JPS60110170A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60110170A
JPS60110170A JP21904783A JP21904783A JPS60110170A JP S60110170 A JPS60110170 A JP S60110170A JP 21904783 A JP21904783 A JP 21904783A JP 21904783 A JP21904783 A JP 21904783A JP S60110170 A JPS60110170 A JP S60110170A
Authority
JP
Japan
Prior art keywords
electrode
dirt
film
region
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21904783A
Other languages
Japanese (ja)
Inventor
Yoshihide Nagakubo
長久保 吉秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21904783A priority Critical patent/JPS60110170A/en
Publication of JPS60110170A publication Critical patent/JPS60110170A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

PURPOSE:To enhance the performance and the integration of a semiconductor device by forming a low density region only in one of the regions to become source and drain regions, thereby preventing the deterioration of the characteristics of an element. CONSTITUTION:After with a control gate electrode 40 laminated on a substrate 31 as a mask As ions are implanted vertically from above. Then, a CVD oxide film 41 is obliquely accumulated on the overall surface, etched obliquely, and the remaining photoresist 41' is formed on the side wall shaded of the electrode 40. Then, with the electrode 40 and the remaining photoresist 41' as masks As ions are implanted in high dosage, the remaining photoresist 41' is then removed, the impurity is activated by a heat treatment, an n type region 42 made of a low density diffused layer 42a and a high density diffused layer 42b adjacent to the layer 42a is formed on one side of the surface of the substrate 31, and an n<+> type region 43 made of high density diffused layer is formed on the other side. Finally, electrodes 45, 46 are formed, and an EPROM cell is manufactured.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置の製造方法に関し、特にソース領域
あるいはドレイン領域のいずれか一方にのみチャネル領
域近傍に低濃度領域が形成されたMO8牛導体装置の製
造方法に係る。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and in particular to an MO8 conductor device in which a low concentration region is formed in the vicinity of a channel region only in either a source region or a drain region. It pertains to the manufacturing method.

〔発明の技術的背・景とその問題点〕[Technical background of the invention and its problems]

近年、MO8半導体装置の微細加工技術の進歩は著しく
、特にスイッチングスピードの改善という観点からチャ
ネル長の短縮化が図られ、高集積化が推し進められてい
る。
In recent years, there has been remarkable progress in microfabrication technology for MO8 semiconductor devices, and in particular, from the viewpoint of improving switching speed, channel lengths are being shortened and higher integration is being promoted.

しかしながら、チャネル長が短かくなるにつれ、ソース
、ドレイン間に印加される電圧が低い場合でもチャネル
領域で電界集中が起こり、素子特性の点で種々の問題が
発生している。
However, as the channel length becomes shorter, electric field concentration occurs in the channel region even when the voltage applied between the source and drain is low, causing various problems in terms of device characteristics.

例えば、イn報の再書換え可能な読出し専用半導体メモ
リ(EPROM 、 Erasable Progra
mmableRead 0nly Memory )の
メモリセルとしては、従来、第1図に示すような構造の
ものが知られている。すなわち、図中1は例えばP型シ
リコン基板であシ、この基板1表面にはフィールド酸化
膜2が形成されている。このフィールド酸化膜2によっ
て囲まれた基板1の素子領域表面には互いに電気的に分
離してn+型ソース、ドレイン領域3,4が形成されて
いる。また、ソース、ドレイン領域3.4間のチャネル
領域上には第1のダート酸化膜5を介してフローティン
グゲート電極6が、更にこのフローティングダート・電
極6上には第2のダート酸化膜7を介してコントロール
ゲ−ト電極8が形成されている。更に、全面には層間絶
縁膜9が堆積されておシ、この層間絶縁膜9上にはそれ
ぞれコンタクトホールを介して前記ソース領域3と接続
するソース電極10及び前記ドレイン領域4と接続する
ドレイン電極11が形成されている。
For example, read-only semiconductor memory (EPROM, Erasable Program
Conventionally, a memory cell having a structure as shown in FIG. That is, 1 in the figure is, for example, a P-type silicon substrate, and a field oxide film 2 is formed on the surface of this substrate 1. On the surface of the element region of the substrate 1 surrounded by the field oxide film 2, n+ type source and drain regions 3 and 4 are formed electrically isolated from each other. Furthermore, a floating gate electrode 6 is formed on the channel region between the source and drain regions 3.4 via a first dirt oxide film 5, and a second dirt oxide film 7 is further formed on this floating dirt electrode 6. A control gate electrode 8 is formed therebetween. Furthermore, an interlayer insulating film 9 is deposited on the entire surface, and on this interlayer insulating film 9, a source electrode 10 is connected to the source region 3 through a contact hole, and a drain electrode is formed to connect to the drain region 4, respectively. 11 is formed.

こうした構成のメモリセルにおいて、情報の書込みはド
レイン電極11及びコントロールゲート電極8に例えば
+20V以上の高電圧を印加し、チャネル領域を流れる
電子によシトレイン領域4の近傍でアバランシェ現象を
起こさせ、一部の電子を第1のケ゛−ト酸化膜5を通し
てフローティングゲート電極6に注入してドラッグさせ
ることによシ行なう。また、情報の読出しはドレイン電
極1ノ及びコントロールゲート電極8に例えば+5v程
度の電圧を印加し、書込みが行なわれているか否かによ
るしきい値電圧の変化に伴うトランジスタのオンあるい
はオフによシ判断する。
In a memory cell having such a configuration, information is written by applying a high voltage of, for example, +20V or more to the drain electrode 11 and the control gate electrode 8, causing an avalanche phenomenon in the vicinity of the strain region 4 by electrons flowing through the channel region. This is done by injecting and dragging electrons into the floating gate electrode 6 through the first gate oxide film 5. To read information, a voltage of about +5V, for example, is applied to the drain electrode 1 and the control gate electrode 8, and the transistor is turned on or off as the threshold voltage changes depending on whether writing is being performed or not. to decide.

