JPH0653273B2 - Condensate treatment method - Google Patents

Condensate treatment method

Info

Publication number
JPH0653273B2
JPH0653273B2 JP60105972A JP10597285A JPH0653273B2 JP H0653273 B2 JPH0653273 B2 JP H0653273B2 JP 60105972 A JP60105972 A JP 60105972A JP 10597285 A JP10597285 A JP 10597285A JP H0653273 B2 JPH0653273 B2 JP H0653273B2
Authority
JP
Japan
Prior art keywords
tower
exchange resin
anion
condensate
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60105972A
Other languages
Japanese (ja)
Other versions
JPS61263695A (en
Inventor
勇作 西村
克己 大角
裕夫 五十嵐
善晃 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60105972A priority Critical patent/JPH0653273B2/en
Publication of JPS61263695A publication Critical patent/JPS61263695A/en
Publication of JPH0653273B2 publication Critical patent/JPH0653273B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、蒸気タービンなどの蒸気原動機プラントの復
水を混床式脱塩塔を用いて処理する方法に関するもので
ある。
Description: FIELD OF THE INVENTION The present invention relates to a method for treating condensate of a steam engine plant such as a steam turbine using a mixed bed demineralization tower.

〔発明の背景〕[Background of the Invention]

混床式脱塩塔内の負荷したイオン交換樹脂を塔外再生す
る方法として、例えば特開昭58−216743号公開
に示されるように、分離再生塔においてアニオン交換樹
脂のみの上層、アニオン交換樹脂とカチオン交換樹脂と
が混合している中層、カチオン交換樹脂のみの下層の三
層に成層分離し、上層のアニオン交換樹脂をアルカリ、
下層のカチオン交換樹脂を酸でそれぞれ再生した後、前
記非再生の中層と共に混床式脱塩塔に移送して脱塩に供
する方法が知られている。
As a method for regenerating the ion-exchange resin loaded in the mixed bed type desalting tower outside the tower, for example, as shown in JP-A-58-216743, an upper layer of an anion-exchange resin, an anion-exchange resin in a separation and regeneration tower is used. And a cation exchange resin are mixed in the middle layer, and the cation exchange resin is separated into three layers of a lower layer, and the upper layer anion exchange resin is alkali,
A method is known in which the cation exchange resin in the lower layer is regenerated with an acid, and then the cation exchange resin is transferred to a mixed bed desalting tower together with the non-regenerated middle layer for desalting.

この方法は、アニオン交換樹脂、カチオン交換樹脂の逆
再生が防止できるものではあるが、復水処理時非再生樹
脂からの負荷イオンのリークが避け難いという技術的問
題が有つた。
This method can prevent the reverse regeneration of the anion exchange resin and the cation exchange resin, but has a technical problem that it is difficult to avoid the leakage of loaded ions from the non-regenerated resin during the condensate treatment.

更に、沸騰水形原子力発電所(BWRプラント)の復水
に関しては鉄クラツドの除去が強く要求されているが、
従来の復水処理技術においては鉄クラツドの除去を完全
に行うことが困難であつた。
Furthermore, with regard to condensate of boiling water nuclear power plant (BWR plant), removal of iron cladding is strongly required,
In the conventional condensate treatment technology, it was difficult to completely remove the iron cladding.

次に、再生樹脂から負荷イオンのリークを生じる原因に
ついて説明する。
Next, the cause of leakage of load ions from the recycled resin will be described.

火力発電所や原子力発電における発電用水は高純度のも
のが要求されるため、復水はアニオン交換樹脂およびカ
チオン交換樹脂からなる混床式脱塩塔で脱塩処理されて
いる。BWRプラントでの脱塩塔ではアニオン交換樹脂
はOH型で、カチオン交換樹脂はH型で使用され、イオ
ン負荷により脱塩性能の低下が生じるとイオン交換樹脂
はアルカリ、酸によりそれぞれ再生される。
Since high-purity water is required for power generation in thermal power plants and nuclear power generation, condensate is desalted by a mixed bed desalting tower composed of anion exchange resin and cation exchange resin. In the desalting tower in the BWR plant, the anion exchange resin is used in the OH type and the cation exchange resin is used in the H type, and when the desalination performance is lowered due to the ion load, the ion exchange resin is regenerated by the alkali and the acid, respectively.

