JPS60108376A - Bonded body of nitride ceramic and metal - Google Patents

Bonded body of nitride ceramic and metal

Info

Publication number
JPS60108376A
JPS60108376A JP21351183A JP21351183A JPS60108376A JP S60108376 A JPS60108376 A JP S60108376A JP 21351183 A JP21351183 A JP 21351183A JP 21351183 A JP21351183 A JP 21351183A JP S60108376 A JPS60108376 A JP S60108376A
Authority
JP
Japan
Prior art keywords
metal
bonded body
nitride
metals
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21351183A
Other languages
Japanese (ja)
Other versions
JPH0357070B2 (en
Inventor
中橋 昌子
霜鳥 一三
博光 竹田
山崎 達雄
白兼 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21351183A priority Critical patent/JPS60108376A/en
Publication of JPS60108376A publication Critical patent/JPS60108376A/en
Publication of JPH0357070B2 publication Critical patent/JPH0357070B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は窒化物セラミックスと金1萬の接合体の改良に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an improvement in a bonded body of nitride ceramics and 10,000 gold.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

最近、セラミックス梠料がその俊れた諸的性から構造材
料1機能材料等広い分野で利用されている。その多くの
場合はセラミックス11i体で部品を構成しているが、
より多くの分野でセラミックスを利用するためには、金
属と接合可能であることが必要である。この場合、構造
部品であれば十分な接合強度が要求され、一方機能部品
であれば接合界面で連続性等が要求される。
Recently, ceramic materials have been used in a wide range of fields such as structural materials and functional materials due to their excellent properties. In many cases, the parts are composed of ceramic 11i bodies,
In order to use ceramics in more fields, it is necessary that they can be bonded to metals. In this case, if it is a structural component, sufficient bonding strength is required, while if it is a functional component, continuity or the like is required at the bonding interface.

しかしながら、セラミックスと金属は夫々異なった原子
結合状態を有し、このだめ金属とセラミックスを接合す
る場合、それらの反応性などの化学的性質、熱膨張率、
電気伝専度などの物理的性質は大きく異なる。したがっ
て1両部材を良好にr、7.+らし、イ^頼性の高い 
金的な接合を行なうことは相当困ρ准である。
However, ceramics and metals have different atomic bonding states, and when joining metals and ceramics, their chemical properties such as reactivity, thermal expansion coefficient,
Physical properties such as electrical conduction characteristics vary greatly. Therefore, both members are well r, 7. + Highly reliable
It is quite difficult to perform metal bonding.

ところで、従来よりセラミックスと金属を接合する方法
の一つとして活性金属を用いる方法(米国特約2,85
7,663)が知られている。この方法はT i 、 
Zrなどの活性金属がCu 、 N +などの九移金鴇
との合金におい足、その融点を数百C1も低下する4f
実を利用して金属とアルミナ、フォルステライト、ベリ
リア。
By the way, one of the conventional methods for joining ceramics and metals is the method of using active metals (U.S. Special Regulations 2,85
7,663) is known. This method is T i ,
When active metals such as Zr are alloyed with metals such as Cu and N+, their melting point decreases by several hundred C1.
Metals and alumina, forsterite, and beryllia are produced using fruits.

ヅルコニアなどの酸化物セラミックスを接合する方法で
ある。
This is a method for joining oxide ceramics such as zirconia.

しかしながら、上述した方法にょシセラミックスー金属
の接合体、特にA7!NやS輸N4などの窒化物セラミ
ックスとCuやNIなどの金属の接合体を造った場合、
その接合体に熱衝撃を加えると、それらの熱膨張差に起
因する熱応力が発生し、窒化物セラミックスにクランク
が発生するという欠点があった。即ち、下記表に示す如
く通常の酸化物セラミックスの熱膨張係数は8.6 X
 10−’/’C,〜l 3.5X10 ”6/’C,
−C’l> 、u 。
However, the method described above does not apply to ceramic-metal bonded bodies, especially A7! When a bonded body of nitride ceramics such as N or S-N4 and metals such as Cu or NI is made,
When a thermal shock is applied to the bonded body, thermal stress is generated due to the difference in thermal expansion between the bonded bodies, which has the drawback of causing cranks in the nitride ceramics. That is, as shown in the table below, the coefficient of thermal expansion of ordinary oxide ceramics is 8.6
10-'/'C, ~l 3.5X10 "6/'C,
−C′l>, u.

A I NIS i、N4CD熱膨張係数が夫々約5X
10−’/ ’C,,2,5X l O−’/C,と比
較シテ大きく。
A I NIS i, N4CD thermal expansion coefficient is approximately 5X each
Compared to 10-'/'C, 2,5X l O-'/C, it is much larger.

