ion exchange μ fat 15 and a Johnson screen 17 provided on a water sprinkling plate 14 and a batten 16. The condensate containing impurities passes through the condensate system 19 to the water spray plate 14 in the container 13.
The water flows down to the ion exchange resin 15 to remove impurities, and then flows through the Johnson screen 17 to the main system 18. The ion exchange resin 15 is B
It is well known that WR uses an H-type cation exchange resin and an OH-type anion exchange resin, and the particle size is approximately 300 to 1200 μm, and that it is a mixed bed that combines a cation exchange resin and an anion exchange resin with approximately the same diameter. That's right.

ところで、復水脱塩装置の樹脂再生は、復水・給水ライ
ンの汚染を避けるため復水脱塩装置より樹脂を取出し、
別途再生する塔外再生方式が一般的であり、これらの樹
脂再生に伴う再生廃液等の廃棄物量の増大が問題となっ
ている。樹脂再生は、樹脂に機械的に捕捉された酸化物
を除去する2つに分けられる。前者は、空気及び水を用
いスクラビングすることにより行ない、後者は、薬品注
入により行なわれる。
By the way, in order to regenerate the resin in the condensate desalination equipment, in order to avoid contamination of the condensate and water supply lines, the resin must be removed from the condensate desalination equipment.
An external regeneration system in which resin is regenerated separately is common, and an increase in the amount of waste such as recycled waste liquid accompanying resin regeneration has become a problem. Resin regeneration is divided into two parts: mechanically removing oxides trapped in the resin; The former is performed by scrubbing with air and water, and the latter is performed by chemical injection.

第3図は上記従来の塔外再生方式による混床式復水脱塩
装置の再生系統を示したものである。差圧又は定期管理
により逆洗再生するイオン交換樹脂は、陽イオン6換樹
脂塔21に移送され注入される用水、空気により樹脂表
面に捕捉されでいる酸化物を除去する。剥離された酸化
物は、洗浄水により廃棄物処理系へ排出される。その後
樹脂は樹脂混合塔23へ移送され、ここで混合した後再
び復水脱塩装置7に充填される。また薬品注入による再
生は、陽イオン交換樹脂塔21で陽イオン交換樹脂と陰
イオン交換樹脂に分離され、陰イオン交換樹脂は陰イオ
ン交換樹脂塔22に移送し、陽イオン交換樹脂は硫酸溶
液、陰イオン交換樹脂は水酸化ナトリウム溶液でそれぞ
れ再生後、樹脂混合塔23で混合し、復水脱塩塔7に充
填される。
FIG. 3 shows a regeneration system of a mixed bed type condensate desalination apparatus using the conventional outside-column regeneration method. The ion exchange resin, which is backwashed and regenerated by differential pressure or periodic control, is transferred to the cation hexaconversion resin tower 21 and oxides trapped on the resin surface are removed by the injected water and air. The stripped oxides are discharged to the waste treatment system using wash water. Thereafter, the resins are transferred to the resin mixing tower 23, where they are mixed and then charged into the condensate desalination device 7 again. In addition, for regeneration by chemical injection, the cation exchange resin is separated into a cation exchange resin and an anion exchange resin in the cation exchange resin column 21, the anion exchange resin is transferred to the anion exchange resin column 22, and the cation exchange resin is transferred to a sulfuric acid solution, The anion exchange resins are each regenerated with a sodium hydroxide solution, mixed in a resin mixing tower 23, and then charged into a condensate demineralization tower 7.

逆洗による再生は20日/回・塔、薬品による再生は1
00日/回・増程度の頻度で行なわれている。
Regeneration by backwashing is 20 days/tower, and regeneration by chemicals is 1 time.
It is performed at an increasing frequency of 00 days/time.

ところで、薬品再生に伴なって発生する放射性廃棄物量
は、プラント全体で発生する量の約20%にも達し、廃
棄物発生量の低減の一環としてこの低減化が要求されて
いる。
Incidentally, the amount of radioactive waste generated during chemical regeneration reaches about 20% of the amount generated in the entire plant, and reduction of this amount is required as part of reducing the amount of waste generated.

