JPS60120572A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60120572A
JPS60120572A JP22928483A JP22928483A JPS60120572A JP S60120572 A JPS60120572 A JP S60120572A JP 22928483 A JP22928483 A JP 22928483A JP 22928483 A JP22928483 A JP 22928483A JP S60120572 A JPS60120572 A JP S60120572A
Authority
JP
Japan
Prior art keywords
substrate
oxide film
type
ion implantation
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22928483A
Other languages
Japanese (ja)
Inventor
Shigekazu Endo
遠藤 繁和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP22928483A priority Critical patent/JPS60120572A/en
Publication of JPS60120572A publication Critical patent/JPS60120572A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To form an insulated gate field effect transistor of ultrafine size without punch-through by using 2-valency ions in case of implanting ions on the channel region of the treansistor. CONSTITUTION:A field oxide film 2 is formed on an N type Si substrate 1, then photoetched, P type impurity is diffused, and source 3 and drain 4 of a P-channel MOS transistor are formed. Then, before forming a gate oxide film, 2-valency ions 8 are implanted. When using a crystalline surface 100 N type Si substrate, ion channeling effect is directed in the direction of ion implanting in the crystalline surface direction (100) at the maximum. To prevent a punch-through, the dosage is necessarily set at approx. 10<11>/cm<3>, and 2-valence impurity region 9 is formed in depth of approx. 0.5micron from the surface of the Si substrate. Then, a gate oxide film 5 is formed, a contacting region 10 is formed on the source 3 and the drain 4, and wirings 11 are formed, thereby forming a P-channel MOS transistor.

Description

【発明の詳細な説明】 本発明は半導体装置の製造法にかかわ9、特に不純物を
イオン状態で注入して、半導体装置を、製造する方法の
改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and particularly relates to an improvement in a method for manufacturing a semiconductor device by implanting impurities in an ionized state.

半導体装置、特に、絶縁ゲート型電界効果トランジスタ
を製造する場合、そのしきい値電圧の制御にイオン注入
法が使用されている。従来、ある導電型の半導体基板に
対して、−回の浅いイオン注入でもって、必要なしきい
値電圧をもった絶縁ゲート型電界効果トランジスタ(形
成していた。
When manufacturing semiconductor devices, particularly insulated gate field effect transistors, ion implantation is used to control the threshold voltage. Conventionally, an insulated gate field effect transistor (insulated gate field effect transistor) having a necessary threshold voltage has been formed by shallow ion implantation into a semiconductor substrate of a certain conductivity type.

例えば、第1図に示したように、Pチャネ)VMO8型
O8ンジスタの場合、N型シリコン基板1にフィーμド
酸化膜2を形成し、P型不純物を導入して、ソース5と
ドレーン4を形成し、ゲート酸化膜5を形成し、ホウ素
イオン6を、ゲート酸化膜5とN型シリコン基板1の界
面近くのチャネル領域7に、イオン注入して製造してい
た。
For example, as shown in FIG. 1, in the case of a P-channel VMO8 type O8 transistor, a feed oxide film 2 is formed on an N-type silicon substrate 1, and P-type impurities are introduced into the source 5 and drain 4. was formed, a gate oxide film 5 was formed, and boron ions 6 were implanted into the channel region 7 near the interface between the gate oxide film 5 and the N-type silicon substrate 1.

しかしながら、半導体装置の高集積化とともに単体の絶
縁ゲート型電界効果トランジスタ自体も、寸法上像細化
してきておシ、今までのように、イオン注入1回でもっ
て、トランジスタを形成シてみると、シリコン基板のチ
ャネル領域より、内部の方で、ソースとドレーンが空 
層でつながってしまう現象、いわゆる、パンチスル−効
果が生じてしまう問題が明らかになってきた。
However, with the increasing integration of semiconductor devices, the dimensions of individual insulated gate field effect transistors have also become smaller, and it has become difficult to form transistors with a single ion implantation process as in the past. , the source and drain are empty inside the silicon substrate channel region.
The problem of the so-called punch-through effect, which is a phenomenon in which layers are connected, has become clear.

