JPS6010798B2 - Sewage treatment method - Google Patents
Sewage treatment methodInfo
- Publication number
- JPS6010798B2 JPS6010798B2 JP53164252A JP16425278A JPS6010798B2 JP S6010798 B2 JPS6010798 B2 JP S6010798B2 JP 53164252 A JP53164252 A JP 53164252A JP 16425278 A JP16425278 A JP 16425278A JP S6010798 B2 JPS6010798 B2 JP S6010798B2
- Authority
- JP
- Japan
- Prior art keywords
- bod
- solid particles
- wastewater
- day
- nitrogen compounds
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Biological Treatment Of Waste Water (AREA)
Description
【発明の詳細な説明】
本発明は、汚水中のアンモニア性窒素、有機態窒素化合
物などのキェルダール定量法により測定される所謂キェ
ルダール性窒素化合物、80D成分、リン酸塩を、処理
槽内に懸濁浮遊せしめた固体粒子表面に生育する微生物
膜により除去する汚水処理方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention suspends so-called Kjeldahl nitrogen compounds, 80D components, and phosphates, which are measured by the Kjeldahl quantitative method such as ammonia nitrogen and organic nitrogen compounds in wastewater, in a treatment tank. This invention relates to a method for treating wastewater that removes wastewater using a microbial film that grows on the surface of suspended solid particles.
従来より、汚水中の各自的除去成分に対し各々除去方法
が種々提案されているが、通常汚水中には同時に複数の
目的除去成分が含まれており、この点、処理設備のスペ
ースあるいは薬剤の使用量等の主として経済的な理由か
ら、成るべく少ない工程で汚水中の複数の目的除去成分
を同時に除去しうる汚水処理プロセスが要求されている
。Up until now, various removal methods have been proposed for each of the components to be removed in wastewater, but wastewater usually contains multiple target components to be removed at the same time, and in this respect, there is a need for space for treatment equipment or for the use of chemicals. Mainly for economical reasons such as the amount used, there is a demand for a wastewater treatment process that can simultaneously remove a plurality of target components to be removed from wastewater in as few steps as possible.
近年、生物膜を生育せしめた固体粒子を好気性あるいは
嫌気性条件下に澄梓かつ懸濁浮遊せしめた処理槽内に彼
処理水を供V給して前記固体粒子と綾鮫させ、好気性条
件下にBOD成分の酸化分解および/あるいはアンモニ
ア性窒素の硝酸性窒素への転化(硝化)、嫌気性条件下
に硝酸性窒素を窒素ガスに分解(脱窒素)する生物学的
処理方法が、BODと窒素化合物を同時に処理出来る点
、設備がコンパクトであり処理効率が高い点等の利点に
より注目されている。しかしながらこの方法であっても
窒素化合物の除去には実際に硝化・脱窒素の二工程を有
するものであるし、他の汚水中の重要な目的除去成分で
あるリンの除去は現実に不可能であった。In recent years, treated water is supplied into a treatment tank in which solid particles that have grown biofilm are suspended and suspended under aerobic or anaerobic conditions, and the solid particles are mixed with the solid particles to create aerobic conditions. Biological treatment methods include oxidative decomposition of BOD components and/or conversion of ammonia nitrogen into nitrate nitrogen (nitrification) under conditions, and decomposition of nitrate nitrogen into nitrogen gas (denitrogenization) under anaerobic conditions. It is attracting attention because of its advantages such as being able to treat BOD and nitrogen compounds at the same time, compact equipment, and high treatment efficiency. However, even with this method, the removal of nitrogen compounds actually involves two steps: nitrification and denitrification, and it is actually impossible to remove phosphorus, which is an important target removal component in other wastewater. there were.
