JPH05170565A - Method for carrying out treatment for joining nitride ceramics to metal - Google Patents

Method for carrying out treatment for joining nitride ceramics to metal

Info

Publication number
JPH05170565A
JPH05170565A JP16166492A JP16166492A JPH05170565A JP H05170565 A JPH05170565 A JP H05170565A JP 16166492 A JP16166492 A JP 16166492A JP 16166492 A JP16166492 A JP 16166492A JP H05170565 A JPH05170565 A JP H05170565A
Authority
JP
Japan
Prior art keywords
metal
ceramics
joining
foil
nitride ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16166492A
Other languages
Japanese (ja)
Other versions
JPH0822785B2 (en
Inventor
Masako Nakabashi
昌子 中橋
Kazumi Shimotori
一三 霜鳥
Hiromitsu Takeda
博光 竹田
Tatsuo Yamazaki
達雄 山崎
Makoto Shirokane
誠 白兼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4161664A priority Critical patent/JPH0822785B2/en
Publication of JPH05170565A publication Critical patent/JPH05170565A/en
Publication of JPH0822785B2 publication Critical patent/JPH0822785B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain the subject joined material capable of producing in simple step, high in joining strength and action for relaxing heat stress and capable of preventing occurrence of crack in ceramics. CONSTITUTION:Foil of 100% or nearly 100% active metal (e.g. Ti or Zr) is put on the ceramic side of a joining part of nitride ceramics (e.g. AlN or Si3N4) and metal (e.g. Cu or Ni) and a foil of a transition metal (e.g. Cu or Ni) having purity similar to the active metal foil is put on the metal side and short-term heat treatment is carried out at >=900 deg.C, preferably 920-1050 deg.C for about 1-20min to provide the subject joined material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は窒化物セラミックスと金
属の接合処理方法の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved method for joining nitride ceramics and metal.

【0002】[0002]

【従来の技術】最近、セラミックス材料がその優れた諸
特性から構造材料,機能材料等広い分野で利用されてい
る。その多くの場合はセラミックス単体で部品を構成し
ているが、より多くの分野でセラミックスを利用するた
めには、金属と接合可能であることが必要である。この
場合、構造部品であれば十分な接合強度が要求され、一
方機能部品であれば接合界面で連続性等が要求される。
しかしながら、セラミックスと金属は夫々異なった原子
結合状態を有し、このため金属とセラミックスを接合す
る場合、それらの反応性などの化学的性質,熱膨張率,
電気伝導度などの物理的性質は大きく異なる。したがっ
て、両部材を良好に濡らし、信頼性の高い合金的な接合
を行なうことは相当困難である。
2. Description of the Related Art Recently, ceramic materials have been used in a wide range of fields such as structural materials and functional materials due to their excellent characteristics. In many cases, ceramics are used to form parts, but in order to use ceramics in more fields, it is necessary to be able to bond with metals. In this case, structural parts are required to have sufficient joint strength, while functional parts are required to have continuity at the joint interface.
However, ceramics and metals have different atomic bond states, so when bonding metals and ceramics, their chemical properties such as reactivity, thermal expansion coefficient,
Physical properties such as electrical conductivity differ greatly. Therefore, it is considerably difficult to wet both members well and perform highly reliable alloy-like joining.

【0003】ところで、従来よりセラミックスと金属を
接合する方法の一つとして活性金属を用いる方法(米国
特許2,857,663)が知られている。この方法は
Ti,Zrなどの活性金属がCu,Niなどの遷移金属
との合金において、その融点を数百℃も低下する事実を
利用して金属とアルミナ,フォルステライト,ベリリ
ア,ジルコニアなどの酸化物セラミックスを接合する方
法である。
By the way, conventionally, a method using an active metal (US Pat. No. 2,857,663) is known as one of the methods for joining ceramics and metal. This method takes advantage of the fact that active metals such as Ti and Zr and alloys of transition metals such as Cu and Ni lower their melting points by several hundreds of degrees Celsius, thereby oxidizing metals and alumina, forsterite, beryllia, zirconia, etc. This is a method of joining physical ceramics.

