JPS60119125A - Driving circuit of field effect transistor - Google Patents

Driving circuit of field effect transistor

Info

Publication number
JPS60119125A
JPS60119125A JP58227937A JP22793783A JPS60119125A JP S60119125 A JPS60119125 A JP S60119125A JP 58227937 A JP58227937 A JP 58227937A JP 22793783 A JP22793783 A JP 22793783A JP S60119125 A JPS60119125 A JP S60119125A
Authority
JP
Japan
Prior art keywords
transistor
gate
output
time
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58227937A
Other languages
Japanese (ja)
Inventor
Kiyoshi Hosoya
清志 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP58227937A priority Critical patent/JPS60119125A/en
Publication of JPS60119125A publication Critical patent/JPS60119125A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/78Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled
    • H03K17/785Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled controlling field-effect transistor switches

Landscapes

  • Electronic Switches (AREA)

Abstract

PURPOSE:To shorten the OFF time of an output TR by discharging charge applied at the ON of the output TR through an FET connected between the source and drain of the output TR in parallel. CONSTITUTION:A photovoltatic element 1 is arranged between the gate and source of an FET type output TR2, a normally off MOSTR4 in which the threshold voltage of the gate is lower than that of the TR2 is arranged in parallel with the element 1 and a photovoltatic element 5 is arranged between the cathode of the element 1 and the gate of the TR4. When the output TR2 is turned off, only the TR2 acts as a capacitor like an equivalent circuit. Since the TR4 is disconnected at first, the discharged current from the TR2 flows through the diode 1 and then flows through the element 1, 5, positive voltage is applied to the gate of the TR4 and the TR4 is connected, so that the charge of the TR2 is discharged through the TR4. The time from the start of the discharge of the TR2 to the ON of the TR4 is shortened on the basis of the relation of said threshold values and the charge of the TR2 is discharged through the diode 1 and the TR4.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は光は号をダイオード・フォトトランジスタ、等
の光起電力素子で電力信号に変換踵その電力信号によっ
て電界効果型トランジスタを駆動する電子回路に関する
ものである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to an electronic circuit that converts light into a power signal using a photovoltaic element such as a diode or phototransistor, and drives a field-effect transistor using the power signal. It is.

〔背景技術〕[Background technology]

光起電力素子を用い九電界効果型トランジスタの駆動回
路の一例金第1図に示す。この回路において、光起電力
素子(1)であるダイオード(1)に光が照射されると
ダイオード(1)の両端に起゛鑞圧が発生し、回路を通
じてMO8型トランジスタ(2)のゲー ′ト端子(3
)間の電位差を引きおこす、エンハンスメント型のMO
S型のトランジスタであれば、ゲートに一定以上の電圧
がかかるとこの時出力端子(3)間は導通の状態となる
。次に、光が照射されなくなれば、ダイオード(1)の
光起電力は発生しなくなり、ゲート端子(3)間に蓄積
でれていた電荷はダイオード(1) e通じて放電され
る。放[ICよってゲート電圧が一定以下になると出力
端子(3)間はしゃ断状態となる。
An example of a drive circuit for a field effect transistor using a photovoltaic element is shown in FIG. In this circuit, when the diode (1), which is a photovoltaic element (1), is irradiated with light, a voltage is generated across the diode (1), and the gate voltage of the MO8 type transistor (2) is generated through the circuit. terminal (3)
) is an enhancement type MO that causes a potential difference between
In the case of an S-type transistor, when a voltage above a certain level is applied to the gate, the output terminal (3) becomes conductive. Next, when light is no longer irradiated, the photovoltaic force of the diode (1) is no longer generated, and the charge accumulated between the gate terminal (3) is discharged through the diode (1) e. When the gate voltage of the IC becomes below a certain level, the output terminal (3) is cut off.

しゃ断状態のとき、光を照射1−てから導通状態になる
までの時間音オ/時間と呼び、導電状態から光を消して
しゃ断状態に至るまでの時間をオフ時間と呼ぶ。
When in the cut-off state, the time from irradiation of light until the state becomes conductive is called the OFF time, and the time from the conductive state to the time when the light is turned off to the cut-off state is called OFF time.

オン時間はダイオード(1)k流れる光電流、ゲートの
容量及び第1図には示してないが必要に応じて組込まれ
る回路の抵抗成分等が要因となってきめられる。
The on-time is determined by factors such as the photocurrent flowing through the diode (1), the capacitance of the gate, and the resistance component of a circuit (not shown in FIG. 1) which may be incorporated if necessary.

オフ時間はゲート端子(3)間の電圧と、ダイオード(
1)の抵抗、その他抵抗成分等が要因と、なっている。
The off time is determined by the voltage between the gate terminal (3) and the diode (
The factors include the resistance in 1) and other resistance components.