ところが、チャネル長が短くなると読み出し時に比較的
低いドレイン電圧(+5V程度)を印加した場合でもチ
ャネル領域に電界集中が起こり、電子は充分加速され、
アバランシェ現象を起こし得るようになる。このため、
本来情報が書込まれていないメモリセルのフローティン
グダート電極6にも電子がドラッグされて情報が書込ま
れたと同様な状態(情報の誤書込み)が発生する。
However, when the channel length becomes short, electric field concentration occurs in the channel region even when a relatively low drain voltage (about +5 V) is applied during readout, and electrons are sufficiently accelerated.
It becomes possible to cause an avalanche phenomenon. For this reason,
A similar situation (erroneous writing of information) occurs when electrons are dragged to the floating dart electrode 6 of a memory cell to which information is originally not written and information is written.

また、従来のMOS )ランノスクは第2図に示すよう
な構造を有している。すなわち、図中21は例えばP型
シリコン基板であシ、この基板21表面にはフィールド
酸化膜22が形成されている。このフィールド酸化膜2
2によって囲まれた基板2ノの素子領域表面には互いに
電気的に分離してn+型ンソー、ドレイン領域23゜2
4が形成されている。また、ソース、ドレイン領域23
.24間のチャネル領域上にはダート酸化膜25を介し
てダート電極26が形成されている。更に、全面には層
間絶縁膜27が堆積されており、この層間絶縁膜27上
にはそれぞれコンタクトホールを介して4iI記ソース
領域23と接続するソース電極28及び前記ドレイン領
域24と接続するドレイン電極29が形成されている。
Further, a conventional MOS (Rannosk) has a structure as shown in FIG. That is, 21 in the figure is, for example, a P-type silicon substrate, and a field oxide film 22 is formed on the surface of this substrate 21. This field oxide film 2
On the surface of the element region of the substrate 2 surrounded by
4 is formed. In addition, the source and drain regions 23
.. A dirt electrode 26 is formed on the channel region between the holes 24 with a dirt oxide film 25 interposed therebetween. Further, an interlayer insulating film 27 is deposited on the entire surface, and on this interlayer insulating film 27, a source electrode 28 is connected to the source region 23 mentioned in 4iI through a contact hole, and a drain electrode is connected to the drain region 24, respectively. 29 is formed.

こうした構造の従来のMOS )ランジスタにおいても
、チャネル長が短くなると、比較的低いドレイン電圧を
印加した場合でもドレイン領域24近勃のチャネル領域
における電界集中によりアバランシェ現象が起こり易く
なる。この結果、ケ・−ト酸化B#、25に電子かトラ
ップされてしきい値電圧が変動する等素子特性の点で問
題が生じる。
Even in a conventional MOS transistor having such a structure, when the channel length becomes short, an avalanche phenomenon tends to occur due to electric field concentration in the channel region near the drain region 24 even when a relatively low drain voltage is applied. As a result, electrons are trapped in the keto oxidation B#, 25, causing a problem in terms of device characteristics such that the threshold voltage fluctuates.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたものであシ、ソース
、ドレイン領域となる領域のいずれか一方にのみ低濃度
領域を設けることにより、チャネル長の短縮に伴うチャ
ネル領域におりる電界集中を緩和させ素子特性の劣化を
防止できる高性能かつ高集積度の半導体装置を製造し得
る方法を提供しようとするものである。
The present invention has been made in view of the above circumstances, and by providing a low concentration region only in one of the regions that will become the source and drain regions, electric field concentration in the channel region due to shortening of the channel length can be reduced. It is an object of the present invention to provide a method for manufacturing a high-performance, highly integrated semiconductor device that can reduce the stress and prevent deterioration of device characteristics.

〔発明の概袂〕[Summary of the invention]

本発明の半導体装置の製造方法は、第1導電型の半導体
基板上にゲート絶縁膜を介して少なくとも一層のダート
電極を形成し、全面に被膜を堆&して刷め方向から異方
性エツチングを用いてエツチングすることによシグート
電極の一側壁に被膜を残存させ、史に被膜の残存した状
態で第2等%型不純物の冒ドーズイオン注入を、被膜の
存在しない状態で第2導を型不純物の低ドーズイオン注
入をそれぞれ行なった後、熱処理によシンース、ドレイ
ン領域となる領域のいずれが一方にのみチャネル領域近
傍に低濃度拡散層が設けられた半導体装置を製造するも
のである。
The method for manufacturing a semiconductor device of the present invention includes forming at least one layer of dirt electrodes on a first conductivity type semiconductor substrate via a gate insulating film, depositing a film on the entire surface, and anisotropic etching from the printing direction. A film was left on one side wall of the Sigut electrode by etching with a silica film, and a high-dose ion implantation of the second equi% type impurity was performed with the film remaining, and a second conductor was implanted in the state where the film was not present. After performing low-dose ion implantation of type impurities, heat treatment is performed to manufacture a semiconductor device in which a low concentration diffusion layer is provided in the vicinity of the channel region only in one of the regions that will become the thin source region and the drain region.