【0004】しかしながら、上述した方法によりセラミ
ックス−金属の接合体,特にAlNやSi3 4 などの
窒化物セラミックスとCuやNiなどの金属の接合体を
造った場合、その接合体に熱衝撃を加えると、それらの
熱膨張差に起因する熱応力が発生し、窒化物セラミック
スにクラックが発生するという欠点があった。即ち、下
記表に示す如く通常の酸化物セラミックスの熱膨張係数
は8.6×10-6/℃〜13.5×10-6/℃であり、
AlNやSi3 4 の熱膨張係数が夫々約5×10-6
℃,2.5×10-6/℃と比較して大きく、CuやFe
の熱膨張係数に近い値を示す。このため、窒化物セラミ
ックスのCuやFeなどの接合体には酸化物セラミック
スと金属の接合体に比べて大きな熱応力が発生し、セラ
ミックスにクラックが発生し易くなる。
However, when a ceramic-metal bonded body, particularly a nitride ceramics such as AlN or Si 3 N 4 and a metal such as Cu or Ni, is manufactured by the above-mentioned method, the bonded body is subjected to thermal shock. When added, thermal stress is generated due to the difference in thermal expansion between them, and there is a defect that cracks occur in the nitride ceramics. That is, the thermal expansion coefficient of the conventional oxide ceramics as shown in the following Table was 8.6 × 10 -6 /℃~13.5×10 -6 / ℃ ,
The coefficient of thermal expansion of AlN or Si 3 N 4 is about 5 × 10 -6 /
℃, 2.5 × 10 -6 / ℃ is larger than Cu, Fe
Shows a value close to the coefficient of thermal expansion of. For this reason, a larger thermal stress is generated in the bonded body of Cu, Fe, etc. of the nitride ceramics than in the bonded body of the oxide ceramics and the metal, and cracks are easily generated in the ceramics.

【0005】[0005]

【表1】 このようなことから、活性金属を含むろう材とろう材の
間に延性に富むCu,Cu合金,Alなどの金属薄板を
介在させ、該ろう材と金属薄板を点溶接して一体化した
接合材料を用いて窒化物セラミックスと金属を接合する
方法(特開昭56−163093)が提案されている。
また、活性金属を含むろう材をセラミックス及び金属の
母材に拡散してなる接合体も開発されている。しかしな
がら、これらの方法等は複雑な工程や長時間の熱処理を
伴なう問題があった。このため、より簡略化された工程
で製造でき、かつ接合強度が高く熱応力を緩和し得る窒
化物セラミックスと遷移金属との接合体が切望されてい
る。
[Table 1] For this reason, a brazing filler metal containing an active metal and a brazing filler metal are intercalated with a thin metallic plate made of Cu, Cu alloy, Al or the like, and the brazing filler metal and the metallic brazing plate are spot-welded and integrally joined. A method of joining a nitride ceramics and a metal by using a material (Japanese Patent Laid-Open No. 56-163093) has been proposed.
Also, a joined body has been developed in which a brazing material containing an active metal is diffused into a ceramic and a metal base material. However, these methods and the like have problems in that they involve complicated steps and heat treatment for a long time. Therefore, a bonded body of a nitride ceramic and a transition metal, which can be manufactured by a more simplified process and which has a high bonding strength and can relieve thermal stress, has been earnestly desired.

【0006】[0006]

【発明が解決しようとする課題】本発明は簡単な工程で
製造でき、かつ接合強度が高く熱応力の緩和作用が高く
窒化物セラミックスのクラック発生を防止し得る窒化物
セラミックスと金属の接合体をつくる接合処理方法を提
供しようとするものである。
DISCLOSURE OF THE INVENTION The present invention provides a bonded body of a nitride ceramic and a metal, which can be manufactured by a simple process, has a high bonding strength, a high thermal stress relaxation effect, and can prevent the crack generation of the nitride ceramic. The present invention is intended to provide a method of joining treatment.

【0007】[0007]

【課題を解決するための手段及び作用】本発明者らは以
下に説明する点に着目して窒化物セラミックスと金属の
接合体をつくる接合処理方法の開発に成功した。
Means and Actions for Solving the Problems The present inventors have succeeded in developing a joining treatment method for producing a joined body of a nitride ceramic and a metal, paying attention to the points described below.

【0008】即ち、TiやZrなどの活性金属を含むろ
う材は窒化物セラミックスとの濡れ性が良好である。こ
れはTi,Zrが窒化物セラミックスと反応して窒化物
(TiN,ZrNなど)を形成するためであることを既
に確認している。
That is, the brazing material containing an active metal such as Ti or Zr has good wettability with the nitride ceramics. It has already been confirmed that this is because Ti and Zr react with nitride ceramics to form a nitride (TiN, ZrN, etc.).

【0009】また、Ti,ZrはAlNやSi3 4
窒化物セラミックスとCuやNiの金属の熱膨張係数の
中間的な値で、夫々8.9×10-6/℃,5×10-6
℃を有する。
Ti and Zr are intermediate values of the coefficient of thermal expansion of the nitride ceramics of AlN or Si 3 N 4 and the metals of Cu or Ni, and are 8.9 × 10 -6 / ° C. and 5 × 10 5, respectively. -6 /
Having a ° C.