ところで、良く知られているように、ダイオード(1,
)id指数関係的な電流−電圧特性金示し、一定の電圧
(一般的には0.5〜0.7V)以下では、それ以、ヒ
の部分と比べて著しく高抵抗となる。ゲートに蓄積さt
″した醒荷がダイオード(1)2通じて放電ζ九るとき
、ダイオード(1)は前述の高抵抗部分の特性となる。
By the way, as is well known, the diode (1,
) The current-voltage characteristic is related to the id index, and below a certain voltage (generally 0.5 to 0.7 V), the resistance becomes significantly higher than that of the part A. Accumulated at the gate
When the discharged load is discharged through the diode (1) 2, the diode (1) exhibits the characteristics of the high resistance portion described above.

単純な抵抗コンデン“広−回路(RC回路)からも知ら
れているように、抵抗Rが大きいほど時定数が大きくな
り、オフ時間は長くなる。
As is known from a simple resistive capacitor wide circuit (RC circuit), the larger the resistance R, the larger the time constant and the longer the off time.

したがってこの回路では、オフ時間がオン時間に比べて
著しく長いという点が実用上の問題となっている。
Therefore, this circuit has a practical problem in that the off time is significantly longer than the on time.

オフ時間を短かくするためには第2図のように回路にダ
イオード(1)と並列に抵抗;4)ヲ入れる方法がある
。オフの際は、ダイオード(1)と抵抗(4)の並列抵
抗で放電がおこなわれるため、第1図の回路の場合より
オフ時間が短くなることが期待される。
In order to shorten the off time, there is a method of inserting a resistor (4) in parallel with the diode (1) in the circuit as shown in Figure 2. When the circuit is off, discharge occurs through the parallel resistance of the diode (1) and the resistor (4), so it is expected that the off time will be shorter than in the case of the circuit shown in FIG.

ところがこの回路では、オンのときもこの抵抗(4)を
通じて電流が流れるため、オン時間I′i長くなる。
However, in this circuit, current flows through this resistor (4) even when it is on, so the on time I'i becomes longer.

その上、MO8型トランジスタ(2)のゲートにかかる
電圧は、ダイオードの開放電圧よりは低い、抵抗(4)
の両端の′重圧となるという欠点がある。
Moreover, the voltage applied to the gate of the MO8 type transistor (2) is lower than the open circuit voltage of the diode, and the voltage applied to the gate of the MO8 type transistor (2) is
The disadvantage is that it puts pressure on both ends of the equation.

〔発明の目的〕[Purpose of the invention]

そこで、本発明は、光起電力素子を用いた電界効果型の
トランジスタの駆動回路において、オフ時間全短縮する
電界効果型トランジスタの駆動回路を提供することを目
的とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a drive circuit for a field effect transistor using a photovoltaic element, in which the off time is completely shortened.

〔発明の開示〕[Disclosure of the invention]

上記目的を達成するために、本発明にかかる電界効果型
のトランジスタの駆動回路は、電界効果型の出力トラン
ジスタ(2)のゲート、ソース間に光起電力素子(1)
全アノードをゲートに対応させて配置すると共にゲート
のしきいち電圧が出力トランジスタ(2)のそrLより
低いノーマリ−オフのMOS型のトランジスタ(4)を
並列に配し、光起電力素子fl)のカソードと該トラン
ジスタ(4)のゲート間に光起電力素子(5)ヲ配して
成ることを特徴とするものである。
In order to achieve the above object, a field effect transistor drive circuit according to the present invention includes a photovoltaic element (1) between the gate and source of a field effect output transistor (2).
All the anodes are arranged to correspond to the gates, and a normally-off MOS transistor (4) whose gate threshold voltage is lower than that of the output transistor (2) is arranged in parallel to form a photovoltaic element (fl). A photovoltaic element (5) is arranged between the cathode of the transistor (4) and the gate of the transistor (4).

以下この発明による電界効果型のトランジスタの駆動回
路全第3図乃至第5図に示す一実施例に基づいて説明す
るう この実施例にも・いてはトランジスタ(4)としてエン
ハ/スメント型のjfO8型O8ンジスタを用いCいる
光起電力素子(1)及び(5)としてはダイオード?使
用し′Cいる。
The field-effect transistor drive circuit according to the present invention will be described below based on an embodiment shown in FIGS. 3 to 5. In this embodiment, an enhancement-type jfO8 is used as the transistor (4). The photovoltaic elements (1) and (5) using type O8 transistors are diodes? It is used.