混床式脱塩塔の再生に先立つてアニオン交換樹脂とカチ
オン交換樹脂の分離が必要であるが、この分離が不完全
であると、アニオン交換樹脂に酸が作用したり、カチオ
ン交換樹脂にアルカリが作用したりすることになり、再
生後に脱塩に供されたとき、不純物イオンのリーク量が
多くなり種々の害を及ぼす。例えばアニオン交換樹脂中
にカチオン交換樹脂が混入すると、水酸化ナトリウム等
のアルカリによる再生操作により、混入したカチオン交
換樹脂がNa型となり、この樹脂を復水の脱塩に供する
とナトリウムイオンのリークが生じ、タービン等に腐食
障害を引き起こす。一方、カチオン交換樹脂中にアニオ
ン交換樹脂が混入すると、硫酸等の酸による再生によ
り、混入したアニオン交換樹脂がSO型となり、この
樹脂を復水の脱塩に供すると硫酸イオンのリークが生じ
腐食障害やスケール障害を引き起こす。
Prior to regeneration of the mixed bed desalting tower, it is necessary to separate the anion exchange resin and the cation exchange resin. If this separation is incomplete, acid acts on the anion exchange resin or the cation exchange resin becomes alkaline. When the salt is subjected to desalination after regeneration, the amount of leaked impurity ions increases and various damages are caused. For example, when a cation exchange resin is mixed in an anion exchange resin, the mixed cation exchange resin becomes Na type by a regeneration operation with an alkali such as sodium hydroxide, and when this resin is subjected to desalting of condensate, sodium ion leaks. Occurs and causes corrosion damage to the turbine and the like. On the other hand, when an anion exchange resin is mixed in the cation exchange resin, the mixed anion exchange resin becomes SO 4 type due to regeneration by acid such as sulfuric acid, and when this resin is subjected to desalination of condensate, a leak of sulfate ion occurs. Causes corrosion and scale failure.

従来、この混床を塔外再生するにあたり、被分離再生樹
脂を分離再生塔に移送し、塔下部から上向流通水して樹
脂層を展開することにより、アニオン交換樹脂とカチオ
ン交換樹脂との比重の差を利用して分離していた。しか
し両樹脂の境界附近では分離が不完全であるため、カチ
オン交換樹脂中へのアニオン交換樹脂の混入、アニオン
交換樹脂中へのカチオン交換樹脂の混入は避け難かつ
た。
Conventionally, when regenerating this mixed bed outside the tower, the regenerated resin to be separated is transferred to the separation and regeneration tower, and the resin layer is developed by upwardly circulating water from the lower part of the tower, whereby the anion exchange resin and the cation exchange resin They were separated using the difference in specific gravity. However, since the separation was incomplete near the boundary between both resins, it was difficult to avoid mixing the anion exchange resin into the cation exchange resin and the cation exchange resin into the anion exchange resin.

第2図は従来の方法の説明図である。FIG. 2 is an explanatory diagram of a conventional method.

復水脱塩塔1内のイオン交換樹脂を分離再生塔2に移送
し、アニオン交換樹脂のみの上層3と、カチオン交換樹
脂のみの下層5と、両者の混合した中層4とに成層分離
し、上層(アニオン樹脂)3をアニオン再生塔6に移送
した後、中層(混合)4を混合塔7に移送し、下層(カ
チオン樹脂)5を分離再生塔2に残留させる。
The ion exchange resin in the condensate demineralization tower 1 is transferred to the separation and regeneration tower 2, and is stratified into an upper layer 3 containing only anion exchange resin, a lower layer 5 containing only cation exchange resin, and a middle layer 4 in which both are mixed, After transferring the upper layer (anion resin) 3 to the anion regeneration tower 6, the middle layer (mixing) 4 is transferred to the mixing tower 7, and the lower layer (cation resin) 5 is left in the separation regeneration tower 2.

以上のように各層を各塔に分離し、アニオン再生塔6に
はアルカリ性の、分離再生塔2には酸性の、それぞれの
再生液を通液し、再生を終えた上層(アニオン樹脂)3
と下層(カチオン樹脂)5とをそれぞれ混合塔7に移送
する。
The upper layer (anion resin) 3 that has been separated by separating the layers into the respective columns as described above, has passed the alkaline regeneration liquid through the anion regeneration tower 6 and the acidic regeneration liquid through the separation regeneration tower 2 and has completed regeneration.
And the lower layer (cationic resin) 5 are transferred to the mixing tower 7.

このようにして、混合塔7内に既に収容されている中層
(混合樹脂)4と、再生された上層3,下層5とを混合
して、脱塩塔1に充填して脱塩に供していた。
In this way, the middle layer (mixed resin) 4 already contained in the mixing tower 7 and the regenerated upper layer 3 and lower layer 5 are mixed and packed in the desalting tower 1 for desalting. It was

このようにして、再生されていない中層(混合樹脂)4
が再生済みの上層(アニオン樹脂)3や下層(カチオン
樹脂)5の中に混じりこむので、ある程度の負荷イオン
のリークが避けられなかつた。
In this way, the unregenerated middle layer (mixed resin) 4
Is mixed with the regenerated upper layer (anion resin) 3 and lower layer (cation resin) 5, so that a certain amount of ion leakage cannot be avoided.

〔発明の目的〕[Object of the Invention]

本発明は上述の事情に鑑みて為されたもので、従来の復
水処理設備を用いて、増設,改造の必要が無く、かつ、
再生樹脂から負荷イオンのリークを生じる虞れが無く、
しかも鉄クラツドを高率で除去し得る復水処理方法を提
供しようとするものである。
The present invention has been made in view of the above circumstances, using the conventional condensate treatment equipment, there is no need for expansion or modification, and
There is no risk of load ions leaking from recycled resin,
Moreover, it is intended to provide a condensate treatment method capable of removing the iron cladding at a high rate.