この問題を解決するため、従来は、半導体基板自体の濃
度を高くしてパンチスルーを防止すること、又は、チャ
ネル領域に不純物イオンを注入しその後、熱拡散でもっ
て、チャネル領域よシ、内部へ入れることでもって行り
てきた。
To solve this problem, conventional methods have been to increase the concentration of the semiconductor substrate itself to prevent punch-through, or to implant impurity ions into the channel region, and then use thermal diffusion to penetrate the channel region and inside. I went with it by putting it in.

この場合、前者では、基板濃度自体が高くなってしまい
、その結果、ソースとドレーン各々の接合容量が増加し
てしまうこと、及び、トランジスタの移動度は低下して
しまうこと等の欠点がめった。後者では、イオン注入の
他に、熱拡散を行なわなければならないため、生産性の
低下はさけられなかった。
In this case, in the former case, the substrate concentration itself becomes high, and as a result, the junction capacitance of each source and drain increases, and the mobility of the transistor decreases. In the latter case, since thermal diffusion must be performed in addition to ion implantation, a decrease in productivity cannot be avoided.

本発明は、このような状況にかんがみてなされたもので
あり、その目的とするところは、パンチスルーのない、
微少寸法の絶縁ゲート電界効果トランジスタを提供する
ものである。
The present invention was made in view of this situation, and its purpose is to eliminate punch-through.
The present invention provides an insulated gate field effect transistor with extremely small dimensions.

以下、第2図から、第5図までを用いて、本発明による
絶縁ゲート型電界効果トランジスタの製造方法を詳細に
説明する。
Hereinafter, the method for manufacturing an insulated gate field effect transistor according to the present invention will be explained in detail with reference to FIGS. 2 to 5.

ここでの実施例として、今まで例として用いたPチャネ
/l/MO8型トランジスタについて説明する。第2図
に示すように、結晶面(100)、抵抗率10Ω・儒以
上のN型Si基板1を用意する。
As an example here, a P-channel/l/MO8 type transistor used as an example up to now will be described. As shown in FIG. 2, an N-type Si substrate 1 with a crystal plane (100) and a resistivity of 10 Ω·F or more is prepared.

次に、従来の方法で酸化を行ない、フィールド酸化膜2
を形成し、フォトエツチング法を行った挑P型不純物を
拡散し、Pチャネ/L/MO85)ランジスタのソース
3とドレーン4を形成する。e少寸法のMOS型トラン
ジスタでは、このP型不純物導入工程はゲート形成後に
、セルフアラインメント的に、行なわれることが多い。
Next, the field oxide film 2 is oxidized using a conventional method.
The source 3 and drain 4 of the P-channel/L/MO transistor are formed by diffusing P-type impurities using a photoetching method. In small-sized MOS transistors, this P-type impurity introduction step is often performed in a self-alignment manner after gate formation.

次に、第3図に示すように、ゲート酸化膜を形成する前
に、リンのイオン注入8を行なう。ここで行なうイオン
注入の特徴の1つとして、露出された3+基板表面に、
2価のリンイオンで150KEY以上のイオン加速エネ
ルギーで、イオン注入することである。
Next, as shown in FIG. 3, phosphorus ion implantation 8 is performed before forming the gate oxide film. One of the characteristics of the ion implantation performed here is that the exposed 3+ substrate surface is
Ion implantation is performed using divalent phosphorus ions with an ion acceleration energy of 150 KEY or more.