トランジスタ(4)は充電される電荷の容量が出力トラ
ンジスタ(2)のそnに比して十分小さいものであると
共シこそのゲートのしきいち電圧が出力トランジスタ(
2) 、J:り低いものであゐ。
The transistor (4) has a charge capacity sufficiently small compared to that of the output transistor (2), so that the threshold voltage of the gate of the transistor (4) is sufficiently small compared to that of the output transistor (2).
2) , J: That's very low.

次てこの屯が効果型のトランジスタの駆動回路の動作状
態を説明する。
Next, the operating state of the drive circuit for this effect type transistor will be explained.

まず出力トランジスタ(2)がオンとなる場合を説明す
る。0の場合出力トランジスタ(2)及びトランジスタ
(4)はこの場合の第3図の等価回路として第4図に示
す如くコンデンサー(2)、(4)及び(6)として働
く。
First, a case where the output transistor (2) is turned on will be explained. In the case of 0, the output transistor (2) and transistor (4) function as capacitors (2), (4) and (6) as shown in FIG. 4 as an equivalent circuit of FIG. 3 in this case.

光が光起電力素子(1)と(5)に同時に照射されると
こnに光起電力が生じ、出力トランジスタ(2) K正
這圧が加わり該出力トランジスタ(2)はオンにする。
When the photovoltaic elements (1) and (5) are simultaneously irradiated with light, a photovoltaic force is generated, and a positive voltage is applied to the output transistor (2), turning the output transistor (2) on.

一方トランジスタ(4)のゲートには光起電力素子(5
)に発生した光起電力により負電圧しか加わらないので
ドレイ/とソース間はしゃ断でれている。
On the other hand, a photovoltaic element (5) is connected to the gate of the transistor (4).
) Since only a negative voltage is applied due to the photovoltaic force generated at ), the drain/source is disconnected.

而してトランジスタ(4)は寄生のコンデンサー(4)
及び(6)とl−で働くので光起電力素子(1)の起電
力により出力トランジスタ(2)(コンデンサー(2)
 )及びトランジスタ(4)(コンデンサー(4))は
す4?かに充電される。このときトランジスタ(4)の
容量は出力トランジスタ(2)の容量に比して十分小さ
くなっていて充電完了速度が早いので、出力トランジス
タ)2)の充電時間イ・まトランジスタ(4搬;ない場
合とほとんどかわらず、トランジスタ(4)金剛いたた
めオンとなる動作時間がPそくなることはない。
Therefore, the transistor (4) is a parasitic capacitor (4)
(6) and l-, so the electromotive force of the photovoltaic element (1) causes the output transistor (2) (capacitor (2)
) and transistor (4) (capacitor (4)) 4? Crab is charged. At this time, the capacity of transistor (4) is sufficiently small compared to the capacity of output transistor (2), and the charging completion speed is fast, so the charging time of output transistor (2) is However, since the transistor (4) is hardened, the operating time during which it is turned on does not change much.

次に出力トランジスタ(2)がオフとなる場合を説明す
る。この場合第3図の回路は第5図に示す等価回路とし
て働き出力トランジスタ12)のみがコンデンサーとし
て働く。
Next, a case where the output transistor (2) is turned off will be explained. In this case, the circuit of FIG. 3 acts as the equivalent circuit shown in FIG. 5, and only the output transistor 12) acts as a capacitor.

光をしゃ断するとトランジスタ(4)に貯えらnた容量
の放電が始まる。
When the light is cut off, the capacitance stored in the transistor (4) begins to discharge.

最初トランジスタ(4)はしゃ断状態であるので放電(
流はダイオード(1)を通じて流れるが、ダイオードで
める光起電力素子(1) 、 (5)を流れてトランジ
スタ(4)のゲートに正″亀圧が加える。これによって
トランジスタ(4)は導電状態となりコンデンサーとし
て働く出力トランジスタ(2)の充電さnている゛成苗
はトランジスタ(4)を通じて放電される。
Initially, the transistor (4) is in a cut-off state, so it discharges (
The current flows through the diode (1), passes through the photovoltaic elements (1) and (5) formed by the diode, and applies a positive voltage to the gate of the transistor (4).This makes the transistor (4) conductive. The charged seedlings of the output transistor (2), which acts as a capacitor, are discharged through the transistor (4).