またリン酸塩の除去に注目した方法として、好気性条件
下ではリンが欠乏した微生物内にリンが過剰に摂取され
、この微生物を嫌気性条件下におくと摂取したリンを放
出する現象を利用してェアレーションタンクと嫌気性脱
リン槽を組合わせたフローシートから成る方法が提案さ
れている。In addition, a method focusing on phosphate removal utilizes the phenomenon that under aerobic conditions, phosphorus-deficient microorganisms take in too much phosphorus, and when these microorganisms are placed under anaerobic conditions, they release the ingested phosphorus. A method has been proposed that consists of a flow sheet that combines an aeration tank and an anaerobic dephosphorization tank.
この方法によれば、リンを濃縮した液に凝集剤を添加す
るため、凝集剤の添加量を低減させることができる。し
かし、処理プロセスが複雑であ0り、しかも処理速度が
きわめて遅く、処理に長時間かかり、そのため大容量の
設備を必要とし、またいわゆるバルキングといわれる現
象を起して汚泥の沈降性が悪くなり、処理水と共に流出
して処理水質の低下をひきおこし、ひどい場合には処理
;糟中に汚泥がなくなり、生物処理が行われなくなるな
ど安定な運転の維持管理を行うことが困難な場合がいよ
いよ起るという問題がある。また、汚水中の窒素化合物
を除去するためには別に窒素を除去する工程を設けねば
ならず、さらに処理プロセスが複雑となる。According to this method, since the flocculant is added to the phosphorus concentrated liquid, the amount of flocculant added can be reduced. However, the treatment process is complicated, the treatment speed is extremely slow, it takes a long time, and therefore large-capacity equipment is required, and a phenomenon called bulking occurs, which worsens the settling properties of the sludge. , the water flows out with the treated water, causing a decline in the quality of the treated water, and in severe cases, there are cases where it is difficult to maintain and manage stable operation, such as when there is no sludge in the sludge and biological treatment is no longer carried out. There is a problem that Furthermore, in order to remove nitrogen compounds from wastewater, a separate process for removing nitrogen must be provided, further complicating the treatment process.
本発明は上記問題点を解消し、効率的かつ安定な運転の
維持管理ができるところの、汚水中のリン酸塩、窒素化
合物、BOD成分を除去するための汚水処理方法を提供
することを目的としてなされたものである。An object of the present invention is to solve the above problems and provide a wastewater treatment method for removing phosphates, nitrogen compounds, and BOD components from wastewater, which enables efficient and stable operation and maintenance. This was done as a.
この目的を達成するための本発明の要旨は、生物膜を生
育せしめた固体粒子を好気性条件下に鷹拝かつ懸濁浮遊
させた処理槽内に被処理水を供給して前記固体粒子と接
触させるに際し、前記処理槽内のBOO容積負荷を20
〜50k9一BO町ノで・日として、被処理水中のBO
D成分、リン酸塩、窒素化合物を同時に除去することで
ある。The gist of the present invention to achieve this object is to supply water to be treated into a treatment tank in which solid particles on which a biofilm has grown are suspended and suspended under aerobic conditions. When contacting, the BOO volume load in the processing tank is set to 20
~50k9 BO town/day, BO in treated water
The objective is to simultaneously remove component D, phosphates, and nitrogen compounds.
本発明においては80Dの容積負荷を20〜50【9−
BOD/が・日の高負荷とする。In the present invention, the volume load of 80D is 20 to 50 [9-
BOD/ is assumed to be a high load of ・day.
この理由は固体粒子表面上の微生物膜のBOD成分の分
解による増殖を促進せしめ、微生物膜の肥大化による微
生物膜自体の剥離をも促進せしめ、その結果固体粒子表
面上の微生物膜および剥離した微生物膜の両者によるリ
ン酸塩および窒素化合物の摂取効果を高めるためである
。従来の活性汚泥法における80D容積負荷は0.3〜
0.8k9一BODノで・日程度であり、前記固体粒子
による生物学的BOO成分、窒素化合物の除去方法は5
〜10kg−BOD/で・日、生物学的脱リン方法は0
.3〜0.8ks−80D/わ・日、程度である。The reason for this is that the growth of the microbial film on the surface of the solid particle is promoted by the decomposition of the BOD component, and the exfoliation of the microbial film itself due to the enlargement of the microbial film is promoted.As a result, the microbial film on the surface of the solid particle and the detached microorganism This is to enhance the uptake effect of phosphate and nitrogen compounds by both membranes. The 80D volume load in the conventional activated sludge method is 0.3~
The removal time of biological BOO components and nitrogen compounds using solid particles is approximately 0.8k9-day.