Cu+Feの熱膨張係数に近い値を示す。このため、窒
化物セラミックスとCuやFCなどの接合体には酸化物
セラミックスと金属の接合体に比べて大きな熱応力が発
生し、セラミックスにクランクが発生し易くなる。
It shows a value close to the thermal expansion coefficient of Cu+Fe. Therefore, greater thermal stress occurs in a bonded body of nitride ceramics and Cu, FC, etc. than in a bonded body of oxide ceramics and metal, making the ceramic more susceptible to cranking.

このようなことから、活性金11為を含むろう松とろう
祠の間に延性に冨む(、l u、 Cu合金。
For this reason, there is a ductility between the wax pine and the wax pine containing active gold 11 (,lu, Cu alloy.

Alなどの金1i4 R仮を介在させ、該ろう+aと金
属薄板を点溶接して一体化した接合(す科を用いて窒化
物セラミックスと合鴨を接合する方法(特開昭56−1
63093)か提案されでいる。また、活性金属を含む
ろシ材をセラミックス及び金属の母相に拡散してなる接
合体も開発され又いる。しかしながら、これらの方法等
は複雑な工程や長時間の熱処理を伴なう問題があった。
A method of joining nitride ceramics and amalgamated duck using a metal plate (Japanese Unexamined Patent Application Publication No. 1983-111) where the solder +a and a metal thin plate are spot-welded and integrated by intervening gold 1i4R such as Al (Japanese Unexamined Patent Publication No. 56-1
63093) has been proposed. Furthermore, a bonded body in which a filter material containing an active metal is diffused into a ceramic and metal matrix has also been developed. However, these methods have problems involving complicated steps and long-time heat treatment.

このため、より簡略化された工程で製造でき、かつ接合
強度か市〈熱応力を緩和し得る窒化物セラミックスと遷
移金属との接合体が切望されている。
For this reason, there is a strong need for a bonded body of nitride ceramics and transition metals that can be manufactured through a simpler process and that can improve bonding strength and alleviate thermal stress.

〔発明の目的〕[Purpose of the invention]

本発明は尚早な工程で製造でき、かつ接合強度が高く熱
応力の緩和作用が高く窒化物セラミックスのクランク発
生を防止し得る窒化物セラミックスと金属の接合体を提
供しようとするものである。
The present invention aims to provide a bonded body of nitride ceramics and metal that can be manufactured in a premature process, has high bonding strength, has a high thermal stress relaxation effect, and can prevent cranking of nitride ceramics.

〔発明の概要〕[Summary of the invention]

本発明者らは以下に説明ブる点に46目し−CC窒化物
セラミックス金属の接合体の開発に成功した。
The present inventors have succeeded in developing a CC nitride ceramic metal bonded body based on the points explained below.

即ち、Ti+Zrなどの活性金属を含むろう材は窒化物
セラミックスとの濡れ性が良好である。これはTi、Z
rが窒化物セラミックスと反応して窒化物(TiN、Z
rN など)を形成するためであることを既に確認して
いる。
That is, a brazing material containing active metals such as Ti+Zr has good wettability with nitride ceramics. This is Ti, Z
r reacts with nitride ceramics to form nitrides (TiN, Z
It has already been confirmed that the purpose is to form (rN, etc.).

また、’l” i 、 ’l、 rはAll!N+5i
SN4 ノ窒化物セラミックスとCuや1QivJ金属
の熱膨張係数の中日的な値t′1大々3.9 X l 
o−’/’C,。
Also, 'l'' i, 'l, r are All!N+5i
The Chinese-Japanese value t'1 of the coefficient of thermal expansion of SN4 nitride ceramics and Cu and 1QivJ metals is approximately 3.9 X l
o-'/'C,.

5XlO−’/’C,を有する。5XlO-'/'C.

更に、金属A、Bからなる合金の熱膨張係数は一般に次
式の如く αalloy−αAMA+αBMB 張係数が比例関係を有する。
Further, the coefficient of thermal expansion of an alloy consisting of metals A and B generally has a proportional relationship of tensile coefficient αalloy-αAMA+αBMB as shown in the following equation.