〔発明の概要〕[Outline of Invention]

本発明者らは、(i)アニオン交換樹脂とカチオン交換
樹脂とを通水分離した際の中層を非再生とすることによ
つて樹脂の過度の汚染を防止することはできるものの、
この非再生樹脂からの不純物イオンのリークが脱塩性能
を低下させること、及び(ii)イオン交換樹脂の鉄クラ
ツド除去能は、アニオン交換樹脂よりもカチオン交換樹
脂の方が高いことを実験的に確認した。
Although the present inventors can prevent excessive contamination of the resin by not regenerating the middle layer (i) when the anion exchange resin and the cation exchange resin are separated by passing water,
It was experimentally shown that the leakage of impurity ions from the non-regenerated resin deteriorates the desalination performance, and (ii) the ion-cladding resin has a higher ability to remove the iron cladding than the anion-exchange resin. confirmed.

更に、本発明者らが行なつた復水脱塩塔での鉄クラツド
除去に関する研究結果より、鉄クラツド除去はイオン交
換樹脂層での過現象とイオン交換樹脂表面への付着現
象であり、陰イオン交換樹脂と陽イオン交換樹脂とでは
両者の表面電荷の相違により、陽イオン交換樹脂の方が
鉄クラツド付着能は格段に優れていることが判明した。
更に、鉄クラツドが付着したイオン交換樹脂では十分な
再生が行われにくく、イオン交換反応が阻害されること
により脱塩性能が低下することが判明した。
Further, from the results of the study conducted by the present inventors on the removal of iron cladding in the condensate demineralization tower, the iron cladding removal is an excess phenomenon in the ion exchange resin layer and an adhesion phenomenon to the ion exchange resin surface. It was found that the ion-exchange resin and the cation-exchange resin have significantly better iron-clad adhesion ability due to the difference in surface charge between the cation-exchange resin and the cation-exchange resin.
Further, it was found that the ion-exchange resin having the iron clad adhered thereto was difficult to be sufficiently regenerated, and the ion-exchange reaction was hindered so that the desalination performance was lowered.

本発明者らは、上記の実験結果に基づいて、前記の目的
を達成するため、再生処理の完了状態において脱塩塔内
に再生済みのカチオン交換樹脂とアニオン交換樹脂とが
混合充填され、更にその上流側に非再生樹脂が充填され
た状態となるような処理方法を創作したものである。
The present inventors, based on the above experimental results, in order to achieve the above-mentioned object, in the state of the completion of the regeneration treatment, the regenerated cation exchange resin and the anion exchange resin are mixed and packed, and further, The processing method was created so that the non-regenerated resin was filled on the upstream side.

本発明方法では、まず常法に従い混床式脱塩塔で使用し
たアニオン交換樹脂およびカチオン交換樹脂の混合物を
分離再生塔に移送し、塔下部から上向流通水して樹脂層
を展開させ、アニオン交換樹脂とカチオン交換樹脂との
比重差を利用して、アニオン交換樹脂のみの上層、アニ
オン交換樹脂とカチオン交換樹脂とが混合している中層
およびカチオン交換樹脂のみの下層の三層に成層分離す
る。
In the method of the present invention, first, a mixture of the anion exchange resin and the cation exchange resin used in the mixed bed desalting tower according to a conventional method is transferred to a separation regeneration tower, and the resin layer is developed by upward flowing water from the lower part of the tower, Utilizing the difference in specific gravity between the anion exchange resin and the cation exchange resin, it is stratified into three layers, an upper layer containing only the anion exchange resin, a middle layer containing the anion exchange resin and the cation exchange resin, and a lower layer containing only the cation exchange resin. To do.

その後に、上層をアニオン再生塔に移送しアルカリで再
生した後、その全量を混合塔に移送してアニオン再生塔
を空にしておき、続いて中層を、上記の空いているアニ
オン再生塔に移送し、分離再生塔内に残留した下層を酸
により再生した後混合塔に移送し、前記アニオン交換樹
脂と混合して脱塩塔に充填した後、アニオン再生塔内の
中層を脱塩塔に充填して、元来脱塩塔に収納されていた
イオン交換樹脂に再生処理を施した後、その全量を脱塩
塔に返送して復元し、復水の処理に供する。前記のイオ
ン交換樹脂の再生は常法に従つて行い、上層であるアニ
オン交換樹脂を収容したアニオン再生塔には2〜10%
程度の水酸化ナトリウム溶液等のアルカリを通液し、下
層であるカチオン交換樹脂を収容した分離再生塔には2
〜10%程度の硫酸等の酸を通液して行い、その後押出
し、水洗を行う。
After that, after transferring the upper layer to the anion regeneration tower and regenerating with alkali, the whole amount is transferred to the mixing tower and the anion regeneration tower is emptied, and then the middle layer is transferred to the empty anion regeneration tower. Then, the lower layer remaining in the separation and regeneration tower is regenerated with an acid and then transferred to a mixing tower, mixed with the anion exchange resin and filled in the desalting tower, and then the middle layer in the anion regeneration tower is filled in the desalting tower. Then, the ion exchange resin originally stored in the desalting tower is subjected to a regeneration treatment, and then the whole amount is returned to the desalting tower for restoration and used for condensate treatment. The above-mentioned ion exchange resin is regenerated according to a conventional method, and 2 to 10% is contained in the anion regeneration tower containing the anion exchange resin as the upper layer.
The separation and regeneration tower containing the cation exchange resin, which is the lower layer, contains 2 parts of alkali such as sodium hydroxide solution.
It is carried out by passing an acid such as sulfuric acid of about 10%, followed by extrusion and washing with water.