~10kg-BOD/day, biological dephosphorization method is 0
.. It is about 3 to 0.8ks-80D/day.
例えば活性汚泥法においてBOD容積負荷を増加すれば
BOD成分除去量も増加するものの、同時に汚泥生成量
も増大するために前述したバルキング現象が生じるため
必然的に0.8程度が限界であり、この点は生物学的脱
リン方法も同様である。For example, in the activated sludge method, if the BOD volume load is increased, the amount of BOD components removed increases, but at the same time, the amount of sludge produced also increases, causing the bulking phenomenon described above, so the limit is inevitably around 0.8. The same is true for biological dephosphorization methods.
一方固体粒子による方法については固体粒子の比重の点
でバルキング現象が比較的生じにくいため活性汚泥法に
比してBOD容積負荷を増大することは可能であるが、
BODと窒素化合物を同時に除去しようとする場合、排
水中のアンモニア性窒素を一且硝酸化あるいは硝化して
から窒素化脱窒を行なう機構であるためBOD容積負荷
を10k9−BOD/〆・日以上の高負荷とすると前記
硝酸化の反応が停止するため、BODとの同時除去が不
可能になる。一方、本発明のような固体粒子の懸濁方式
においては前記固体粒子法と同様に窒素の硝酸化反応は
停止するが、窒素化合物の微生物膜による摂取反応が生
じるため、BOD成分・リン酸塩と同じく窒素化合物を
除去される。本発明におけるBOD容積負荷の条件は臨
界的意義を持つ、即ち、本発明は固体粒子を使用する際
の高80D容積負荷について例えば5乃至7k9一80
D/で・日の場合には、リン酸塩および窒素化合物が殆
んど除去されず、20k9一BOD/〆。On the other hand, in the method using solid particles, the bulking phenomenon is relatively less likely to occur due to the specific gravity of the solid particles, so it is possible to increase the BOD volume load compared to the activated sludge method.
When attempting to remove BOD and nitrogen compounds at the same time, the BOD volume load must be 10k9-BOD/〆・day or more because the mechanism is to first nitrate or nitrify the ammonia nitrogen in the wastewater and then perform nitrogenization and denitrification. If the load is too high, the nitric oxidation reaction will stop, making it impossible to remove BOD at the same time. On the other hand, in the solid particle suspension method of the present invention, the nitrification reaction of nitrogen is stopped as in the solid particle method, but since the uptake reaction of nitrogen compounds by the microbial membrane occurs, BOD components and phosphates are Similarly, nitrogen compounds are removed. The condition of BOD volume loading in the present invention is of critical significance, i.e., the present invention is suitable for high 80D volume loading when using solid particles, e.g.
In the case of D/day, phosphates and nitrogen compounds were hardly removed, resulting in 20k9-BOD/〆.