しかして、上述した究明結果よりAINやSt m N
 a などの熱膨張係数が比較的小さい留化物セラミッ
クスとCuやNiなど■金属との接合体において、接合
部を、窒化物セラミックス側から活性金属の窒化物IO
と、少なくともlj曽の活性金属に冨む(99〜50重
t+t ’%)λ゛ム杉金金属の合金属と、少なくとも
1層の込移金属に富む(99〜50重量%)活性金属と
の合金属とを順次配置した多層構造にて形成することに
よって、9化物セラミツクスと遷移金II属の間の熱膨
張係数の差を接合部で段lyh的に晶少でき。
However, from the above research results, AIN and St m N
In a bonded body of a fluoride ceramic with a relatively small coefficient of thermal expansion such as a and a metal such as Cu or Ni, the active metal nitride IO is connected to the joint from the nitride ceramic side.
, an alloy of λ゛m Sugikin metal rich in active metals of at least lj (99 to 50 wt+t'%), and at least one layer of active metals rich in active metals (99 to 50 wt%). By forming a multilayer structure in which alloy metals are sequentially arranged, the difference in coefficient of thermal expansion between the nineride ceramic and the transition metal II can be gradually reduced at the joint.

それらの間の熱応力を小さくして黄化物セラミックスの
クラック発生を防止できると共に窒化物セラミックスと
遷移金1萬とを強し1に接合した接合体を見い出した。
We have found a bonded body in which nitride ceramics and 10,000 ml of transition gold are bonded to 10,000 ml of nitride ceramics, which can prevent the occurrence of cracks in yellowed ceramics by reducing the thermal stress between them.

こうした接合体の熱応力の緩第1」作用は以下の説明か
らも明らかでるる。
This effect of reducing thermal stress in the bonded body will be clear from the following explanation.

即ち、セラミックスと金1風の接合体に弁1生ずる応力
をσとすると1次式の如く 〔但し、式中のΔαはセラミックス、金属間の熱膨瘉係
数の差、ΔTは成形温度と室Ni+Aとの温段差、Ed
、ヤング率、tは厚さ、c、mは夫々セフミックス、金
属を示す)にて表わされる。
In other words, if σ is the stress generated in the valve 1 in the ceramic-gold 1-like bonded body, then the following equation is obtained: [In the equation, Δα is the difference in thermal expansion coefficient between the ceramic and metal, and ΔT is the molding temperature and chamber temperature. Temperature difference between Ni+A, Ed
, Young's modulus, t is thickness, c and m are Cefmix and metal, respectively).

この式より、Δα以外の糸件刀)等しい接合体におい王
、Δαが小3い烏合、発生する応力σが小さくなること
かわかる。
From this equation, it can be seen that in the case of an equal bond (other than Δα), if Δα is smaller than 3, the generated stress σ will be smaller.

なお、本発明の接合体il:fり11えは次のような方
法により製造される。
The conjugated body il:fri11 of the present invention is manufactured by the following method.

まり、ちり化物セラミックスと金属の接合部に1001
j’o又はt8i、はioo%に近い活性金属ンiと同
様な糾、度の遷移金1r1:・、箔を該活性金1出箔か
セラミックス側に、1該遷移金属箔が金1萬側に位16
するように介でI[さぜる。θ(いで、900’C,以
上、好左しくは92(ン〜l 050 ’C,でl〜2
0分間q−r4H度の短11、1間の熱処理を行なうこ
とにより窒化物セラミックスと金1..+:iの間に活
性金属の屋化物層、活性金属に冨む造移金1萬との合金
1υ及び3:3移金1萬に冨む活性合鴨との合金層から
なる接合部か形成され、既述した良好な特性を有する接
合体が造られる。
Mari, 1001 at the joint between dust ceramics and metal
j'o or t8i, is an active metal close to ioo%. position 16 on the side
So that I can do it. θ(at 900'C, preferably 92(n~l), at 050'C, l~2
Nitride ceramics and gold are bonded by heat treatment for 0 minutes at qr4H degrees for a short time of 11.1. .. +: Forming a joint consisting of an active metal compound layer between i, an alloy layer of 1υ with active metal and 10,000 mol of active metal, and an alloy layer of activated duck with 10,000 of 3:3 molten metal. A bonded body having the above-mentioned good properties is produced.

〔発明の実施例〕[Embodiments of the invention]

次に本発明の詳細な説明する。 Next, the present invention will be explained in detail.

実施例1 まず、AdN部材とCu部材の間に厚さ50μmのZr
箔を介在させ、史にZ r 9自とC11部材の間に厚
さ50μmのCu箔を介在させた。
Example 1 First, a Zr layer with a thickness of 50 μm was placed between the AdN member and the Cu member.
A Cu foil with a thickness of 50 μm was interposed between the Zr9 member and the C11 member.

次いで、920’C,で5分間熱処Jll j、てhe
N?グIS柵とCu部材の接合体を製造した。
Then, heat treated at 920'C for 5 minutes.
N? A joint of the IS fence and the Cu member was manufactured.