【0010】更に、金属A,Bからなる合金の熱膨張係
数は一般に次式の如く
Further, the coefficient of thermal expansion of an alloy composed of metals A and B is generally expressed by the following equation.

【0011】[0011]

【数1】α alloy=αA MA +αB MB [但し、αは熱膨張係数,A,Bは元素,Mは合金成分
の濃度を示す。]で表わされる。つまり、ZrとCuの
合金について考察すると、図1に示す如く組成と熱膨張
係数が比例関係を有する。
[Formula 1] α alloy = αA MA + αB MB [where α is the coefficient of thermal expansion, A and B are elements, and M is the concentration of the alloy component. ]] Is represented. That is, when considering an alloy of Zr and Cu, the composition and the thermal expansion coefficient have a proportional relationship as shown in FIG.

【0012】しかして、上述した究明結果よりAlNや
Si3 4 などの熱膨張係数が比較的小さい窒化物セラ
ミックスとCuやNiなどの金属との接合体において、
接合部を、窒化物セラミックス側から活性金属の窒化物
層と、少なくとも1層の活性金属に富む(99〜50重
量%)遷移金属との合金属と、少なくとも1層の遷移金
属に富む(99〜50重量%)活性金属との合金属とを
順次配置した多層構造にて形成することによって、窒化
物セラミックスと遷移金属の間の熱膨張係数の差を接合
部で段階的に減少でき、それらの間の熱応力を小さくし
て窒化物セラミックスのクラック発生を防止できると共
に窒化物セラミックスと遷移金属とを強固に接合した接
合体を形成すればよいことを見い出した。こうした接合
体の熱応力の緩和作用は以下の説明からも明らかであ
る。
From the above-mentioned investigation results, however, in a joined body of a nitride ceramics such as AlN or Si 3 N 4 having a relatively small thermal expansion coefficient and a metal such as Cu or Ni,
The joining portion is rich in an active metal nitride layer from the nitride ceramics side, at least one layer of active metal-rich (99 to 50% by weight) transition metal, and at least one layer of transition metal (99 ˜50% by weight) and the active metal and the composite metal are sequentially arranged to form a multilayer structure, the difference in the coefficient of thermal expansion between the nitride ceramics and the transition metal can be gradually reduced at the joint. It has been found that the thermal stress between the two can be reduced to prevent cracking of the nitride ceramics, and a bonded body in which the nitride ceramics and the transition metal are firmly bonded is formed. The effect of relaxing the thermal stress of such a bonded body is also apparent from the following description.

【0013】即ち、セラミックスと金属の接合体に発生
する応力をσとすると、次式の如く
That is, when the stress generated in the bonded body of ceramics and metal is σ,

【0014】[0014]

【数2】 [但し、式中のΔαはセラミックス,金属間の熱膨張係
数の差,ΔTは成形温度と室温との温度差,Eはヤング
率,tは厚さ、c,mは夫々セラミックス,金属を示
す]にて表わされる。この式より、Δα以外の条件が等
しい接合体において、Δαが小さい場合、発生する応力
σが小さくなることがわかる。
[Equation 2] [Wherein Δα is the difference in coefficient of thermal expansion between ceramics and metal, ΔT is the temperature difference between molding temperature and room temperature, E is Young's modulus, t is thickness, c and m are ceramics and metal, respectively. ]] Is represented. From this equation, it can be seen that the stress σ generated is small when Δα is small in the joined body under the same conditions other than Δα.

【0015】上述の如くの接合体を形成するために、本
発明は、窒化物セラミックスと金属の接合部に100%
又はほぼ100%に近い活性金属箔と同様な純度の遷移
金属箔を該活性金属箔がセラミックス側に、該遷移金属
箔が金属側に位置するように介在させ、次いで、900
℃以上熱処理を行なうことを特徴とする金属と窒化物セ
ラミックスの接合処理方法である。
In order to form a bonded body as described above, the present invention provides 100% bonding to the nitride ceramics and the metal.
Alternatively, a transition metal foil having a purity similar to that of the active metal foil of nearly 100% is interposed so that the active metal foil is located on the ceramic side and the transition metal foil is located on the metal side, and then 900
A method for joining metal and nitride ceramics is characterized by performing heat treatment at a temperature of ℃ or more.

【0016】本発明に係る接合処理方法において、加熱
温度は900℃以上、好ましくは920〜1050℃で
あることが好ましい。
In the bonding treatment method according to the present invention, the heating temperature is 900 ° C. or higher, preferably 920 to 1050 ° C.