本発明では、再生されない中層を再生済みイオン交換樹
脂の上流側に充填しており、従来法の様に再生されない
中層のイオン交換樹脂が脱塩塔内で中層や下層に混入さ
れることは絶対にない。このため、従来法では脱塩塔内
の中層や下層に存在する非再生樹脂から、ある程度の負
荷イオンのリークは避けられなかつた。これに対し、本
発明では非再生樹脂は再生済み樹脂層の上流側に充填さ
れており、非再生樹脂からリークした負荷イオンは中,
下層の再生済み樹脂により確実に除去される。ここで、
非再生の中層は全体のせいぜい5〜10%程度であり、
残り90〜95%の再生済み樹脂へのイオン負荷は極め
て少ない。
In the present invention, the unregenerated middle layer is filled upstream of the regenerated ion exchange resin, and as in the conventional method, the unregenerated middle layer ion exchange resin is never mixed in the middle layer or the lower layer in the desalting tower. Not in For this reason, in the conventional method, it was inevitable that a certain amount of the load ions leaked from the non-regenerated resin existing in the middle layer or the lower layer in the desalting tower. On the other hand, in the present invention, the non-regenerated resin is filled in the upstream side of the regenerated resin layer, and the load ions leaked from the non-regenerated resin are
It is reliably removed by the recycled resin in the lower layer. here,
The non-regenerated middle layer is at most 5-10% of the total,
The remaining 90 to 95% of the recycled resin has an extremely low ionic load.

本発明は、原子力発電所、特にBWRプラントの一次冷
却水系における復水処理に有効である。この系では復水
の処理水純度は直接炉水水質に影響を与える。すなわ
ち、復水中のイオンは原子炉内で濃縮され炉水の導電率
上昇を来たし腐食を促進する。前述の従来法では復水脱
塩塔からのリークイオンが炉内で濃縮され炉水導電率の
上昇を来たすが、本発明によれば復水脱塩塔からのイオ
ンリークがなく炉水導電率は低く保て、炉内構造物等の
腐食を抑制できる。
INDUSTRIAL APPLICABILITY The present invention is effective for condensate treatment in a nuclear power plant, particularly in a primary cooling water system of a BWR plant. In this system, the treated water purity of condensate directly affects the reactor water quality. That is, the ions in the condensate are concentrated in the nuclear reactor, which increases the conductivity of the reactor water and promotes corrosion. In the above-mentioned conventional method, leak ions from the condensate demineralization tower are concentrated in the furnace and increase the reactor water conductivity, but according to the present invention, there is no ion leak from the condensate demineralization tower and the reactor water conductivity. Can be kept low, and the corrosion of internal structures can be suppressed.

〔発明の実施例〕Example of Invention

次に、本発明の一実施例について、添付の図面を参照し
つつ詳しく説明する。第1図は本発明の一実施例の説明
図であつて、従来技術における第2図に対応する図であ
る。復水の処理により脱塩性能の低下した脱塩塔1内の
カチオン交換樹脂とアニオン交換樹脂は分離再生塔2に
移送し、塔下部から上向流通水して樹脂層を展開するこ
とによりアニオン交換樹脂のみの上層3と、アニオン交
換樹脂とカチオン交換樹脂とが混合している中層4と、
カチオン交換樹脂のみの下層5とに分離する。上層3を
アニオン再生塔6に移送しアルカリで再生した後、その
全量を混合塔7に移動する。これにより、アニオン再生
塔6は一旦、空になる。続いて中層4を、上記の空いて
いるアニオン再生塔6に移送し、分離再生塔内の下層5
を酸により再生した後、混合塔7に移送し、アニオン交
換樹脂と十分に混合した後、脱塩塔1に充填し、続いて
アニオン再生塔6内の中層樹脂を脱塩塔1に充填する。
このようにして、元来脱塩塔1に収納されていたイオン
交換樹脂の全量を該脱塩塔1に返送して復元し、復水8
の処理に供する。
Next, an embodiment of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is an explanatory diagram of an embodiment of the present invention and is a diagram corresponding to FIG. 2 in the prior art. The cation exchange resin and the anion exchange resin in the desalination tower 1 whose desalination performance has been deteriorated by the treatment of condensate are transferred to the separation / regeneration tower 2, and the resin layer is developed by flowing water upward from the bottom of the tower to develop the anion. An upper layer 3 containing only an exchange resin, and a middle layer 4 containing an anion exchange resin and a cation exchange resin mixed therein,
The cation exchange resin alone is separated into the lower layer 5. After transferring the upper layer 3 to the anion regeneration tower 6 and regenerating with an alkali, the whole amount is moved to the mixing tower 7. As a result, the anion regeneration tower 6 is once emptied. Subsequently, the middle layer 4 is transferred to the empty anion regeneration tower 6 and the lower layer 5 in the separation regeneration tower is transferred.
Is regenerated with an acid, then transferred to a mixing tower 7 and thoroughly mixed with an anion exchange resin, and then charged into the desalting tower 1, and subsequently, the middle layer resin in the anion regeneration tower 6 is charged into the desalting tower 1. .
In this way, the entire amount of the ion exchange resin originally stored in the desalting tower 1 is returned to the desalting tower 1 for restoration, and the condensed water 8
Subject to processing.