トランジスタ(4)のしきい値電圧は出力トランジスタ
(2)の−f:nより低いので出力トランジスタ(2)
が放電し始めてからトランジスタ(4)がオン状態にな
るまでの時間は項線さfL、この結果出刃トランジスタ
(2)がオフとなるまでの時間は、出力トランジスタt
2) VC充電されていた電荷がダイオード(1)のみ
でなくトランジスタ(4)全通じてすみやかに放電され
ることよりそれだけ短縮されるのである。
Since the threshold voltage of transistor (4) is lower than -f:n of output transistor (2), output transistor (2)
The time from when transistor (4) starts discharging until transistor (4) turns on is the term fL, and as a result, the time until transistor (2) turns off is output transistor t.
2) The charge that had been charged in the VC is quickly discharged not only through the diode (1) but also through the entire transistor (4), which shortens the time accordingly.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明による電界効果型のトランジスタ
の1枢動回路によれば、出力トランジスタランジスタの
ソース、ドレイン間に並列に接続する電界効果型のトラ
ンジスタを使用して放電することができるので従来の如
く光起電力素子としてのダイオードのみより放電する場
合にくらべてはるかに早く放電させることができ、出力
トランジスタ全オフさせるのが迅速なのである。
As described above, according to the field-effect transistor single pivot circuit according to the present invention, discharge can be performed using the field-effect transistor connected in parallel between the source and drain of the output transistor transistor. Compared to the case of discharging only from a diode as a photovoltaic element, the discharge can be performed much faster, and all output transistors can be turned off quickly.

【図面の簡単な説明】[Brief explanation of drawings]

薦1図及び第2図V′i谷々背景技術を説明する電気回
路、第、(図77、至第5図はこの発明の一層施Mを示
す電気回路である。 白奇計出願人 松−ド電工株式会社 代理人弁理士 竹 元 敏 丸 (ほか2名) 第1図 第2図 第4図 第5図
Figures 1 and 2 are electric circuits explaining the background technology, Figures 77 and 5 are electric circuits showing the further implementation of this invention. -Do Denko Co., Ltd. Patent Attorney Toshimaru Takemoto (and 2 others) Figure 1 Figure 2 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] (11[界効果型の出力トランジスタ(2)のゲート、
ソース間に光起電力素子(1)ヲアノードをゲートに対
応させて配tiすると共にゲートのしきいち電圧が出力
トランジスタ(2)のそれより低いノーマリ−オフのM
o s @のトランジスタ(4)全並列に配し、光起電
力素子(1)のカソードと該トランジスタ(4)のゲー
ト間に光起電力素子)5)を配して成ること全特徴とす
る電界効果型のトランジスタの駆動回路。
(11 [Gate of field-effect output transistor (2),
The anode of the photovoltaic element (1) is arranged between the sources so as to correspond to the gate, and the threshold voltage of the gate is lower than that of the output transistor (2).
o s @ transistors (4) are all arranged in parallel, and a photovoltaic element) 5) is arranged between the cathode of the photovoltaic element (1) and the gate of the transistor (4). A field-effect transistor drive circuit.
JP58227937A 1983-11-30 1983-11-30 Driving circuit of field effect transistor Pending JPS60119125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58227937A JPS60119125A (en) 1983-11-30 1983-11-30 Driving circuit of field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58227937A JPS60119125A (en) 1983-11-30 1983-11-30 Driving circuit of field effect transistor

Publications (1)

Publication Number Publication Date
JPS60119125A true JPS60119125A (en) 1985-06-26

Family

ID=16868616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58227937A Pending JPS60119125A (en) 1983-11-30 1983-11-30 Driving circuit of field effect transistor

Country Status (1)

Country Link
JP (1) JPS60119125A (en)

Similar Documents

Publication Publication Date Title
JP3756961B2 (en) Chip initialization signal generation circuit for semiconductor memory device
JPH02303074A (en) Photocoupler device
JPS59172B2 (en) Field effect transistor drive circuit
JP3036423B2 (en) Semiconductor device
EP0523807B1 (en) A method and a controller for switching high voltage using low voltage CMOS transistors
JPS60119125A (en) Driving circuit of field effect transistor
JPH0428226Y2 (en)
CN115167598A (en) Power supply voltage selection circuit
JPS60119126A (en) Driving circuit of field effect transistor
US4525640A (en) High performance and gate having an "natural" or zero threshold transistor for providing a faster rise time for the output
JPS60119127A (en) Driving circuit of field effect transistor
JP3319302B2 (en) Electronic circuit
US4496852A (en) Low power clock generator
JPS60119124A (en) Driving circuit of field effect transistor
JP3036212B2 (en) Protection circuit
US6404273B1 (en) Voltage booster with a low output resistance
JPH0681025B2 (en) Gate drive circuit
JP2009171551A (en) Semiconductor output circuit
JPS60153636A (en) Drive circuit of field effect transistor
JP3429969B2 (en) Bias circuit
JPS5967724A (en) Semiconductor switch circuit
JPH0479172B2 (en)
JPH0661826A (en) Power mos control circuit
JP3024155B2 (en) Inverter circuit
JP2740426B2 (en) Semiconductor relay