【0017】本発明の接合処理によれば、窒化物セラミ
ックスと金属の間に活性金属の窒化物層、活性金属に富
む遷移金属との合金層及び遷移金属に富む活性金属との
合金層からなる接合部が形成され、既述した良好な特徴
を有する接合体が造られる。
According to the bonding treatment of the present invention, an active metal nitride layer, an alloy layer with an active metal-rich transition metal, and an alloy layer with a transition metal-rich active metal are formed between the nitride ceramics and the metal. The joint portion is formed, and the joint body having the good characteristics described above is manufactured.

【0018】[0018]

【実施例】【Example】

実施例1 まず、AlN部材とCu部材の間に厚さ50μmのZr
箔を介在させ、更にZr箔とCu部材の間に厚さ50μ
mのCu箔を介在させた。次いで、920℃で5分間熱
処理してAlN部材とCu部材の接合体を製造した。
Example 1 First, between the AlN member and the Cu member, Zr having a thickness of 50 μm was used.
With a foil interposed, and a thickness of 50μ between the Zr foil and the Cu member.
Cu foil of m was interposed. Then, it was heat-treated at 920 ° C. for 5 minutes to manufacture a joined body of the AlN member and the Cu member.

【0019】得られた接合体はAlN部材とCu部材の
間に該AlN部材側からZrN層,95〜98原子%Z
r−残部Cuの合金層及び75原子%Cu−残部Zrの
合金層が順次配置された多層構造の接合部が形成されて
いた。こうした接合体について断面を光学顕微鏡にて1
00倍の倍率で観察したところ、AlN部材へのクラッ
ク発生は全く認められなかった。
The obtained joined body is a ZrN layer, 95 to 98 atomic% Z between the AlN member and the Cu member from the AlN member side.
A joint part having a multilayer structure in which an alloy layer of r-remainder Cu and an alloy layer of 75 atom% Cu-remainder Zr were sequentially arranged was formed. Cross section of such a bonded body with an optical microscope 1
When observed at a magnification of 00, no cracks were found on the AlN member.

【0020】また、得られた接合体のCu部材にCu製
の引張試験用治具をPb−Sn半田で半田付けし、常温
にて定速引張試験を実施した。その結果、破断は常に半
田付け部で生じ、接合体が前記多層構造の接合部で強固
に接合されていることが確認された。 実施例2 AlN部材とCu部材の間に厚さ10μmのTi箔を介
在させ、更にTi箔とCu部材の間に厚さ100μmの
Cu箔を介在させた。次いで実施例1と同様な熱処理を
施して接合体を製造した。
Further, a Cu tensile test jig was soldered to the Cu member of the obtained joined body with Pb-Sn solder, and a constant speed tensile test was carried out at room temperature. As a result, it was confirmed that the fracture always occurred at the soldered portion, and the joined body was firmly joined at the joined portion of the multilayer structure. Example 2 A Ti foil having a thickness of 10 μm was interposed between the AlN member and the Cu member, and a Cu foil having a thickness of 100 μm was interposed between the Ti foil and the Cu member. Then, the same heat treatment as in Example 1 was performed to manufacture a joined body.

【0021】得られた接合体はAlN部材とCu部材の
該に該AlN部材側からTiN層,95〜98原子%T
i−残部Cuの合金層及び75原子%Cu−残部Tiの
合金層が順次配置された多層構造の接合部が形成されて
いた。こうした接合体について実施例1と同様、その断
面を観察したところ、AlN部材へのクラック発生は全
く認められなかった。また、接合強度も極めて高いもの
であった。
The obtained joined body was composed of an AlN member and a Cu member, a TiN layer, and 95 to 98 atomic% T from the AlN member side.
A junction having a multi-layer structure in which an i-balance Cu alloy layer and a 75 atom% Cu-balance Ti alloy layer were sequentially arranged was formed. When the cross section of such a bonded body was observed in the same manner as in Example 1, no cracks were found in the AlN member. Also, the bonding strength was extremely high.

【0022】[0022]

【発明の効果】以上詳述した如く、本発明によれば簡単
な工程で製造でき、しかも接合強度が高く、かつ熱影響
を受けた時の熱応力の緩和作用が高く窒化物セラミック
スのクラック発生を防止できる各種の機能部品等に有効
な窒化物セラミックスと金属の接合体を提供できる。
As described in detail above, according to the present invention, it is possible to manufacture by a simple process, the bonding strength is high, and the thermal stress relaxation effect upon thermal influence is high, so that the cracking of nitride ceramics occurs. It is possible to provide a bonded body of a nitride ceramic and a metal, which is effective for various functional parts that can prevent the above.