日を下限の臨界点としてこれ以上の場合にリン酸塩およ
び窒素化合物が飛躍的に除去できることを知見してなさ
れたものである。20k9一BOD/で・日より小さい
場合には固体粒子表面の微生物膜の増殖が長時間の被処
理水との接触によっても促進されず、結果的にリン酸塩
および窒素化合物の除去効果が殆んど無い。逆に下限値
以上では固体粒子表面の微生物膜の増殖が促進され、微
生物膜が肥大化し、固体粒子表面から剥離される。すな
わち、微生物膜の増殖と剥離が活発に繰返し行なわれる
ことにより、リン酸塩、窒素化合物が除去される。しか
も注目すべきことには下限値以上では汚水中の窒素化合
物、例えばアンモニア性窒素はそのままの形で微生物膜
に摂取されるのであって、通常低いBOD容積負荷の場
合に好気性条件下で生じるアンモニア性窒素から硝酸性
窒素への転換が生じないため、後処理に硝酸性窒素分解
のための嫌気性条件下での処理工程を必要としないこと
である。This was done based on the knowledge that phosphates and nitrogen compounds can be dramatically removed when the lower critical point is 1 day or more. If the particle size is smaller than 20k9-BOD/day, the growth of the microbial film on the solid particle surface will not be promoted even by long-term contact with the water to be treated, and as a result, the removal effect of phosphates and nitrogen compounds will be negligible. There is no such thing. On the other hand, if it is above the lower limit, the growth of the microbial film on the surface of the solid particle is promoted, the microbial film becomes enlarged, and is peeled off from the surface of the solid particle. That is, phosphates and nitrogen compounds are removed by actively repeating the growth and peeling of the microbial film. Moreover, it is noteworthy that above the lower limit, nitrogen compounds in the wastewater, such as ammonia nitrogen, are taken up by the microbial membrane in their unchanged form, which usually occurs under aerobic conditions at low BOD volume loads. Since conversion from ammonia nitrogen to nitrate nitrogen does not occur, a treatment step under anaerobic conditions for decomposing nitrate nitrogen is not required for post-treatment.
BOD容積負荷の上限については50k9一BOO/汝
・日である。The upper limit for the BOD volumetric load is 50k9 - BOO/thousand day.
上限値以上になると、微生物膜の増殖が過度となり、一
般の活性汚泥法と同じくバルキング現象が生じる。また
被処理水中のBOD成分等目的除去成分の濃度の変動に
よって、それらの除去率ないし除去効率および運転上の
安定性が悪くなる場合があるのでBOD容積負荷を20
〜40k9−BOD/で・日とすることが好ましい。な
お、20kg−BOD/舵・日以上の80D負荷とする
と、処理水中に80Dがリークすることがあるがこのと
きはもう1個リークしたBOOを除去するための暖気槽
を設ければ良い。本発明で使用する固体粒子としては表
面に徴生物が生育し、被処理廃水中における終端速度が
5一300の/時間のものであれば良く、例えば砂、コ
ークス、石炭、レンガ破砕粒、アルミナシリケート、ゼ
オライト、活性炭無機質粒子、合成樹脂のような有機質
粒子があげられ、安価で摩耗や破砕し1こくいものが好
ましい。If it exceeds the upper limit, the growth of the microbial film will be excessive and a bulking phenomenon will occur as in the general activated sludge method. In addition, due to fluctuations in the concentration of target removal components such as BOD components in the water to be treated, their removal rate or removal efficiency and operational stability may deteriorate, so the BOD volume load should be increased by 20%.
It is preferable to set it as ~40k9-BOD/day. Note that if the 80D load is 20 kg-BOD/rudder-day or more, 80D may leak into the treated water, but in this case, it is sufficient to provide a warming tank to remove one more leaked BOO. The solid particles to be used in the present invention may be those that have phenotypic organisms growing on their surfaces and have a terminal velocity of 5-300/hour in the wastewater to be treated, such as sand, coke, coal, crushed brick particles, alumina, etc. Examples include organic particles such as silicates, zeolites, activated carbon inorganic particles, and synthetic resins, and those that are inexpensive and resistant to abrasion or crushing are preferred.
該固体粒子表面には適性のBOD酸化菌などが附着生育
し、該粒子としては通常、粒径0.05〜0.5肋の4
・粒子を使用するために反応槽内の生物膜表面積は浸水
滋床法におけるよりはるかに広く容易に獲得することが
できるために、生物反応がきわめて早くなり、非常に短
時間で処理ができ糟容積も比較的小容量でよい。また固
体粒子の終端速度を一定の範囲に調節することによって
、処理水と固体粒子とを容易に分離し、微生物膜の生育
した固体粒子を糟外に流出することなく常に槽内に滞留
させ、バルキングなどの障害を起こさず、汚泥返送など
の操作は不要となり安定な運転の維持管理ができる。Appropriate BOD oxidizing bacteria etc. grow attached to the surface of the solid particles, and the particles usually have a particle diameter of 0.05 to 0.5 ribs.