薬品再生時の廃液は、最終的な処理の段階で陽イオン交
換樹脂の再生に使用した硫酸と陰イオン交換樹脂に使用
した水酸化ナトリウムを中和し、硫酸ナトリウム(芒硝
)として処理するため、:a縮処理等の減容化には限界
があり、現状薬品再生時に発生する廃液は約60m3/
回となり、廃液は廃棄物処理系に移行され約20倍に濃
縮後ドラム缶詰めされ処理されている。このため、11
00MWe級プラントでは約10塔の脱塩塔を有してお
り、年間ドラム缶発生量では約1000本と多量となり
この低減化が問題となっている。
In the final treatment stage, the waste liquid from chemical regeneration is treated as sodium sulfate (mirabilite) by neutralizing the sulfuric acid used to regenerate the cation exchange resin and the sodium hydroxide used for the anion exchange resin. : There is a limit to volume reduction through a-condensation treatment, etc., and currently the waste liquid generated during chemical regeneration is approximately 60m3/
The waste liquid is transferred to a waste treatment system, concentrated approximately 20 times, and then canned in drums for treatment. For this reason, 11
A 00MW We class plant has about 10 desalination towers, and the annual amount of drums generated is about 1000, which is a large amount, and reducing this is a problem.

また、逆洗再生では、廃液は主にクラッド(鉄酸化物)
であり、濃縮処理によりかなり廃棄物量的には低減する
ことができ問題は少ないが、1100MWe級プラント
で年間廃液量が約12000m3 と膨大な量となるた
め、廃棄物処理系での濃縮装置はほとんど、全運転に近
い状態となっており、この装置の負担低減化も要望され
ている。
In addition, in backwash regeneration, the waste liquid mainly consists of crud (iron oxide).
Although the amount of waste can be considerably reduced through concentration treatment and there are few problems, the amount of waste liquid generated per year in a 1100 MWe class plant is enormous, approximately 12000 m3, so concentration equipment is rarely used in waste treatment systems. , it is in a state close to full operation, and there is a demand for reducing the burden on this equipment.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、復水脱塩装置に充填するイオン交換樹
脂の薬品再生を有効に行ない、薬品量及び廃棄物量の低
減ができる復水脱塩装置を提供することにある。
An object of the present invention is to provide a condensate desalination apparatus that can effectively regenerate chemicals from an ion exchange resin filled in the condensate desalination apparatus and reduce the amount of chemicals and waste.

〔発明の概要〕[Summary of the invention]

復水脱塩装置には陽イオン交換樹脂と陰イオン交換樹脂
が混合充填されているが実機データにより下記の知見が
得られている。
The condensate desalination equipment is filled with a mixture of cation exchange resin and anion exchange resin, and the following findings have been obtained from actual equipment data.

第4図は、薬品再生時の復水脱塩装置内のイオン交換樹
脂層深さとイオン負荷凰の関係を示したものであるが、
陽イオン交換樹脂27、陰イオン゛交換樹脂28とも1
表層より約30〜50cmまでがイオン不純物除去に使
用されており、それ以降ではほとんど使われていないこ
とが判明した。
Figure 4 shows the relationship between the depth of the ion exchange resin layer and the ion load in the condensate desalination equipment during chemical regeneration.
Both cation exchange resin 27 and anion exchange resin 28 are 1
It was found that about 30 to 50 cm from the surface layer was used for removing ionic impurities, and the rest was hardly used.

この実機データはプラント通常運転時のものであるが、
復水脱塩装置内の充填イオン交換樹脂量は、復水器の冷
却管から海水が漏洩した場合を想定し決定している。こ
のため、通常運転時では第4図のようにかなりイオン交
換容量に余裕があり、さらに、樹脂層上部のみがイオン
不純物除去に用いられていることが判る。一方、薬品再
生時の注入薬品液量は、全樹脂量に対するイオン交換容
量より決定されているため過剰に用いられている。
This actual machine data is from normal plant operation, but
The amount of ion exchange resin filled in the condensate desalination equipment was determined based on the assumption that seawater would leak from the condenser cooling pipe. Therefore, during normal operation, there is a considerable ion exchange capacity as shown in FIG. 4, and furthermore, it can be seen that only the upper part of the resin layer is used for removing ionic impurities. On the other hand, the amount of chemical liquid injected during chemical regeneration is determined based on the ion exchange capacity with respect to the total amount of resin, so it is used in excess.