【図面の簡単な説明】[Brief description of drawings]

【図1】 Zr−Cu合金における組成と熱膨張係数の
関数を示す特性図
FIG. 1 is a characteristic diagram showing a function of a composition and a coefficient of thermal expansion in a Zr—Cu alloy.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山崎 達雄 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝総合研究所内 (72)発明者 白兼 誠 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tatsuo Yamazaki 1 Komukai Toshiba-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Inside the Toshiba Research Institute Co., Ltd. (72) Inventor Makoto Shirakane, Komukai Toshiba, Kawasaki-shi, Kanagawa Town No. 1 Incorporated company Toshiba Research Institute

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】窒化物セラミックスと金属の接合部に10
0%又はほぼ100%に近い活性金属箔と同様な純度の
遷移金属箔を該活性金属箔がセラミックス側に、該遷移
金属箔が金属側に位置するように介在させる。次いで、
900℃以上で1〜20分間程度の短時間の熱処理を行
なうことを特徴とする窒化物セラミックスと金属の接合
処理方法。
1. At the joint of nitride ceramics and metal, 10
A transition metal foil having a purity similar to that of the active metal foil of 0% or nearly 100% is interposed so that the active metal foil is located on the ceramic side and the transition metal foil is located on the metal side. Then
A method for joining a nitride ceramic and a metal, which comprises performing a heat treatment at 900 ° C. or higher for a short time of about 1 to 20 minutes.
JP4161664A 1992-05-29 1992-05-29 Method for joining nitride ceramics and metal Expired - Lifetime JPH0822785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4161664A JPH0822785B2 (en) 1992-05-29 1992-05-29 Method for joining nitride ceramics and metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4161664A JPH0822785B2 (en) 1992-05-29 1992-05-29 Method for joining nitride ceramics and metal

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP21351183A Division JPS60108376A (en) 1983-11-14 1983-11-14 Bonded body of nitride ceramic and metal

Publications (2)

Publication Number Publication Date
JPH05170565A true JPH05170565A (en) 1993-07-09
JPH0822785B2 JPH0822785B2 (en) 1996-03-06

Family

ID=15739491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4161664A Expired - Lifetime JPH0822785B2 (en) 1992-05-29 1992-05-29 Method for joining nitride ceramics and metal

Country Status (1)

Country Link
JP (1) JPH0822785B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891088A (en) * 1981-11-27 1983-05-30 トヨタ自動車株式会社 Method of bonding ceramic and metal
JPS58120578A (en) * 1982-01-05 1983-07-18 松下電器産業株式会社 Selective brazing method for inorganic base material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891088A (en) * 1981-11-27 1983-05-30 トヨタ自動車株式会社 Method of bonding ceramic and metal
JPS58120578A (en) * 1982-01-05 1983-07-18 松下電器産業株式会社 Selective brazing method for inorganic base material

Also Published As

Publication number Publication date
JPH0822785B2 (en) 1996-03-06

Similar Documents

Publication Publication Date Title
JPH0777989B2 (en) Method for manufacturing ceramic-metal bonded body
JPH0520392B2 (en)
JPH0357070B2 (en)
JPH05170565A (en) Method for carrying out treatment for joining nitride ceramics to metal
JPH0630829B2 (en) Active metal brazing material
JPS63239166A (en) Ceramic joined body
JPH05319946A (en) Ceramic substrate joined to metallic plate
JPH0469035B2 (en)
JPH05201777A (en) Ceramic-metal joined body
JPH0223498B2 (en)
JPS63169348A (en) Amorphous alloy foil for jointing ceramics
JP3316578B2 (en) Method for producing joined body of ceramic member and aluminum member
JP2000119072A (en) Joining of silicon nitride to carbon steel
JP2954850B2 (en) Bonding materials for carbon-based materials and carbon-based materials with hard surface layers
JPH05286777A (en) Bonding method of ceramics with ti or ti alloy
JPS60166275A (en) Bonding of ceramic and metal
JPS6272472A (en) Joining method for ceramics and metal or the like
JPS6278167A (en) Bonded body of ceramic tungsten or molybdenum
JPS6256378A (en) Silicon carbide-metal bonded structure
JPH0547514B2 (en)
JPH07172944A (en) Adhesive composition, bonded product, and bonding process
JPH0571544B2 (en)
JPS61281079A (en) Dispersion joining process for ceramic-metal
JPS6270272A (en) Bonding structure of ceramics
JPS6183684A (en) Method of bonding ceramic and metal