・Because particles are used, the biofilm surface area in the reaction tank can be easily obtained, which is much larger than in the submerged bed method, so the biological reaction is extremely rapid and treatment can be completed in a very short time. The volume may also be relatively small. In addition, by adjusting the terminal velocity of the solid particles within a certain range, the treated water and the solid particles can be easily separated, and the solid particles on which the microbial film has grown can always remain in the tank without flowing out. It does not cause problems such as bulking, and does not require operations such as returning sludge, allowing stable operation and maintenance.
次に本発明を汚水処理に摘用する場合のフローシートの
一例を第1図に示す。Next, an example of a flow sheet when the present invention is applied to sewage treatment is shown in FIG.
まず、BOD成分、リン酸塩、窒素化合物を含む汚水は
配管9を通じて、曝気槽1の蝿梓室4に導入される。First, sewage containing BOD components, phosphates, and nitrogen compounds is introduced into the fly litter chamber 4 of the aeration tank 1 through the pipe 9.
縄洋室4内において、微生物膜の生育した固体粒子6と
導入汚水とが回転翼による機械的縄洋手段3によって懸
濁浮遊状態に保持されるとともに室内は配管2によって
導入される空気によって好気性条件下におかれる。この
状態において、曝気槽の80D容積負荷が20〜50k
9−BOD/〆・日であるから、固体粒子6表面上の微
生物膜のBOD成分の分解に伴なう増殖が活発となり微
生物膜自体が肥大化する。In the rope room 4, the solid particles 6 on which microbial films have grown and the introduced sewage are held in a suspended state by the mechanical rope means 3 using rotary blades, and the room is made aerobic by the air introduced through the piping 2. be placed under conditions. In this state, the 80D volume load of the aeration tank is 20 to 50k.
Since it is 9-BOD/day, the microbial film on the surface of the solid particle 6 actively proliferates as the BOD component decomposes, and the microbial film itself becomes enlarged.
肥大化した微生物膜は礎梓作用によって、順次固体粒子
6表面より剥離し、この増殖、肥大、剥離が繰返して行
なわれることにより全体として健梓室内の微生物膜量が
増大する。この固体粒子上の増殖肥大する微生物膜およ
び固体粒子から剥離した微生物膜(以後剥離汚泥と称す
)により80D成分は更に酸化分解されると,ともに、
リン酸塩、窒素化合物(NH3−N、K−N等)は微生
物膜内および剥離汚泥内に摂取される。The enlarged microbial film is sequentially peeled off from the surface of the solid particles 6 by the diaphragm action, and by repeating this multiplication, enlargement, and peeling, the amount of the microbial film in the diaphragm chamber increases as a whole. When the 80D component is further oxidized and decomposed by the growing and enlarged microbial film on the solid particles and the microbial film peeled off from the solid particles (hereinafter referred to as peeled sludge), both
Phosphate, nitrogen compounds (NH3-N, K-N, etc.) are taken up in the microbial film and in the stripped sludge.
もし汚水の水質によって糟内のpHが6.5以下となる
ような場合には、別途アルカリの添加手段を設けて予め
あるいは糟内においてアルカリ剤を添加して餌7.0〜
8.0に調整することが好ましい。If the pH inside the pot is below 6.5 due to the quality of the sewage, a separate alkali addition means is installed and an alkali agent is added in advance or inside the pot to increase the pH of the bait to 7.5 or lower.
It is preferable to adjust it to 8.0.