こうした方法によれば、ケ゛−ト電極の一側壁に被膜を
残存させるのにマスク合わせ等の煩雑な工程を追加する
必要がないので、簡便な工程でソース、ドレイン領域と
なる領域のいずれか一方にのみチャネル領域近傍に低濃
度拡散層が設けられた半導体装置を製造することができ
る。
According to this method, it is not necessary to add a complicated process such as mask alignment to leave a film on one side wall of the gate electrode, so that one of the regions that will become the source and drain regions can be coated with a simple process. Only in this way can a semiconductor device in which a low concentration diffusion layer is provided near the channel region be manufactured.

このような半導体装置ではチャネル領域における電界集
中を有効に防止することができるので、例えばEPRO
Mセルにおける誤書込みやMOS )ランジスタにおけ
るしきい値電圧の変動等の素子特性の劣化を防止するこ
とができる。
In such a semiconductor device, electric field concentration in the channel region can be effectively prevented, so for example, EPRO
It is possible to prevent deterioration of device characteristics such as erroneous writing in M cells and fluctuations in threshold voltage in MOS transistors.

〔発明の実施例〕[Embodiments of the invention]

実施例1 以下、本発明をEPROMセルの製造に適用した実施例
を第3図(、)〜(−)を参照して説明する。
Example 1 An example in which the present invention is applied to manufacturing an EPROM cell will be described below with reference to FIGS. 3(-) to (-).

まず、P型シリコン基板31表面に選択酸化法によシフ
イールド酸化膜32を形成する。次に、フィールド酸化
膜32によって囲まれた基板3ノの素子領域表面に第1
の熱酸化膜33を形成した後、全面にフローティングダ
ート電極となる第1の多結晶シリコン膜34を堆積し、
その一部を選択的にエツチングする。つづいて、熱酸化
を行ない第1の多結晶シリコン膜34の表面に第2の熱
酸化膜35を形成した後、全面にコントロールゲート電
極となる第2の多結晶シリコン膜36を堆積する(第3
図(、)図示)。
First, a Schifffield oxide film 32 is formed on the surface of a P-type silicon substrate 31 by selective oxidation. Next, a first layer is formed on the surface of the element region of the substrate 3 surrounded by the field oxide film 32.
After forming a thermal oxide film 33, a first polycrystalline silicon film 34, which will become a floating dirt electrode, is deposited on the entire surface.
Part of it is selectively etched. Next, thermal oxidation is performed to form a second thermal oxide film 35 on the surface of the first polycrystalline silicon film 34, and then a second polycrystalline silicon film 36, which will become a control gate electrode, is deposited on the entire surface (the first 3
Figure(,)Illustrated).

次いで、第2の多結晶シリコン膜36、第2の熱酸化膜
35、第1の多結晶シリコン膜34及び第1の熱酸化膜
33を順次ノやターニングすることによシ、基板3ノ上
に第1のゲート酸化*syを介してフローティングゲー
ト電極38を、更にンローティングダート電極38上に
第2のダート酸化膜39を介してコントロールゲート電
極40を形成する。っづい−c1基板31上に積層され
たコントロールダート電& 4 o等をマスクとして鉛
直上方からリン又は砒素を約5X10 cTn 程度の
低ドーズ量でイオン注入する(同図(b)図示)。
Next, the second polycrystalline silicon film 36, the second thermal oxide film 35, the first polycrystalline silicon film 34, and the first thermal oxide film 33 are sequentially etched and turned to form a surface on the substrate 3. Then, a floating gate electrode 38 is formed via a first gate oxide *sy, and a control gate electrode 40 is further formed on the floating dirt electrode 38 via a second dirt oxide film 39. Phosphorus or arsenic is ion-implanted from vertically above at a low dose of about 5×10 cTn using a control dart electrode layered on the substrate 31 as a mask (as shown in FIG. 3(b)).

次いで、全面に厚さ2000XのCVD 酸化膜4ノ(
図中破線で図示)を堆積した後、異方性エツチングを用
いてこのCVD酸化膜4ノを斜め方向カラエツチングし
、コントロールゲート電極40等の陰になった一側壁に
残存CVD酸化膜41’を形成する(同図(c)図示)
。つづいて、基板31上に積層されたコン)o−ルグー
ト電極40等及び残存CVD酸化膜4ノをマスクとして
ソース、ドレイン形成のために砒素を 3X10 cm 程度の高ドーズ量でイオン注入する(
同図(d)図示)。
Next, a 4-layer CVD oxide film with a thickness of 2000× is applied to the entire surface (
After depositing the CVD oxide film 4 (indicated by the broken line in the figure), this CVD oxide film 4 is diagonally color-etched using anisotropic etching, and the remaining CVD oxide film 41' is formed on one side wall that is in the shadow of the control gate electrode 40, etc. (Illustrated in the same figure (c))
. Next, arsenic is ion-implanted at a high dose of about 3 x 10 cm to form sources and drains using the contact electrodes 40 and the remaining CVD oxide film 4 stacked on the substrate 31 as masks.
Figure (d) shown).