本発明方法説明した第1図と、従来技術を説明した第2
図とを対比して明らかなように、本発明方法は従来例の
装置に増設や改造を施することなく、同一の装置を用い
て実施することができる。
FIG. 1 for explaining the method of the present invention, and FIG. 2 for explaining the prior art.
As is clear from comparison with the drawings, the method of the present invention can be carried out using the same device without adding or modifying the device of the conventional example.

前述の、通水によるアニオン交換樹脂とカチオン交換樹
脂との分離は、沈降速度の差を利用して行なう。
The above-mentioned separation of the anion exchange resin and the cation exchange resin by water flow is performed by utilizing the difference in sedimentation speed.

沈降速度はストークス等の法則によればイオン交換樹脂
の粒径と密度の関数であり、両樹脂の関係は第3図の通
りである。脱塩塔に充填されるイオン交換樹脂の粒径は
一般に200〜1200μmの分布を持つている。この
ため、樹脂層の展開後は密度差により沈降速度の大きい
カチオン交換樹脂が下層、沈降速度の小さいアニオン交
換樹脂が上層となるが、両樹脂の境界付近では小粒径カ
チオン交換樹脂と大粒径アニオン交換樹脂との沈降速度
が接近しており、両者の分離が不完全となり、カチオン
交換樹脂とアニオン交換樹脂とが混合した中層の形成は
避けられないことが分かる。
The sedimentation velocity is a function of the particle size and density of the ion exchange resin according to Stokes's law, and the relationship between both resins is as shown in FIG. The particle size of the ion exchange resin packed in the desalting tower generally has a distribution of 200 to 1200 μm. Therefore, after the development of the resin layer, the cation exchange resin having a high sedimentation rate becomes the lower layer and the anion exchange resin having a low sedimentation rate becomes the upper layer due to the difference in density, but near the boundary between both resins, a small particle size cation exchange resin and a large particle size It can be seen that the sedimentation rate is close to the diameter anion exchange resin, the separation between the two is incomplete, and the formation of a middle layer in which the cation exchange resin and the anion exchange resin are mixed is inevitable.

第4図はカチオン交換樹脂におけるHとNaとの交
換平衡定数より脱塩塔底部におけるNa型カチオン樹脂
の割合とリークNa濃度の関係を求めたものである。
Na型カチオン樹脂の割合が増すとリークNa濃度は
対数的に増加する。Cl型アニオン樹脂の割合も同様の
傾向を示す。これより脱塩塔底部のNa型カチオン樹
脂、Cl型アニオン樹脂の割合は極力低く抑えることが
好ましいことが分かる。本発明における分離再生塔内の
中層は非再生樹脂であることより負荷型イオン交換樹
脂、例えばNa型カチオン樹脂、Cl型アニオン樹脂に
なつているが、この非再生樹脂は、常に脱塩塔内におい
て再生済みのH型カチオン樹脂、OH型アニオン樹脂の
混床の上部(上流側)に充填されるため非再生樹脂かか
らリークするNaやClは下層で確実に除去される
ため、これらの不純物イオンが処理水中にリークするこ
とは決してない。
FIG. 4 shows the relationship between the ratio of Na-type cation resin at the bottom of the desalting column and the leak Na + concentration from the exchange equilibrium constant of H + and Na + in the cation exchange resin.
The leak Na + concentration increases logarithmically as the proportion of Na-type cationic resin increases. The ratio of Cl-type anion resin shows a similar tendency. From this, it is understood that it is preferable to keep the ratio of the Na-type cation resin and the Cl-type anion resin at the bottom of the desalting column as low as possible. Since the middle layer in the separation / regeneration tower in the present invention is a non-regenerated resin, it is a load type ion exchange resin, for example, a Na-type cation resin or a Cl-type anion resin. At the upper part (upstream side) of the mixed bed of the H-type cation resin and the OH-type anion resin which have been regenerated in the above, since Na + and Cl leaking from the non-regenerated resin are reliably removed in the lower layer, Impurity ions of the above never leak into the treated water.