かくして鷹梓室4内において処理された水および剥離汚
泥は、ついで沈降分離室5内で固体粒子と分離される。
この際沈降分離室5の水面積負荷を3〜8〆/〆′hr
とすることが、分離効率上好ましい。適当な樋等の分離
手段を有する排出路7によって爆気槽1から排出された
処理水および剥離汚泥はつぎに沈降槽8に導入されて分
離され、処理水Aは上燈液として系外に排出されるとと
もに、剥離汚泥は下部より余剰汚泥Bとして排出され廃
棄ないし焼却等適当な処分を受ける。沈降分離槽におけ
る水面積負荷は12〜24で/で/日(0.5〜1.0
〆/で/時間)とすることが好ましい。本発明の実施は
以上述べたフローシートのみに限定されるものではなく
、例えば固体粒子と汚水とガス(空気)の鷹梓操作は、
前記回転翼による機械蝿梓のみでなく、エアーリフト作
用による蝿拝(空気燈拝)でも良い。The water and exfoliated sludge thus treated in the sludge chamber 4 are then separated from solid particles in the settling chamber 5.
At this time, the water area load of the sedimentation separation chamber 5 is increased from 3 to 8〆/〆'hr.
This is preferable in terms of separation efficiency. The treated water and exfoliated sludge discharged from the atomization tank 1 through a discharge passage 7 having a suitable separation means such as a gutter are then introduced into a settling tank 8 and separated, and the treated water A is discharged out of the system as an upper lighting liquid. At the same time, the stripped sludge is discharged from the lower part as surplus sludge B and is disposed of appropriately, such as by disposal or incineration. The water area load in the sedimentation tank is 12-24/d/day (0.5-1.0
It is preferable to set it as 〆/de/hour). The implementation of the present invention is not limited to the flow sheet described above; for example, the operation of solid particles, sewage, and gas (air) can be carried out by
Not only the mechanical fly-flying using the rotary blade, but also flying-flying (air lantern-hailing) using an air lift effect may be used.
また、剥離汚泥と処理水の分離操作は、沈降法以外の操
作、例えば浮上分離等の操作で行なっても良い。これら
のうち適宜選択すればよい。更に汚水中のBOD成分量
あるいは汚水量が大なる場合には爆気槽の数を増やして
直列あるいは並列に処理することも可能である。次に本
発明の実施例について以下に述べる。Further, the separation operation of the exfoliated sludge and the treated water may be performed by an operation other than the sedimentation method, such as flotation separation. Any one of these may be selected as appropriate. Furthermore, when the amount of BOD components in wastewater or the amount of wastewater becomes large, it is also possible to increase the number of bomb tanks and process them in series or in parallel. Next, examples of the present invention will be described below.
第1図に示したプロセスフローに基づいて以下の条件下
に汚水の連続処理を行なった。即ち、角型で、1辺の長
さ22仇吻、水深22仇蚊、内容積10その鰻気槽を用
い、鰻気槽の沈降分離室の水面穣負荷は5わ/〆′h「
、処理水と剥離汚泥の沈降分離槽の水面穣負荷は0.5
〆/で/日とし、曝気糟内には、0.2〜0.3帆◇の
砂を1.5そ充填し、粒子濃度を見かけ容積で15%と
し、処理水温度は25℃に設定し、曝気槽内の溶存酸素
濃度は3〜4脚となるように空気量を設定した。処理対
象汚水(原廃水)として、下水処理場の1次処理水を用
い必要に応じて、別にBOD源として、ベブトン、肉エ
キスを添加し、BOD容積負荷を7、10、20、30
、40、50、k9−BOD/で・日と変化させた場合
の水質測定結果を第1表に示す。Continuous treatment of wastewater was carried out under the following conditions based on the process flow shown in FIG. That is, using a rectangular eel tank with a side length of 22 m, a water depth of 22 m, and an internal volume of 10 m, the water surface load in the sedimentation separation chamber of the eel tank is 5 w/h.
, the water surface load of the sedimentation separation tank for treated water and exfoliated sludge is 0.5.