得られた接合体はAeN部伺とCu BIS伺の間に該
AgN部伺側からzrNfU、95〜98原子%Zr−
残部Cuの合金層及び75片子%Cu−残部zrの合金
層がJI[1次配ff、>tされ)C多層構造の接合部
が形成芒れていた。こうした接合体について断面を光学
顕微鏡にて100倍の倍率で観察したところ、AlN部
梠へのクランク発生は全く5忍められlかった。
The obtained bonded body contains zrNfU, 95 to 98 atomic% Zr- from the AgN side between the AeN side and the Cu BIS side.
The balance Cu alloy layer and the 75% Cu alloy layer and the balance zr alloy layer formed a JI [first order ff, >t]C multilayer structure joint. When the cross section of such a bonded body was observed with an optical microscope at a magnification of 100 times, no cranking was observed in the AlN portion.

また、得られた]を合体のCu部伺にC1l製の引張試
験用治具をpb−8n半田で半田イ(」けし。
In addition, solder the C11 tensile test jig to the Cu part of the obtained product with PB-8N solder.

常温にて短連引張試験を災施した。その結果。A short continuous tensile test was conducted at room temperature. the result.

破断は常に半田付は部で生じ、接合体が的8部多層構造
の接合部で強固に接合されていることか1i(ji認さ
れた。
It was confirmed that the rupture always occurred at the soldering part, and that the bonded body was strongly joined at the joint part of the eight-part multilayer structure.

実施【ンリ2 AgN部伺とC、u部材の間に厚さ10μmのIll 
i F^を介在ネぜ、更にTI箔とC11部(号の間V
C,Il;I:すl OO74m17)Cu箔を介在さ
せた。欠いて実施fall lと同4.1(な熱処理を
施して接合体を製造した。
Implementation [Nri 2 Ill with a thickness of 10 μm between the AgN part and the C and u members
i F^ is interposed, and TI foil and C11 part (between issues V
C, Il; I: Sl OO74m17) Cu foil was interposed. A bonded body was manufactured by performing the same heat treatment as in Fall 1 (4.1).

イ」、トられた1に合体はAdN部伺とCu部材の咳に
該A/N部(」側から’f’ i Nl13.95〜9
8原子%′1゛1−残FXtSCuの合金層及び75 
IQ子1%Cu−残ごI、I’flの合金層が順次配置
された多1B<illす、造の接合部が形成されていた
。こうした接合体について実施例1と同様、その断面を
観察L7たどころ、A6N6部へのクランク発生は全く
1志めらJ]、なかった。丑だ、接合部)廿も柿−め1
商いものであった。
``A'', combined with the torn 1 is the AdN section and the cough of the Cu member, the A/N section (from the '' side 'f' i Nl 13.95 ~ 9
8 atomic %'1'1-remaining FXtSCu alloy layer and 75
A multi-structured joint was formed in which alloy layers of 1% Cu and I and I'fl were sequentially arranged. As in Example 1, when the cross section of such a joined body was observed, no cranking occurred at the A6N6 portion. Ushida, joint) 廿も柿め1
It was a commercial item.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く2本発明によれは間I14!な工程で
製造でき、しかも接合強度が市く、かつ熱影響を受けた
時の熱応力の緩和作用か6モぐ屋化物セラミックスのク
ランク発生を防止できる各種の機能部品等に有効な窒化
物セラミックスと金属の接合体を提供できる。
As detailed above, according to the present invention, there is a difference between I14! Nitride ceramics are effective for various functional parts, which can be manufactured by a process that is easy to manufacture, have a stable bonding strength, and can prevent the occurrence of cranks due to the effect of mitigating thermal stress when affected by heat. and metal joints.

【図面の簡単な説明】[Brief explanation of drawings]

図はzr−Cu合金における組成と熱膨張係数の関係を
示す特性図である。 出願人代理人 弁理士 鈴 圧式 b Zr>)l 、L /wt% 第1頁の続き 0発 明 者 白 兼 誠 用崎市幸区小向東芝町1番地 東京芝浦電気株式会社総
合研究所内
The figure is a characteristic diagram showing the relationship between composition and thermal expansion coefficient in a zr-Cu alloy. Applicant's agent Patent attorney Rin Pressure b Zr>)l , L /wt% Continued from page 1 0 Inventor Shiro Kane 1, Komukai Toshiba-cho, Saiwai-ku, Seiyousaki-shi Tokyo Shibaura Electric Co., Ltd. Research Center

Claims (1)