こらにの知見から、復水脱塩装置のイオン交換樹脂は海
水漏洩等の異常がない場合、イオン交換樹脂層上部(3
0cm〜50cm)のみ行なえば十分であり、イオン交
換樹脂層は約1mであるため、薬品量及び廃棄物量の低
減に効果がある。
Based on these findings, the ion exchange resin of the condensate desalination equipment is used in the upper part of the ion exchange resin layer (3
It is sufficient to carry out only 0 cm to 50 cm), and since the ion exchange resin layer is approximately 1 m long, it is effective in reducing the amount of chemicals and waste.

第5図は逆洗再生時のイオン交換樹脂層深さ方向での捕
捉鉄量の分布を示したものであるが、第4図のイオン負
量と同様に表層より約30〜50cmまでで大部分が捕
捉されていることが判る。
Figure 5 shows the distribution of the amount of trapped iron in the depth direction of the ion-exchange resin layer during backwash regeneration, and as with the negative ion amount in Figure 4, it is large up to about 30 to 50 cm from the surface layer. It can be seen that the portion is captured.

逆洗再生は、イオン交換樹脂層に捕捉された鉄酸化物等
のクラッドを除去し、差圧上昇を防ぐことを目的として
行なっており、鉄捕捉量番マ第4図からイオン交換樹脂
層上部であり、差圧はイオン交換樹脂層上部に寄与して
いると考えられる。このため配洗再生においても通常は
イオン交換樹脂層上部のみ行なえば十分と考えられ、逆
洗再生時の廃液低減に効果がある。
Backwash regeneration is performed to remove crud such as iron oxides trapped in the ion exchange resin layer and to prevent a rise in differential pressure. It is thought that the differential pressure contributes to the upper part of the ion exchange resin layer. For this reason, it is generally considered sufficient to carry out washing and regeneration only on the upper part of the ion exchange resin layer, which is effective in reducing waste liquid during backwashing and regeneration.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第6図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

第5図は従来の復水脱塩装置にイオン交換樹脂層を分離
するスクリーン29を設けた復水脱塩装置及び再生系統
を示した図である。
FIG. 5 is a diagram showing a conventional condensate demineralizer and a regeneration system in which a screen 29 for separating an ion exchange resin layer is provided in the condensate demineralizer.

復水系19より復水脱塩装置7に流入した復水は分離ス
クリーン29の上部のイオン交換樹脂層、下部のイオン
交換樹脂層で純次処理され給水系18へ流出される。こ
こで上部のイオン交換樹脂層高を50cmとすると、通
常樹脂層高は約1 rnでありスクリーン上部と下部の
樹脂量(層高)は同量となる。復水中の不純物イオン及
びクラッド(鉄酸化物等)は、はとんどスクリーン上部
の樹脂層で除去される。従って樹脂の薬品再生は上部の
樹脂層のみを行ない樹脂移行ライン3oにより陽イオン
交換樹脂塔21に移行し、陽イオン交換樹脂と陰イオン
交換樹脂に分離後、陰イオン交換樹脂は陰イオン交換樹
脂塔22へ移送し、それぞれ薬品再生を行なう。この時
の薬品注入皿は再生樹脂量が従来の1/2となるため、
単純に1/2の量で行なう。再生終了後樹脂混合塔23
に移行し陽イオン交換樹脂と陰イオン交換催脂を混合す
る。次のスクリーン下部に充填していた樹脂を陽イオン
交換樹脂214C移行しておき、薬品再生した樹脂混合
塔23の樹脂をスクリーン下部に充填する。その後、陽
イオン交換樹脂塔21に移行しておいた樹脂を樹脂混合
塔23を経由し、スクリーン上部に充填する。この薬品
再生時におけるスクリーン上部と下部の栢脂交換により
、樹脂の使用状況による樹脂劣化等のバランスは解消さ
れる。
The condensate flowing into the condensate desalination device 7 from the condensate system 19 is purified by an ion exchange resin layer in the upper part of the separation screen 29 and an ion exchange resin layer in the lower part, and then flows out to the water supply system 18. Here, assuming that the height of the upper ion exchange resin layer is 50 cm, the resin layer height is usually about 1 rn, and the resin amounts (layer heights) at the upper and lower portions of the screen are the same. Impurity ions and cladding (iron oxide, etc.) in the condensate are mostly removed by the resin layer above the screen. Therefore, chemical regeneration of the resin is performed only on the upper resin layer, and the resin is transferred to the cation exchange resin column 21 via the resin transfer line 3o, and after separation into the cation exchange resin and the anion exchange resin, the anion exchange resin is changed to the anion exchange resin. The chemicals are transferred to the tower 22 and regenerated respectively. At this time, the amount of recycled resin in the chemical injection tray is 1/2 that of the conventional one, so
Simply use 1/2 the amount. Resin mixing tower 23 after completion of regeneration
, and mix the cation exchange resin and anion exchange emollient. The resin filled in the lower part of the next screen is transferred to the cation exchange resin 214C, and the resin from the resin mixing tower 23, which has been regenerated as a chemical, is filled in the lower part of the screen. Thereafter, the resin transferred to the cation exchange resin column 21 passes through the resin mixing column 23 and is filled into the upper part of the screen. By exchanging the resin at the top and bottom of the screen during chemical regeneration, the balance between resin deterioration and the like depending on the usage status of the resin is resolved.