次いで、前記残存CVD酸化膜41′を除去した後、熱
処理によシネ鈍物を活性化し、フローティングゲート電
極38等の一側方の基板31表面にチャネル領域近傍の
低濃度(n型)拡散層42a(不純物濃度約10” c
m−5)とこれに隣接する高濃度(n+型)拡散層42
b(不純物磯度1019〜10 crn )とからなる
n型幀域42を、フローティングゲートljL#A’3
8等の他側方の基板用表面に高濃度(n+型)拡散層(
不純物濃度1019〜10 儒 )からなるn壓領域4
3をそれぞれ形成する。つづいて、全面に層間絶縁膜4
4を堆積した後、コンタクトホールを開孔する。つづい
て、全面にAノ膜を黒石した後、・クターニングして電
極45.46を形成し、EPROMセルを製造する(同
図(e)図示)。
Next, after removing the remaining CVD oxide film 41', the cine film is activated by heat treatment to form a low concentration (n-type) diffusion layer near the channel region on the surface of the substrate 31 on one side of the floating gate electrode 38, etc. 42a (impurity concentration approximately 10”c
m-5) and the adjacent high concentration (n+ type) diffusion layer 42
b (impurity level 1019 to 10 crn) is connected to the floating gate ljL#A'3.
A high concentration (n+ type) diffusion layer (
n area 4 consisting of an impurity concentration of 1019 to 10
3 respectively. Next, an interlayer insulating film 4 is applied to the entire surface.
After depositing 4, a contact hole is formed. Subsequently, after coating the entire surface with an A film, electrodes 45 and 46 are formed by cutting, and an EPROM cell is manufactured (as shown in FIG. 4(e)).

第3図(、)図示のapuoMセルにおいて、情報の書
込みを行なう場合には一方のn型領域43をドレイン領
域、他方のn型領域42をソース領域としてそれぞれ使
用する。すなわち、電極45をドレイン電極、電極46
をソース電極とし、(ドレイン)電極45及びコントロ
ールダート電極40に高電圧を印加する。この場合、チ
ャネル領域における電位はソース領域ずなわちn型領域
42の電位と等しいか、もしくは極めて近い値の電位に
なる。このため、ソース、ドレイン間の電界は集中的に
ドレイン領域すなわち層型領域43の近傍のチャネル領
域で強くなり、この部分でアバランシェ現象によるホッ
トキャリア(電子、ホール対)の発生及びフローティン
グダート電極38への電子の注入が起こり、情報の書込
みが行なわれる。
In the apuoM cell shown in FIG. 3(a), when writing information, one n-type region 43 is used as a drain region, and the other n-type region 42 is used as a source region. That is, the electrode 45 is a drain electrode, and the electrode 46 is a drain electrode.
is used as a source electrode, and a high voltage is applied to the (drain) electrode 45 and the control dirt electrode 40. In this case, the potential in the channel region is equal to or very close to the potential in the source region, that is, the n-type region 42. Therefore, the electric field between the source and the drain becomes intensively strong in the drain region, that is, the channel region near the layered region 43, and in this region, hot carriers (electron, hole pairs) are generated due to the avalanche phenomenon and the floating dart electrode 38 Electrons are injected into the memory, and information is written.

一方、情報の読出しを行なう場合には、情報書込み時と
は逆に一方のn+型領領域43ソース領域、他方のn型
領域42をドレイン領域としてそれぞれ使用する。すな
わち、電極45をソース電極、電極46をドレイン電極
とし、ソース、ドレイン間に例えば+5vを印加すると
ともにコントロールゲート電極40に例えば+5vを印
加してしきい値電圧vTHの変化に伴うトランジスタの
オン、オフによシ情報が読出される。
On the other hand, when reading information, one n+ type region 43 is used as a source region and the other n type region 42 is used as a drain region, contrary to when writing information. That is, the electrode 45 is used as a source electrode and the electrode 46 is used as a drain electrode, and +5V, for example, is applied between the source and drain, and +5V, for example, is applied to the control gate electrode 40 to turn on the transistor as the threshold voltage vTH changes. The off information is read out.

このとき、ドレイン領域となるn型領域42にはチャネ
ル領域近傍に低濃度(n型)拡散層42aが設けられて
いるので、ソース、ドレイン間に印加される電圧の一部
をこの領域で受け持つことができる。このためドレイン
領域近傍のチャネル領域に集中する電界を著しく弱める
ことができる。
At this time, since a low concentration (n-type) diffusion layer 42a is provided in the n-type region 42 which becomes the drain region near the channel region, this region takes charge of part of the voltage applied between the source and the drain. be able to. Therefore, the electric field concentrated in the channel region near the drain region can be significantly weakened.

第4図及び第5図(a) 、 (b)を参照して更に詳
細に上記実施例及び従来のEFROMセルの読出し時に
おけるドレイン領域近傍のチャネル領域での電界を比較
する。
Referring to FIGS. 4 and 5(a) and 5(b), the electric field in the channel region near the drain region during reading of the above embodiment and the conventional EFROM cell will be compared in more detail.

第4図は情報読出し時にドレイン領域付近に発生する空
乏層を示す説明図である。図中斜線を施した領域が上記
実施例のEFROMセルで発生する空乏層47であシ、
低濃度(n型)拡散層42aとチャネル領域との境界面
の両側に延びた状態となる。この際、!、昇の分布状態
は第5図(、)に示すようになる。
FIG. 4 is an explanatory diagram showing a depletion layer generated near the drain region during information reading. The shaded region in the figure is the depletion layer 47 generated in the EFROM cell of the above embodiment.
It extends to both sides of the interface between the low concentration (n-type) diffusion layer 42a and the channel region. On this occasion,! , the distribution state of the rise is as shown in FIG. 5 (,).