【特許請求の範囲】[Claims] 窒化物セラミックスと金属の接合部が、該セラミックス
側から活性金属の窒化物層と、少なくとも1層の活性金
属に富む遷移金属との合金属と少なくとも1層の遷移金
属に冨む活性金1戊との合金叫とを順次配置した多層構
造にて形成されてなる窒化物セラミックスと金属の接合
体。
The joint between the nitride ceramic and the metal includes, from the ceramic side, a nitride layer of an active metal, at least one layer of an active metal-rich transition metal alloy, and at least one layer of an active metal-rich transition metal layer. A bonded body of nitride ceramics and metal formed of a multilayer structure in which alloys of nitride and metal are sequentially arranged.
JP21351183A 1983-11-14 1983-11-14 Bonded body of nitride ceramic and metal Granted JPS60108376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21351183A JPS60108376A (en) 1983-11-14 1983-11-14 Bonded body of nitride ceramic and metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21351183A JPS60108376A (en) 1983-11-14 1983-11-14 Bonded body of nitride ceramic and metal

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4161664A Division JPH0822785B2 (en) 1992-05-29 1992-05-29 Method for joining nitride ceramics and metal

Publications (2)

Publication Number Publication Date
JPS60108376A true JPS60108376A (en) 1985-06-13
JPH0357070B2 JPH0357070B2 (en) 1991-08-30

Family

ID=16640399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21351183A Granted JPS60108376A (en) 1983-11-14 1983-11-14 Bonded body of nitride ceramic and metal

Country Status (1)

Country Link
JP (1) JPS60108376A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274674A (en) * 1987-04-30 1988-11-11 Nec Corp High heat conductivity ceramics substrate
JPS63274673A (en) * 1987-04-30 1988-11-11 Nec Corp Ceramics substrate having high heat conductivity
JPS63274678A (en) * 1987-04-30 1988-11-11 Nec Corp High heat conductivity ceramics substrate
JP2594475B2 (en) * 1990-04-16 1997-03-26 電気化学工業株式会社 Ceramic circuit board
JPH09181423A (en) * 1990-04-16 1997-07-11 Denki Kagaku Kogyo Kk Ceramic circuit board

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58125673A (en) * 1982-01-12 1983-07-26 新明和工業株式会社 Diffusion joining method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58125673A (en) * 1982-01-12 1983-07-26 新明和工業株式会社 Diffusion joining method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274674A (en) * 1987-04-30 1988-11-11 Nec Corp High heat conductivity ceramics substrate
JPS63274673A (en) * 1987-04-30 1988-11-11 Nec Corp Ceramics substrate having high heat conductivity
JPS63274678A (en) * 1987-04-30 1988-11-11 Nec Corp High heat conductivity ceramics substrate
JP2594475B2 (en) * 1990-04-16 1997-03-26 電気化学工業株式会社 Ceramic circuit board
JPH09181423A (en) * 1990-04-16 1997-07-11 Denki Kagaku Kogyo Kk Ceramic circuit board

Also Published As

Publication number Publication date
JPH0357070B2 (en) 1991-08-30

Similar Documents

Publication Publication Date Title
JPS60131874A (en) Method of bonding ceramic and metal
JPS60108376A (en) Bonded body of nitride ceramic and metal
JPS59212187A (en) Hard solder alloy and performing of hard solder connection by using same
JP2760987B2 (en) Joining method of ceramics and metal
JPS6256380A (en) Ceramic-metal joined member
JPS6033269A (en) Metal ceramic bonding method
JPS63239166A (en) Ceramic joined body
JP2696507B2 (en) Brazing method for composite brazing material
JP2000068396A (en) Cover for hermetic seal
JPS6032648A (en) Method of metallizing ceramics and alloy foil for metallizing ceramics
JPS6272577A (en) Alumina-metal heat stress alleviation joint
JPS6272472A (en) Joining method for ceramics and metal or the like
JPS63169348A (en) Amorphous alloy foil for jointing ceramics
JPS6090878A (en) Ceramic and matal bonding method
JPH0571544B2 (en)
JPS59184778A (en) Pressure welding of ceramic member to metal member
JP2000119072A (en) Joining of silicon nitride to carbon steel
JPS6042283A (en) Method of bonding oxide ceramics and active metal
JPS59174581A (en) Method of bonding aluminum to alumina
JPH05170565A (en) Method for carrying out treatment for joining nitride ceramics to metal
JPH01224278A (en) Bonding of ceramics and metals
JP3409062B2 (en) Joining method of ceramics and metal
JPH02251155A (en) Gold alloy thin wire for semiconductor elements and bonding method thereof
JPS6270272A (en) Bonding structure of ceramics
JPS6278167A (en) Bonded body of ceramic tungsten or molybdenum