第5図は、脱塩塔に復水を2ケ月程度通水した後の脱塩
塔内樹脂層深さ方向における鉄クラツド捕捉量を示した
ものである。脱塩塔における鉄クラツドの捕捉は極く表
層で主に起ることが分る。これは、鉄クラツド除去が
過現象によつているためである。本発明においては脱塩
塔内の表層樹脂は非再生樹脂を充填しており、この非再
生樹脂での鉄クラツドの捕捉が主に起る。このため下層
のH型カチオン、OH型アニオン樹脂におけるクラツド
付着に伴うイオン交換能の低下は防止される。
FIG. 5 shows the amount of iron clad trapped in the depth direction of the resin layer in the desalting tower after condensate was passed through the desalting tower for about two months. It can be seen that the trapping of iron cladding in the desalination tower occurs mainly in the very surface layer. This is because the removal of iron clad is due to an excessive phenomenon. In the present invention, the surface layer resin in the desalting tower is filled with the non-regenerated resin, and the non-regenerated resin mainly captures the iron cladding. Therefore, the lowering of the ion exchange ability due to the adhesion of the cladding in the lower H-type cation and OH-type anion resin is prevented.

第6図は、脱塩塔における樹脂粒径と鉄クラツド除去率
の関係を示したものである。樹脂粒径の低下に伴い除去
率は向上する。これは、樹脂小粒径化による鉄クラツド
除去における過効果の増加と、樹脂外表面積の増加に
伴う鉄クラツド付着面の増加による付着効率の向上によ
るものである。
FIG. 6 shows the relationship between the resin particle size and the iron clad removal rate in the desalting tower. The removal rate improves as the resin particle size decreases. This is due to an increase in the excessive effect in removing the iron cladding due to the reduction in the resin particle size and an improvement in the adhesion efficiency due to an increase in the iron cladding adhesion surface with the increase in the resin outer surface area.

第7図は脱塩塔におけるカチオン交換樹脂とアニオン交
換樹脂の充填割合と、鉄クラツド除去率との関係を示し
たものである。カチオン交換樹脂の充填割合の増加に伴
い除去率は向上する。これよりアニオン交換樹脂に比べ
カチオン交換樹脂の方が鉄クラツド除去能が高いことが
分る。これは、両樹脂の表面電荷の相違に基づくものと
考えられる。
FIG. 7 shows the relationship between the filling rate of the cation exchange resin and the anion exchange resin in the desalting tower and the iron clad removal rate. The removal rate improves as the filling rate of the cation exchange resin increases. From this, it can be seen that the cation exchange resin has a higher iron clad removing ability than the anion exchange resin. It is considered that this is due to the difference in surface charge between the two resins.

第6図,第7図の結果より脱塩塔の鉄クラツド除去能の
向上には、除去能の高いカチオン交換樹脂の小粒径化が
過効果の発現と付着面の増加を伴うことより特に好ま
しいことが分る。本発明において、脱塩塔内の表層に充
填される樹脂は分離再生塔において中層に分離されたも
のであり、これは前記したようにアニオン樹脂は大粒
径、カチオン交換樹脂は小粒径である。このため、この
表層の小粒径カチオン交換樹脂で鉄クラツド除去が極め
て効果的に行われることが分る。
From the results of Fig. 6 and Fig. 7, in order to improve the iron clad removing ability of the desalting tower, it is more important to reduce the particle size of the cation exchange resin having a high removing ability, because it causes an overeffect and an increase in the adhesion surface. It turns out to be preferable. In the present invention, the resin packed in the surface layer in the desalting tower is the one separated into the middle layer in the separation and regeneration tower, which has a large particle size for the anion resin and a small particle size for the cation exchange resin as described above. is there. Therefore, it can be seen that the iron clad is removed very effectively by the small particle size cation exchange resin on the surface layer.

次に掲げる第1表は、上述の本実施例における処理水質
と、第2図に示した従来例における処理水質とを対比し
て作表したものである。
The following Table 1 is a table in which the treated water quality in the above-mentioned embodiment and the treated water quality in the conventional example shown in FIG. 2 are compared.

この表から、本発明の適用によつて脱塩塔からのNa
やClのリークが低減し、更に、鉄クラツド除去率も
向上することが分る。
From this table, according to the application of the present invention, Na + from the desalting tower is
It can be seen that the leak of Cl and Cl is reduced, and the iron-clad removal rate is also improved.

本実施例を変形して、非再生の中層樹脂を再生系に別途
備えた専用の樹脂貯槽に貯留しても、脱塩塔への樹脂充
填法が同一であれば同様の効果が得られることは容易に
理解できる。
Even if the non-regenerated middle-layer resin is stored in a dedicated resin storage tank separately provided in the regeneration system by modifying this embodiment, the same effect can be obtained if the resin filling method for the desalting tower is the same. Is easy to understand.