一方、逆洗再生は、スクリーン上部の樹脂のみ陽イオン
交換樹脂21に移送し、空気及び逆洗水により再生後、
樹脂混合塔23を経由し再びスクリーン上部に充填し終
了する。この場合の廃液量も樹脂量が172に低減して
いるため従来の1/2で行なうことができ、廃液の濃縮
操作は半減することができる。
On the other hand, in backwash regeneration, only the resin at the top of the screen is transferred to the cation exchange resin 21, and after being regenerated with air and backwash water,
The resin passes through the resin mixing column 23 and is filled again into the upper part of the screen. In this case, since the amount of resin is reduced to 172, the amount of waste liquid can be reduced to 1/2 of the conventional amount, and the concentration operation of the waste liquid can be halved.

分離スクリーン29の設置により復水脱塩装置7の差圧
が上昇するが、現状のイオン交換樹脂粒径は樹脂仕様に
より420μm以下は2%に抑えられているため、スク
リーンのメツシュは300μm0〜400μmの大きい
ものとし差圧上昇を最小限とする。またこのスクリーン
から漏洩した場合でも復水脱塩装[7,下部のジョンソ
ンスクリーン17は約150μmであり装置外p、の樹
脂漏洩は防ぐことができる。
The installation of the separation screen 29 increases the differential pressure in the condensate desalination device 7, but the current ion exchange resin particle size is limited to 2% of 420 μm or less due to the resin specifications, so the screen mesh is 300 μm 0 to 400 μm. The pressure difference should be as large as possible to minimize the rise in differential pressure. Furthermore, even if the resin leaks from this screen, the Johnson screen 17 at the bottom of the condensate desalination device [7] has a thickness of about 150 μm, so that resin leakage outside the device can be prevented.

〔発明の効果〕〔Effect of the invention〕

本発明によれば復水脱塩装置内のイオン交換樹脂のうち
、通常運転時に復水中のイオン不純物除去に用いられる
樹脂のみ薬品再生を行なうことができるので、薬品再生
に用いる薬品量及びそれに伴なう廃棄物を低減する効果
がある。廃棄物量では、@状年間ドラム缶発生量約10
00本に対しl/2〜1/3に低減することができる。
According to the present invention, among the ion-exchange resins in the condensate desalination equipment, only the resin used for removing ionic impurities in condensate during normal operation can be regenerated. This has the effect of reducing waste. In terms of waste volume, approximately 10 drums are generated per year.
00 lines, it can be reduced to 1/2 to 1/3.