これに対して、低濃度(n型)拡散層42aを設けない
場合(第1図に示す従来のEFROMセルに対応する)
、空乏層は第4図中一点鎖線に示す領域、すなわちチャ
ネル領域側にのみ発生する。これは高濃度(n十型)拡
散層42bの濃度が高<、olは金属と同じ性質をもっ
ためである。この際、電界の分布状態は第5図(b)に
示すようになる。
On the other hand, when the low concentration (n-type) diffusion layer 42a is not provided (corresponding to the conventional EFROM cell shown in FIG. 1)
, the depletion layer is generated only in the region shown by the dashed line in FIG. 4, that is, on the channel region side. This is because the concentration of the high concentration (n+ type) diffusion layer 42b is high and ol has the same properties as metal. At this time, the distribution state of the electric field becomes as shown in FIG. 5(b).

第5図(a)及び(b)よシ、ソース、ドレイン間の電
位差が同じであれば、電界のピーク値は分布の広い同図
(、)の方が同図(b)のものよシ低くなることは明ら
かでるる。すなわち、ドレイン領域の一部として低濃度
(n型)拡散層42aを設けることによって、ドレイン
領域近傍のチャネル領域に集中する電界を著しく弱める
ことができる。したがって、この領域におけるア/、e
ランシェ現象によるホットキャリアの発生が抑制され、
情報の誤書込みを防止することができるOまた、情報読
出し時に誤書込みの起こるおそれがないため、チャネル
長を充分に短くすることができ、これによって情報書込
み時の書込み効率が高められる。したがって、情報書込
み時に印加すべきドレイン電圧、コントロールゲート電
圧等の書込み電圧の値を従来よシも低減化することがで
き、例えば情報書込み時に印加する電圧及び情報読出し
時に印加する電圧をともに+5v程度とすることができ
る。
As shown in Figure 5 (a) and (b), if the potential difference between the source and drain is the same, the peak value of the electric field in Figure 5 (,) has a wider distribution than that in Figure 5 (b). It is obvious that it will be lower. That is, by providing the low concentration (n-type) diffusion layer 42a as a part of the drain region, the electric field concentrated in the channel region near the drain region can be significantly weakened. Therefore, a/, e in this area
The generation of hot carriers due to the Lanchet phenomenon is suppressed,
Erroneous writing of information can be prevented.Furthermore, since there is no risk of erroneous writing occurring when reading information, the channel length can be made sufficiently short, thereby increasing the writing efficiency when writing information. Therefore, the values of write voltages such as the drain voltage and control gate voltage that should be applied when writing information can be reduced compared to conventional methods. For example, the voltages that are applied when writing information and the voltages that are applied when reading information are both about +5V. It can be done.

以上説明したように本発明方法では第3図(e)の工程
でCVD酸化膜41を堆撹した後、異方性エツチングを
用いて斜め方向からエツチングすることによシコントロ
ールゲート電極40、乙ローティングゲート電極38等
の一側壁に残存CVD酸化膜41′を形成できることを
利用し、同図(b)の工程におけるコントロールゲート
電極40等をマスクとする低ドーズイオン注入と、同図
(d)の工程におけるコントロールグー)を極40等及
び残存CVD酸化膜41′をマスクとする為ドーズイオ
ン注入によシ、写真蝕刻法のようなマスク合わせ等煩雑
な工程を追加することなく、上記のような高性能かつ高
集積度のEPROMセルを製造することができる。
As explained above, in the method of the present invention, after the CVD oxide film 41 is deposited in the step shown in FIG. 3(e), the control gate electrode 40 and the Taking advantage of the fact that the remaining CVD oxide film 41' can be formed on one side wall of the floating gate electrode 38, etc., low-dose ion implantation using the control gate electrode 40, etc. as a mask in the process of FIG. ) Since the electrode 40, etc. and the remaining CVD oxide film 41' are used as a mask, the control method in the process of ) is performed by dose ion implantation. It is possible to manufacture high-performance, high-density EPROM cells.

実施例2 以下、本発明をnチャネルMO8)ランジスタの製造に
適用した実施例を第6図(a)〜(d)を参照して説明
する。
Embodiment 2 Hereinafter, an embodiment in which the present invention is applied to the manufacture of an n-channel MO8) transistor will be described with reference to FIGS. 6(a) to 6(d).

まず、P型シリコン基板51表面に選択酸化法によりフ
ィールド酸化膜52を形成した後、常法に従い、フィー
ルド酸化膜52によって囲まれた基板5ノの素子領域上
にダート酸化膜53を介してダート電極54を形成する
。次に、f−)を極54をマスクとして例えば砒素をド
ーズ量的5 X 1012cm−2程度の低ドーズ量で
イオン注入する(第6図(a)図示)。
First, a field oxide film 52 is formed on the surface of a P-type silicon substrate 51 by selective oxidation, and then a dirt oxide film 53 is formed on the element region of the substrate 5 surrounded by the field oxide film 52 using a conventional method. Electrodes 54 are formed. Next, using the pole 54 as a mask, ions of arsenic, for example, are implanted at a low dose of about 5.times.10@12 cm@-2 (as shown in FIG. 6(a)).