〔発明の効果〕〔The invention's effect〕

以上詳述したように、本発明の方法を適用すれば、既設
の復水処理設備を用いて、増設や改造を必要とせず、操
作方法の改良のみによって、再生樹脂から負荷イオンの
リークを生じる虞れが無く、しかも鉄クラツドを高能率
で除去することができるという優れた実用的効果を奏す
る。
As described above in detail, when the method of the present invention is applied, the existing condensate treatment facility does not require any expansion or modification, and the leak of the load ion from the regenerated resin is caused only by the improvement of the operation method. There is no fear, and there is an excellent practical effect that the iron cladding can be removed with high efficiency.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法の説明図、第2図は従来技術の説明
図である。第3図は樹脂粒径と沈降速度の関係を示す図
表、第4図はNa型樹脂量とリークNa濃度の関係を
示す図表、第5図は樹脂層深さと鉄クラツド捕捉量の関
係を示す図表、第6図は樹脂粒径と鉄クラツド除去率の
関係を示す図表、第7図はカチオン樹脂とアニオン樹脂
量比と鉄クラツド除去率の関係を示す図表である。 1……復水脱塩塔、2……分離再生塔、3……アニオン
交換樹脂層、4……カチオン、アニオン交換樹脂混合
層、5……カチオン交換樹脂層、6……アニオン再生
塔、7……混合塔、8……復水。
FIG. 1 is an explanatory diagram of the method of the present invention, and FIG. 2 is an explanatory diagram of a conventional technique. Fig. 3 shows the relationship between the resin particle size and the sedimentation rate, Fig. 4 shows the relationship between the amount of Na-type resin and the leak Na + concentration, and Fig. 5 shows the relationship between the resin layer depth and the amount of trapped iron clad. 6 is a chart showing the relationship between the resin particle size and the iron clad removal rate, and FIG. 7 is a chart showing the relationship between the cationic resin / anion resin amount ratio and the iron clad removal rate. 1 ... Condensate demineralization tower, 2 ... Separation and regeneration tower, 3 ... Anion exchange resin layer, 4 ... Cation and anion exchange resin mixed layer, 5 ... Cation exchange resin layer, 6 ... Anion regeneration tower, 7 ... Mixing tower, 8 ... Condensate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 五十嵐 裕夫 茨城県日立市幸町3丁目2番1号 日立エ ンジニアリング株式会社内 (72)発明者 佐藤 善晃 茨城県日立市幸町3丁目2番1号 日立エ ンジニアリング株式会社内 (56)参考文献 特開 昭58−17884(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroo Igarashi 3-2-1, Sachimachi, Hitachi City, Ibaraki Prefecture Hitachi Engineering Co., Ltd. (72) Inventor Yoshiaki Sato 3-2, Sachimachi, Hitachi City, Ibaraki Prefecture No. 1 in Hitachi Engineering Co., Ltd. (56) Reference JP-A-58-17884 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】混床式の復水脱塩塔に収納されているイオ
ン交換樹脂によって蒸気原動機の復水を処理する方法で
あって、 復水の処理によって負荷したイオン交換樹脂を、分離再
生塔とアニオン再生塔とを用いて塔外再生する方法にお
いて、 (a)復水脱塩塔内のイオン交換樹脂を分離再生塔に移
送しして、 イ.アニオン交換樹脂のみよりなる上層と、 ロ.カチオン交換樹脂のみよりなる下層と、 ハ.アニオン交換樹脂とカチオン交換樹脂とが混合した
中層と、 に成層分離し、 (b)前記のアニオン交換樹脂のみよりなる上層をアニ
オン再生塔に移送し、アルカリで再生処理を施した後、
その全量を混合塔に移送して上記アニオン再生塔を空に
し、 (c)前記の混合物である中層を、空になっているアニ
オン再生塔に移送して一時的に保管し、 (d)分離再生塔に残っている、カチオン交換樹脂のみ
よりなる下層に酸で再生処理を施した後、混合塔に移送
して、先に(b)項の工程で混合塔に移送されている再
生処理済のアニオン交換樹脂のみよりなる上層と混合
し、混合した交換樹脂を前記の復水脱塩塔に返送し、 (e)アニオン再生塔に一時保管してあった混合物であ
る中層の全量を復水脱塩塔に返送し、先に(d)項の工
程で該復水脱塩塔に返送されている、再生処理済の上層
・下層の混合層の上流側に充填して、 前記(a)の工程を開始する時に復水脱塩塔の中に収納
されているイオン交換樹脂の全量を復水脱塩塔に回収,
復元し、 前記の復水脱塩塔,分離再生塔、アニオン再生塔および
混合塔以外の処理塔を一切必要とせず、復水脱塩塔内に
充填されていたイオン交換樹脂の全量を再利用して、イ
オン交換能力を回復させ、復水の脱塩処理に繰り返して
供することを特徴とする、復水の処理方法。
1. A method of treating condensate of a steam engine with an ion exchange resin housed in a mixed bed type condensate demineralization tower, wherein the ion exchange resin loaded by the condensate treatment is separated and regenerated. In the method of regenerating outside the tower using the tower and the anion regeneration tower, (a) the ion exchange resin in the condensate demineralization tower is transferred to the separation and regeneration tower, and a. An upper layer consisting only of an anion exchange resin, b. A lower layer consisting only of a cation exchange resin, and c. The intermediate layer in which an anion exchange resin and a cation exchange resin are mixed is separated into layers, and (b) the upper layer consisting only of the anion exchange resin is transferred to an anion regeneration tower and subjected to regeneration treatment with an alkali,
The whole amount is transferred to a mixing tower to empty the anion regeneration tower, (c) the middle layer which is the mixture is transferred to an empty anion regeneration tower and temporarily stored, and (d) separation After regenerating the lower layer consisting of only the cation exchange resin remaining in the regeneration tower with an acid, it is transferred to the mixing tower, and the regeneration treatment that is previously transferred to the mixing tower in the step (b) is completed. Of the above anion exchange resin alone, and the mixed exchange resin is returned to the condensate demineralization tower, and (e) the whole amount of the middle layer, which is the mixture temporarily stored in the anion regeneration tower, is condensed. It is returned to the desalting tower, and is charged upstream of the regenerated upper and lower mixed layers that have been returned to the condensate desalting tower in the step (d), and At the start of the process, all the amount of ion exchange resin stored in the condensate demineralization tower is transferred to Recovery,
No need for any treatment tower other than the condensate demineralization tower, separation regeneration tower, anion regeneration tower, and mixing tower described above, and the entire amount of ion exchange resin filled in the condensate demineralization tower is reused. Then, the ion exchange capacity is restored, and the condensate is repeatedly subjected to desalination treatment of the condensate.
JP60105972A 1985-05-20 1985-05-20 Condensate treatment method Expired - Lifetime JPH0653273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60105972A JPH0653273B2 (en) 1985-05-20 1985-05-20 Condensate treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60105972A JPH0653273B2 (en) 1985-05-20 1985-05-20 Condensate treatment method