もう1つの特徴は、結晶面(100)N型B+基板を使
用する場合、イオンのチャネリング効果が、最大となる
結晶面方位(110>をイオン注入の方向にむけて、行
なうことである。この場合の角度は45度となる。又、
この時、第3図に示すように、微測化したトランジスタ
において、イオン注入時、均一性良く、チャネル領域よ
シ内部に、イオン注入するため、45度の角度に基板を
保持したまま基板をプラネタリウム回転をさせる。又゛
 バンチスル−防止のため、ドーズ量は10”/crr
L2程度が必要となる0このようにすることによって第
4図に示すような、SI基板表面より深さ0.5ミクロ
ンくらいに、リンの不純物領域9が形成される。最後に
、第5図に示すように、ゲート酸化膜5を形成し、ソー
ス3とドレーン4の上へ、コンタクト領v1.10を形
成し、配線部11を形成することによって、Pチャネル
型MOSトランジスタが形成される。MOS)ランジス
タのしきい値電圧の制御は、はじめのN型Si基板の濃
度を過当に選定しておく。
Another feature is that when using an N-type B+ substrate with a (100) crystal plane, the ion implantation is performed with the crystal plane orientation (110>, where the ion channeling effect is maximum, facing the direction of ion implantation. In this case, the angle is 45 degrees.Also,
At this time, as shown in Figure 3, in order to implant ions into the channel region and inside the micrometered transistor with good uniformity, the substrate is held at a 45 degree angle. Make the planetarium rotate. Also, to prevent bunch through, the dose is 10”/crr.
By doing this, a phosphorus impurity region 9 is formed at a depth of about 0.5 microns from the surface of the SI substrate, as shown in FIG. 4. Finally, as shown in FIG. 5, a gate oxide film 5 is formed, a contact region v1.10 is formed on the source 3 and drain 4, and a wiring part 11 is formed, thereby forming a P-channel MOS. A transistor is formed. To control the threshold voltage of the MOS transistor, the concentration of the initial N-type Si substrate is selected appropriately.

以上、本発明によれば、1回のイオン注入でもって、微
細化された絶縁ゲート型トランジスタでも、パンチスル
−をおさえることが可能でアシ、又、イオン注入後、チ
ャネル部分より内部へ、熱拡散でもって不純物層を入れ
る必要もなく、生産性の高い、高集積化された、倣細化
デバイスの製造が可能となる。
As described above, according to the present invention, it is possible to suppress punch-through even in a miniaturized insulated gate transistor with a single ion implantation. Therefore, there is no need to introduce an impurity layer, and it becomes possible to manufacture highly productive, highly integrated, pattern-thin devices.

上記については、N型B+基板を用いたPチャネル5M
08)ランジヌタについて、説明したが、P型Bl基板
を用いたNチャネ/L/型MOSトランジスタの場合に
も、又それらを一体化したCMOSトランジスタの場合
にも、適用できることは言うまでもない。
For the above, P channel 5M using N type B+ substrate
08) Although the description has been made regarding the range nut, it goes without saying that it can be applied to N-channel/L/type MOS transistors using a P-type Bl substrate, as well as to CMOS transistors in which these are integrated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来のMOS )ランジスタの製造法を説明
するためのMOS)ランジスタの断面図で、第2図から
第5図は、本発明の一実施例の工程を説明するだめの工
程順の断面図でおる。 1・・・N型シリコン基板、2・・・フィールド酸化膜
。 3・・・ソース、4・・・ドレーン、5・・・ゲート酸
化膜。 6・・・ホウ素イオン、7・・・チャネル領域、8・・
・リンイオン、9・・・リンネ鈍物領域、10・・・コ
ンタクト領域、11・・・配線部 以上 出願人 セイコー電子工業株式会社 代理人 弁理士 最 上 務 第1図 jlN!l lI2図 第3図 第4図 ( 115図 )
FIG. 1 is a cross-sectional view of a MOS transistor for explaining a conventional method of manufacturing a MOS transistor, and FIGS. 2 to 5 are process orders for explaining the steps of an embodiment of the present invention. This is a cross-sectional view. 1...N-type silicon substrate, 2...Field oxide film. 3...source, 4...drain, 5...gate oxide film. 6...Boron ion, 7...Channel region, 8...
・Rinne ion, 9... Rinne blunt area, 10... Contact area, 11... Wiring department and above Applicant Seiko Electronics Co., Ltd. Agent Patent Attorney Mogami Affairs Figure 1 jlN! l lI2 Figure 3 Figure 4 (Figure 115)