次いで、全面に厚さ2000XのCVD酸化膜55(図
中破線で図示)を堆積した後、異方性エツチングを用い
てこのCVD酸化膜55を斜め方向エツチングし、ダー
ト電極54の陰になった一側壁に残存CVD酸化膜55
を形成する(同図(b)図示)。つづいて、ダート電極
5・4及び残存CVD酸化膜55をマスクとしてソース
、ドレイン形成のために砒素を3 X 1015cm−
2程度の高ドーズ量でイオン注入する(同図(c)図示
)。
Next, after depositing a CVD oxide film 55 (indicated by a broken line in the figure) with a thickness of 2000X on the entire surface, this CVD oxide film 55 was etched diagonally using anisotropic etching, so that it was in the shadow of the dirt electrode 54. Residual CVD oxide film 55 on one side wall
(Illustrated in Figure (b)). Next, using the dirt electrodes 5, 4 and the remaining CVD oxide film 55 as a mask, arsenic was applied at 3 x 1015 cm to form sources and drains.
Ion implantation is performed at a high dose of about 2 (as shown in FIG. 2(c)).

次いで、前記残存CVD酸化膜55′を除去した後、熱
処理によシネ鈍物を活性化し、ダート′電極54の一側
方の基板51表面にチャネル領域近傍の低濃度(n型)
拡散層56a(不純物疲度約10” cm−’ )とこ
れに隣接する高濃度(n”ff1)拡散層56b(不純
物濃度1019〜1020crn−2)とからなるn型
ドレイン領域56を、ダート電極54の他側方の基板5
1衣面に高濃度(n+8!り拡散層からなる層型ソース
領域57をそれぞれ形成する。つづいて、全面に層間絶
縁膜58を堆積した後、コンタクトホールな開孔する。
Next, after removing the remaining CVD oxide film 55', the cine film is activated by heat treatment, and a low concentration (n-type) film is formed on the surface of the substrate 51 on one side of the dart' electrode 54 near the channel region.
An n-type drain region 56 consisting of a diffusion layer 56a (impurity fatigue level of about 10"cm-') and an adjacent high concentration (n"ff1) diffusion layer 56b (impurity concentration 1019 to 1020 crn-2) is connected to a dirt electrode. Substrate 5 on the other side of 54
A layered source region 57 consisting of a high concentration (n+8!) diffusion layer is formed on each surface. Subsequently, an interlayer insulating film 58 is deposited on the entire surface, and then a contact hole is formed.

つづいて、全面にA/膜を蒸着した後、/リーニングし
てソース電極59及びドレイン電極60を形成し、nチ
ャネルMO3)ランジスタを製造する(同図(d)図示
)。
Subsequently, after depositing an A/film on the entire surface, a/leaning is performed to form a source electrode 59 and a drain electrode 60, thereby manufacturing an n-channel MO3) transistor (as shown in FIG. 4(d)).

第6図(d)図示のMOS )ランジスタでは、上記実
施例1について第4図及び第5図(、) 、 (b)を
用いて説明したのと同様に、ドレイン領域56のチャネ
ル領域近傍に低濃度(n型)拡散層56mを設けている
ので、ドレイン領域56近傍のチャネル領域における電
界集中を防止することができ、微細MO8)ランジスタ
のしきい値電圧の変動等の素子特性の劣化を防止するこ
とができる。
In the MOS transistor shown in FIG. 6(d), in the same manner as described with reference to FIGS. Since the low concentration (n-type) diffusion layer 56m is provided, it is possible to prevent electric field concentration in the channel region near the drain region 56, and to prevent deterioration of device characteristics such as fluctuations in threshold voltage of micro MO8) transistors. It can be prevented.

また、ソース、ドレイン領域を両方ともチャネル領域近
傍の低濃度拡散層とこれに隣接する画濃度拡散層とで構
成したいわゆるLDD(Lightly Doped 
Drain and 5ource )構造のMOS 
)ランジスタではソース領域側の低濃度拡散層が相互コ
ンダクタンス(Um )を低下させる原因となるが、第
6図(d)図示のMOS )ランジスタではソース領域
67にはチャネル領域近傍に低濃度拡散層が形成されて
いないので、相互コンダクタンス(g )の低下を回避
することかできる。
In addition, a so-called LDD (Lightly Doped Diode) is used in which both the source and drain regions are composed of a low concentration diffusion layer near the channel region and an image concentration diffusion layer adjacent to this.
Drain and 5source) structure MOS
) In the transistor, the low concentration diffusion layer on the source region side causes a decrease in mutual conductance (Um), but in the MOS transistor shown in FIG. 6(d), the source region 67 has a low concentration diffusion layer near the channel region. Since no is formed, a decrease in mutual conductance (g) can be avoided.

以上説明したように本発明方法では写真蝕刻法のマスク
会わせ等の煩雑な工程を追加することなく、高性能かつ
尚集積度の?+408 )ランジスクを製造することが
できる0 なお、上記実施例1では低ドーズイオン注入を第3図t
bJの工程でコントロールゲ−ト電極40等をパターニ
ングした後にイラなうたが、低ドーズイオン注入は残存
CVD酸化膜41′を除去した後に行なってもよい。1
だ、残存CVD酸化膜41は除去しなくともよいが、こ
の場合は低ドーズイオン注入はコントロールゲート電極
40等のパターニング仮に行なうこと13勿論である。
As explained above, the method of the present invention achieves high performance and high integration without adding complicated steps such as mask alignment in photolithography. +408) It is possible to manufacture a run disk.0 In the above-mentioned Example 1, low-dose ion implantation was performed as shown in Fig. 3 t.
Although it may be annoying after patterning the control gate electrode 40 and the like in the bJ process, low-dose ion implantation may be performed after removing the remaining CVD oxide film 41'. 1
However, it is not necessary to remove the remaining CVD oxide film 41, but in this case, low-dose ion implantation is of course performed temporarily for patterning the control gate electrode 40 and the like.