〆/de/day, the aeration chamber was filled with 1.5 tons of sand of 0.2 to 0.3 ◇, the particle concentration was set to 15% by apparent volume, and the treated water temperature was set to 25℃. However, the amount of air was set so that the dissolved oxygen concentration in the aeration tank was 3 to 4 feet. Primary treated water from a sewage treatment plant is used as wastewater to be treated (raw wastewater), and if necessary, Bebuton and meat extract are added as BOD sources to increase the BOD volume load to 7, 10, 20, 30.
, 40, 50, and k9-BOD/day.
第1表
xBOD源として原水中豚べプトン、肉エキスを別K添
加第1表から明らかなごとく、蝿気槽のBOD容積負荷
を20〜40k9−BOD/で・日の高負荷とし、剥離
汚泥を分離除去することにより、リンは70〜95%以
上除去され、同時にTK−Nも10〜20脚心〆上除す
ることが可能となる。Table 1 x Addition of pork beptone and meat extract in raw water as a BOD source. By separating and removing phosphorus, 70 to 95% or more of phosphorus is removed, and at the same time, it is possible to remove 10 to 20 TK-N.
また、処理水中にN03−Nがほとんど検出されないこ
とから、原水中のN馬−N‘ま酸化されたのではなく、
微生物膜中に取込まれたものと推定される。以上説明し
てきたことから明らかなように本発明によれば従来の活
性汚泥方式による生物脱リンプロセスとくらべて、プロ
セスが非常に簡単なものとなり、装置の維持管理も容易
となるうえ、凝集剤の添加を必要としないため運転費の
才が富な節減が可能となる。In addition, since N03-N is hardly detected in the treated water, it is possible that N-N' in the raw water was not oxidized.
It is presumed that it was taken into the microbial membrane. As is clear from the above explanation, the present invention makes the process much simpler than the conventional biological dephosphorization process using activated sludge, and the equipment is easier to maintain and manage. Since no additives are required, significant savings in operating costs are possible.
さらに脱リンと同時に脱窒、BOD除去も進行し、さら
に微生物膜的浄化に寄与する微生物膜表面積を大きくと
ることができるので、迅速な浄化作用を得ることができ
るので、下水処理場の沈澱下水等の処理に適用すれば、
運転費が安価で、効率的な処理を行なえる利点を有して
いる。Furthermore, denitrification and BOD removal proceed simultaneously with dephosphorization, and the surface area of the microbial membrane that contributes to microbial membrane purification can be increased, so a rapid purification effect can be obtained, making it possible to reduce the amount of sedimented sewage in sewage treatment plants. If applied to processing such as
It has the advantage of low operating costs and efficient processing.
第1図は本発明による汚水処理方法の一実施態様を示す
フローシートである。
1:曝気槽、2;空気配管、3;損辞手段、4:縄梓室
、5:沈澱分離室、6;固体粒子「7;排出路、8;沈
降槽、9;原水配管、A;処理水、B;余剰汚泥。
第1図FIG. 1 is a flow sheet showing one embodiment of the sewage treatment method according to the present invention. 1: Aeration tank, 2: Air piping, 3: Speech means, 4: Rope cassette chamber, 5: Sedimentation separation chamber, 6: Solid particles 7: Discharge channel, 8: Sedimentation tank, 9: Raw water piping, A; Treated water, B: Surplus sludge. Figure 1
Claims (1)
拌かつ懸濁浮遊させた処理槽内に被処理水を供給して前
記固体粒子と接触させるに際し、前記処理槽内のBOD
容積負荷を20〜50kg−BOD/m^3・日として
、被処理水中のBOD成分、リン酸塩、窒素化合物を同
時に除去することを特徴とする汚水処理方法。1. When supplying water to be treated into a treatment tank in which solid particles on which biofilm has grown are stirred and suspended under aerobic conditions and brought into contact with the solid particles, the BOD in the treatment tank is
A sewage treatment method characterized by simultaneously removing BOD components, phosphates, and nitrogen compounds from water to be treated at a volumetric load of 20 to 50 kg-BOD/m^3.day.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53164252A JPS6010798B2 (en) | 1978-12-26 | 1978-12-26 | Sewage treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53164252A JPS6010798B2 (en) | 1978-12-26 | 1978-12-26 | Sewage treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5586586A JPS5586586A (en) | 1980-06-30 |