また、逆洗再生も鉄酸化物等の除去が行なわれる樹脂層
のみ行なうことができるので、廃液量を1/2〜1/3
に低減することができ、濃縮装置への負担を軽減するこ
とができる。
In addition, backwashing regeneration can be performed only on the resin layer where iron oxides, etc. are removed, so the amount of waste liquid can be reduced by 1/2 to 1/3.
It is possible to reduce the burden on the concentrator.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の沸騰水型原子力発電プラントの概略構成
図、第2図は従来の復水脱塩装置の説明―、第3図は従
来の塔外再生方式による温床式復水脱塩装置の再生系統
を示した構成図、第4図は薬品再生時の樹脂層深さとイ
オン負荷量の関係線図、第5図は樹脂深さ方向での捕捉
鉄量分布図、第6図は本発明の実施例の復水脱塩装置内
部に樹脂層を分離するスクリーン゛を設置した場合の脱
塩装置及び再生系統を示した構成図である。 7・・・復水脱塩装置、15・・・イオン交換樹脂、2
1・・・陽イオン交換樹脂塔、22・・・陰イオン交換
樹脂塔、23・・・樹脂混合塔、29・・・樹脂層分離
スクリーン。 耀 1 国 19 26 躬(+口 躬 50 第1頁の続き @発明者 画材 力作 日立市詞 所内
Figure 1 is a schematic diagram of a conventional boiling water nuclear power plant, Figure 2 is an explanation of a conventional condensate desalination system, and Figure 3 is a conventional hotbed type condensate desalination system using an external regeneration system. Figure 4 is a diagram showing the relationship between resin layer depth and ion load during chemical regeneration, Figure 5 is a distribution diagram of trapped iron in the resin depth direction, and Figure 6 is a diagram showing the amount of trapped iron in the resin depth direction. FIG. 2 is a configuration diagram showing a desalting device and a regeneration system when a screen for separating a resin layer is installed inside the condensate desalting device according to an embodiment of the invention. 7... Condensate desalination device, 15... Ion exchange resin, 2
DESCRIPTION OF SYMBOLS 1... Cation exchange resin column, 22... Anion exchange resin column, 23... Resin mixing column, 29... Resin layer separation screen.耀 1 Country 19 26 謬(+语謬 50 Continuation of page 1 @ inventor Art materials Masterpiece Hitachi Shiji Office)

Claims (1)

【特許請求の範囲】[Claims] 1、粒状の陽イオン交換樹脂と陰イオン交換樹脂を内蔵
する混床式復水脱塩塔において、イオン交換樹脂層を分
離するスクリーンを設けたことを特徴とする復水脱塩装
置。
1. A condensate demineralizer characterized in that a mixed-bed condensate demineralizer containing a granular cation exchange resin and an anion exchange resin is provided with a screen that separates the ion exchange resin layer.
JP23140583A 1983-12-09 1983-12-09 Desalting device for condensate Pending JPS60125598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23140583A JPS60125598A (en) 1983-12-09 1983-12-09 Desalting device for condensate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23140583A JPS60125598A (en) 1983-12-09 1983-12-09 Desalting device for condensate

Publications (1)

Publication Number Publication Date
JPS60125598A true JPS60125598A (en) 1985-07-04

Family

ID=16923084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23140583A Pending JPS60125598A (en) 1983-12-09 1983-12-09 Desalting device for condensate

Country Status (1)

Country Link
JP (1) JPS60125598A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4764338A (en) * 1984-03-01 1988-08-16 Hitachi, Ltd. Method for operating boiling water-type atomic power plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4764338A (en) * 1984-03-01 1988-08-16 Hitachi, Ltd. Method for operating boiling water-type atomic power plant

Similar Documents

Publication Publication Date Title
JPS60125598A (en) Desalting device for condensate
US9115010B2 (en) Demineralizer of primary coolant system in pressurized-water reactor power plant and method for purifying primary cooling water in pressurized-water reactor power plant
JPH09276862A (en) Condensed water desalting apparatus
JP3614995B2 (en) Condensate demineralizer
JP2004330154A (en) Recovered water demineralizing device and method for charging ion exchange resin into the device
KR0161346B1 (en) Carrying, separating and regenerating, method and apparatus of ion exchange resin
JPH0214114B2 (en)
JP2965806B2 (en) Regeneration method of condensate desalination equipment
JPS59136141A (en) Regenerating method of ion exchange resin for condensate desalting device
JPS61138589A (en) Method for packing ion-exchange resin into condensate desalting tower
JP3066204B2 (en) Operation method of ammonia type condensate desalination equipment
JPH0138553B2 (en)
JPS6054102B2 (en) Resin regeneration equipment for condensate desalination equipment
JPS626872B2 (en)
JPS59138992A (en) Condensed water clean-up device
JPS60120292A (en) Condensate desalting instrument
Thompson et al. Ion Exchange Processes for Nuclear Powder Plants
JPS59186685A (en) Resin transfer system to desalting tower of condensed water
JPS5841913B2 (en) Condensate treatment method
JPH0653276B2 (en) Condensate demineralizer
JPS58153580A (en) Method for regeneration of desalting device for condensate
JPH0653273B2 (en) Condensate treatment method
JPS6066197A (en) Method of purifying reactor primary system cooling water
JPH11197661A (en) Condensed water desalting apparatus
JPS5876146A (en) Filtering and desalting system