1δ」様に、上記実施例2における低ド−ズイオン注入
は残存CVD酸化膜55を除去した後に行なってもよい
。また、残存CVD y化膜55は除去しなくともよい
1.delta.'', the low-dose ion implantation in the second embodiment may be performed after the remaining CVD oxide film 55 is removed. Further, the remaining CVD y-oxide film 55 does not need to be removed.

また、上記実施例1及び2ではり・”−計電極等の一側
壁に残存させる被膜としてCVD5i1化膜を用いたが
、被膜として鉱ケ゛−ト@極等に対して選択エツチング
性を有するものであればよく、PSG ! −t BS
G腺等の絶縁膜でもよいし、AJ等の金属でもよい。た
だし、これらの被膜を残存させておくと索子特性を劣化
させるおそれがあるので、最終的には除去することが望
ましい。
In addition, in Examples 1 and 2 above, a CVD 5i1 film was used as a coating to remain on one side wall of the beam/meter electrode, etc., but a coating that has selective etching properties with respect to mineral cast@electrodes, etc. That's fine, PSG!-t BS
It may be an insulating film such as G gland or a metal such as AJ. However, if these coatings remain, they may deteriorate the cord characteristics, so it is desirable to remove them eventually.

更に、以上の説明ではnチャネルのEPROMセル及び
MOS トランジスタについて述べだが、pチャネルの
ものでも同様な効果を得ることができる。
Furthermore, although the above description has been made regarding n-channel EPROM cells and MOS transistors, similar effects can be obtained with p-channel ones.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明の半導体装置の製造方法によれ
ば、チャネル長の短縮化に伴う素子特性の劣化のない高
性能かつ高集積度の半導体装置を製造できるものである
As described in detail above, according to the method of manufacturing a semiconductor device of the present invention, it is possible to manufacture a high performance and highly integrated semiconductor device without deterioration of device characteristics due to shortening of channel length.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のEPROMセルの断面図、第2図は従来
のMOS )ランマスタの断面図、第3図(、)〜(、
)は本発明の実施例1におけるEPROMセルの親端方
法を示す断面図、第4図は本発明の実施例1において製
造されるEPROMセルの読出し時に発生する空乏層の
説明図、第5図(a)及び(b)はそれぞれ本発明の実
施例1及び従来のEPROMセルの電界の分布状態図、
第6図(、)〜(d)は本発明の実施例2におけるMO
S )ランジスタの製造方法を示す断面図である。 31.51・・・P型シリコン基板1.? 2 、52
・・・フィールド酸化膜、33・・・第1の熱酸化膜、
34・・・第1の多結晶シリコン膜、35・・・第2の
熱酸化膜、36・・・第2の多結晶シリコン膜、37・
・・第1のダート酸化膜、38・・・フローティングゲ
ート電極、39・・・第2のゲート酸化膜、40・・・
コントロールゲート電極、4ノ・・・CVD 酸化膜、
4ノ・・・残存CVD 酸化膜、42a・・・低濃度(
n型)拡散層、42b・・・高濃度(n型)拡散層、4
2・・・n型領域、43・・・n型領域、44・・・層
間絶縁膜、45.46・・・電極、47・・・空乏層、
53・・・ゲート酸化膜、54・・・ダート電極、55
・・・CVD酸化膜、55・・・残存CVD酸化膜、5
6a・・・低濃度(n型)拡散層、56b・・・高濃度
(nl)拡散層、56・・・ドレイン領域、57・・・
ソース領域、58・・・層間絶縁膜、59・・・ソース
電極、60・・・ドレイン電極。
Fig. 1 is a cross-sectional view of a conventional EPROM cell, Fig. 2 is a cross-sectional view of a conventional MOS () run master, and Fig. 3 (, ) to (,
) is a sectional view showing the parent end method of the EPROM cell in Example 1 of the present invention, FIG. 4 is an explanatory diagram of a depletion layer generated during reading of the EPROM cell manufactured in Example 1 of the present invention, and FIG. (a) and (b) are electric field distribution diagrams of Example 1 of the present invention and a conventional EPROM cell, respectively;
FIG. 6(,) to (d) are MO in Example 2 of the present invention.
S) It is a sectional view showing a method of manufacturing a transistor. 31.51...P-type silicon substrate 1. ? 2, 52
...field oxide film, 33...first thermal oxide film,
34... First polycrystalline silicon film, 35... Second thermal oxide film, 36... Second polycrystalline silicon film, 37.
...First dirt oxide film, 38... Floating gate electrode, 39... Second gate oxide film, 40...
Control gate electrode, 4th...CVD oxide film,
4...Residual CVD oxide film, 42a...Low concentration (
n-type) diffusion layer, 42b...high concentration (n-type) diffusion layer, 4
2...n-type region, 43...n-type region, 44...interlayer insulating film, 45.46...electrode, 47...depletion layer,
53... Gate oxide film, 54... Dirt electrode, 55
...CVD oxide film, 55...Residual CVD oxide film, 5
6a...Low concentration (n type) diffusion layer, 56b...High concentration (NL) diffusion layer, 56...Drain region, 57...
Source region, 58... Interlayer insulating film, 59... Source electrode, 60... Drain electrode.