JPS6010798B2 true JPS6010798B2 (en) | 1985-03-20 |
Family
ID=15789560
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP53164252A Expired JPS6010798B2 (en) | 1978-12-26 | 1978-12-26 | Sewage treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6010798B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5995997A (en) * | 1982-11-22 | 1984-06-02 | Hitachi Plant Eng & Constr Co Ltd | Biologically dephosphorizing method of waste water |
JPH0639837Y2 (en) * | 1990-01-12 | 1994-10-19 | 荏原インフイルコ株式会社 | Organic wastewater biological treatment equipment |
WO1994020425A1 (en) * | 1993-03-11 | 1994-09-15 | Naintsch Mineralwerke Gesellschaft M.B.H. | Improved method for purifying waste water using activated sludge to increase purification yields |
FR2720736B1 (en) * | 1994-06-02 | 1998-05-07 | Degremont | Process for the treatment of liquid effluents by activated sludge. |
AUPP860899A0 (en) * | 1999-02-11 | 1999-03-04 | Zeolite Australia Limited | Process for the removal of suspended and other material from waste water |
-
1978
- 1978-12-26 JP JP53164252A patent/JPS6010798B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5586586A (en) | 1980-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK153832B (en) | PROCEDURE FOR INHIBITING QUICK PREPARATION OF A THREAD-BASED BIOMASS WHEN OPERATING A SYSTEM WITH ACTIVATED SLAM | |
JP2008155085A (en) | Waste water treatment method and apparatus | |
JPS60187396A (en) | Apparatus for biologically removing nitrogen in waste water | |
JPS6010798B2 (en) | Sewage treatment method | |
KR100378558B1 (en) | Nitrogen and phosphorus removal process from sewage and waste water by 2A/O RBC with internal settler | |
KR100331898B1 (en) | Advanced Treatment Process of Domestic Wastewater by Biological and Chemical | |
JP2000263093A (en) | Waste water treatment apparatus | |
JPH05337492A (en) | Biological treatment of sewage | |
KR100435107B1 (en) | Advance Treatment Equipment and Process for Nitrogen and Phosphate Removal in Sewage and Wastewater | |
KR20000072808A (en) | Waste Water Disposal System And Method | |
KR20220068189A (en) | Method for biologically treating ammonium perchlorate with pooling of the microfiltration | |
WO1997033836A1 (en) | Method and apparatus for treating water | |
KR20020075046A (en) | The treating method of high concentration organic waste water | |
JP2000107797A (en) | Purification method and apparatus | |
JP2021037514A (en) | Water treatment method | |
BE1008828A3 (en) | Process fixed bed wastewater treatment plant. | |
JP2003024982A (en) | Biological denitrification method and biological denitrification apparatus | |
CN111517586A (en) | Device and process for treating low-carbon-nitrogen-ratio sewage based on short-cut denitrification | |
JPS6036838B2 (en) | How to purify sewage | |
KR20020089085A (en) | Apparatus for treating Nitrogen and Phosphorus in wastewater and A Treatment method thereof | |
JPS59199098A (en) | Treatment of organic filthy water | |
KR100433096B1 (en) | Equipment and Method of Nitrogen Removal with Down-flow Biofilm System using the Granule Sulfur | |
KR20020091723A (en) | Waste water disposal method by continuos inflow Sequencing Bath Reactor and its apparatus | |
KR830002326B1 (en) | Wastewater Treatment Method | |
KR100510406B1 (en) | The apparatus and the method of wastewater purification by anoxic-aerobic fluidizied bed |