Claims (1)

【特許請求の範囲】 (1)絶縁ゲート型電界効果トランジスタにおいて前記
トランジスタのチャネル領域にイオン注入する場合に2
価のイオンを用いて行なうことを特徴とする半導体装置
の製造方法。 (2)イオン注入する場合、半導体基板を最大のチャネ
リング効果の生ずる角度にしてイオン注入を行なうこと
を特徴とする特許請求範囲第1項記載の半導体装置の製
造方法。 (6)ゲート酸化膜形成前に半導体基板を露出せしめて
、イオン注入を行なうことを特徴とする特許請求範囲第
2項記載の半導体装置の製造方法。 (4)基板を回転させながらイオン注入を行なうことを
特徴とする特許請求範囲第6項記載の半導体装置の製造
方法。
[Claims] (1) In the case of ion implantation into the channel region of the transistor in an insulated gate field effect transistor.
A method for manufacturing a semiconductor device, characterized in that the method is performed using valence ions. (2) The method for manufacturing a semiconductor device according to claim 1, wherein the ion implantation is performed at an angle where the maximum channeling effect occurs in the semiconductor substrate. (6) The method of manufacturing a semiconductor device according to claim 2, wherein the semiconductor substrate is exposed and ion implantation is performed before forming the gate oxide film. (4) The method for manufacturing a semiconductor device according to claim 6, characterized in that ion implantation is performed while rotating the substrate.
JP22928483A 1983-12-05 1983-12-05 Manufacture of semiconductor device Pending JPS60120572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22928483A JPS60120572A (en) 1983-12-05 1983-12-05 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22928483A JPS60120572A (en) 1983-12-05 1983-12-05 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60120572A true JPS60120572A (en) 1985-06-28

Family

ID=16889704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22928483A Pending JPS60120572A (en) 1983-12-05 1983-12-05 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60120572A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6297113B1 (en) 1998-04-03 2001-10-02 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a semiconductor device, and a semiconductor device manufactured thereby

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4848072A (en) * 1971-10-20 1973-07-07
JPS51114074A (en) * 1975-03-31 1976-10-07 Sony Corp Insulation gate type field effect transistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4848072A (en) * 1971-10-20 1973-07-07
JPS51114074A (en) * 1975-03-31 1976-10-07 Sony Corp Insulation gate type field effect transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6297113B1 (en) 1998-04-03 2001-10-02 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a semiconductor device, and a semiconductor device manufactured thereby

Similar Documents

Publication Publication Date Title
US3653978A (en) Method of making semiconductor devices
JP2663402B2 (en) Method for manufacturing CMOS integrated circuit device
US6717211B2 (en) Shallow doped junctions with a variable profile gradation of dopants
JPH0510828B2 (en)
KR0139773B1 (en) Semiconductor integrated circuit device and method of manufacturing the same
EP0091256A2 (en) CMOS device
JPS58170048A (en) Semiconductor device
JPS60120572A (en) Manufacture of semiconductor device
JPS6251216A (en) Manufacture of semiconductor device
JPH0552069B2 (en)
JPH05283629A (en) Semiconductor device and its manufacture
JPH0423329A (en) Manufacture of semiconductor device
JPS63302562A (en) Manufacture of mos type semiconductor device
JP2003249567A (en) Semiconductor device
JPH06350086A (en) Manufacture of semiconductor device
JPS62198162A (en) Mos transistor and manufacture thereof
JPH0221648A (en) Semiconductor device and manufacture thereof
JP3253712B2 (en) Method for manufacturing semiconductor device
JPH02174236A (en) Manufacture of semiconductor device
JPS63169059A (en) Semiconductor device and its manufacture
JPH04257267A (en) Manufacture of soi-structured semiconductor device
JPH01117362A (en) Manufacture of semiconductor integrated circuit device
JPH0479336A (en) Production of semiconductor device
JP2608627B2 (en) Method for manufacturing semiconductor device
JPH03209836A (en) Manufacture of semiconductor device