Claims (3)

【特許請求の範囲】[Claims] (1)第1導電型の半導体基板上にり′−ト絶縁膜を介
して少なくとも一層のダート電極を形成する工程と、全
面に被膜ケ堆積した後、斜め方向から異方性エツチング
により該被膜をエツチングし、前記ゲート電極の一側壁
に被膜を残存させる工程と、前記ダート電極及び残存し
た被膜をマスクとして高ドーズ量で第2導電型の不純物
をイオン注入する工程と、前記ゲート電極を形hZ L
だ後、又は残存した被iを除去した後、ゲート電極をマ
スクとして低ドーズ賞で第2導電製の不純物ケイオン注
入する工程と、熱処理によシネ軸物を活性化し、前記ダ
ート電極の一側方の基板表面にチャネル領域近傍の低濃
度拡散層とこれにv4接する高濃度拡散層とからなる第
2導1!型領域を、前記ダート電極の他側方の基板表面
に高濃度拡散層からなる第2等電屋領域をそれぞれ形成
する工程とを具備したことを特徴とする半導体装置の製
造方法。
(1) Forming at least one layer of dirt electrodes on a semiconductor substrate of the first conductivity type through a thin insulating film, and after depositing a film on the entire surface, the film is anisotropically etched from an oblique direction. etching to leave a film on one side wall of the gate electrode; a step of ion-implanting a second conductivity type impurity at a high dose using the dirt electrode and the remaining film as a mask; and shaping the gate electrode. hZ L
After that, or after removing the remaining particles, a second conductive impurity silicon ion is implanted at a low dose using the gate electrode as a mask, and the cine material is activated by heat treatment, and one side of the dirt electrode is implanted. A second conductor 1! is formed on the surface of the substrate, consisting of a low concentration diffusion layer near the channel region and a high concentration diffusion layer v4 in contact with the low concentration diffusion layer. 1. A method of manufacturing a semiconductor device, comprising the steps of: forming a mold region; and forming a second electrical region made of a high concentration diffusion layer on the surface of the substrate on the other side of the dirt electrode.
(2)半導体基板上にダート絶縁膜を介してダート電極
を形成し、MOSトランジスタを製造することを特徴と
する特許請求の範囲第1項記載の半導体装置の製造方法
(2) A method for manufacturing a semiconductor device according to claim 1, characterized in that a dirt electrode is formed on a semiconductor substrate via a dirt insulating film to manufacture a MOS transistor.
(3)半導体基板上に記1のデート絶縁膜を介して第1
のダート電極を形成し、史に該第1のゲート電極上に第
2のダート絶縁膜を介して第2のり゛−ト電極を形成し
、FROMセルを製造することを特徴とする特許請求の
範囲第1項記載の半導体装置の製造方法。
(3) The first film is placed on the semiconductor substrate via the date insulating film described in 1 above.
A dirt electrode is formed on the first gate electrode, and a second dirt electrode is formed on the first gate electrode via a second dirt insulating film to manufacture a FROM cell. A method for manufacturing a semiconductor device according to scope 1.
JP21904783A 1983-11-21 1983-11-21 Manufacture of semiconductor device Pending JPS60110170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21904783A JPS60110170A (en) 1983-11-21 1983-11-21 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21904783A JPS60110170A (en) 1983-11-21 1983-11-21 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60110170A true JPS60110170A (en) 1985-06-15

Family

ID=16729422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21904783A Pending JPS60110170A (en) 1983-11-21 1983-11-21 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60110170A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0323673A (en) * 1989-06-09 1991-01-31 Internatl Business Mach Corp <Ibm> Field-effect transistor having asymmetric structure and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0323673A (en) * 1989-06-09 1991-01-31 Internatl Business Mach Corp <Ibm> Field-effect transistor having asymmetric structure and manufacture thereof

Similar Documents

Publication Publication Date Title
JP3049492B2 (en) MOSFET and manufacturing method thereof
JPS6318867B2 (en)
JPH06196658A (en) Semiconductor memory and its preparation
JP2008270838A (en) Method of erasing charge from electrical path and floating gate of memory cell
JPH0418711B2 (en)
JP3057439B2 (en) Method for manufacturing semiconductor device
JPS6255710B2 (en)
JPS60110170A (en) Manufacture of semiconductor device
JP3194162B2 (en) MOS FET manufacturing method
US7429512B2 (en) Method for fabricating flash memory device
JP3462886B2 (en) Semiconductor device
JPH04118973A (en) Manufacture of semiconductor device
JP2858622B2 (en) Semiconductor device
JP2595058B2 (en) Manufacturing method of nonvolatile semiconductor memory device
JPS60110167A (en) Manufacture of semiconductor device
JPH0147905B2 (en)
JPH06120516A (en) Non-volatile memory and manufacturing method thereof
JPS60110169A (en) Manufacture of semiconductor device
JP2880885B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JPS60110171A (en) Manufacture of semiconductor memory
JPH0642547B2 (en) Nonvolatile semiconductor memory and manufacturing method thereof
JPH05347418A (en) Semiconductor memory and its manufacture and its erasing method
JPS62101074A (en) Semiconductor device
JPS60110168A (en) Manufacture of semiconductor device
JP2858623B2 (en) Semiconductor device and manufacturing method thereof