Publications (2)

Publication Number Publication Date
JPS61263695A JPS61263695A (en) 1986-11-21
JPH0653273B2 true JPH0653273B2 (en) 1994-07-20

Family

ID=14421685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60105972A Expired - Lifetime JPH0653273B2 (en) 1985-05-20 1985-05-20 Condensate treatment method

Country Status (1)

Country Link
JP (1) JPH0653273B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0380989A (en) * 1989-08-25 1991-04-05 Nomura Micro Sci Kk Portable ion exchange apparatus
CN113385240A (en) * 2021-07-23 2021-09-14 西安热工研究院有限公司 Device and method for preventing resin leakage of fine treatment regeneration equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817884A (en) * 1981-07-23 1983-02-02 Ebara Infilco Co Ltd Treatment of condensate

Also Published As

Publication number Publication date
JPS61263695A (en) 1986-11-21

Similar Documents

Publication Publication Date Title
JPH0653273B2 (en) Condensate treatment method
JPH10192718A (en) Resin regenerator for condensate desalter
KR0161346B1 (en) Carrying, separating and regenerating, method and apparatus of ion exchange resin
JP2004330154A (en) Recovered water demineralizing device and method for charging ion exchange resin into the device
JP3215471B2 (en) Method and apparatus for regenerating ion exchange resin
JP3051005B2 (en) Method of adjusting Na / Cl molar ratio of condensate desalination unit
JPS61138589A (en) Method for packing ion-exchange resin into condensate desalting tower
JPS60125598A (en) Desalting device for condensate
JP2001079424A (en) Equipment and method for regenerating ion exchange resin
JPS5966354A (en) Regeneration of ion-exchange resin
JP2002066340A (en) Condensate desalting equipment and regeneration process of ion-exchange resin
JPS59183398A (en) Maintenance system of condensate desalt tower
JPS58161895A (en) Method and device removing chlorine in radioactive liquid waste
JPH0214114B2 (en)
JPH06285463A (en) Apparatus for demineralization and method for regenerating ion exchange resin
JPH0249784B2 (en) ANMONIAOFUKUMUFUKUSUINODATSUENHOHO
JP2965806B2 (en) Regeneration method of condensate desalination equipment
JPH11197661A (en) Condensed water desalting apparatus
JP3543389B2 (en) Separation and regeneration method of ion exchange resin
JPH09122504A (en) Method for regenerating desalter
JPH0339743B2 (en)
JPS5841913B2 (en) Condensate treatment method
JP2000135444A (en) Transfer/regeneration system for ion exchange resin
JPH0653276B2 (en) Condensate demineralizer
JPH0576780A (en) Regeneration method for ion exchange resin and apparatus therefor