JPS6010688A - Semiconductor light emitting device and manufacture thereof - Google Patents

Semiconductor light emitting device and manufacture thereof

Info

Publication number
JPS6010688A
JPS6010688A JP58118647A JP11864783A JPS6010688A JP S6010688 A JPS6010688 A JP S6010688A JP 58118647 A JP58118647 A JP 58118647A JP 11864783 A JP11864783 A JP 11864783A JP S6010688 A JPS6010688 A JP S6010688A
Authority
JP
Japan
Prior art keywords
light emitting
layer
emitting device
semiconductor light
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58118647A
Other languages
Japanese (ja)
Inventor
Kiyohide Wakao
若尾 清秀
Haruo Kawada
春雄 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58118647A priority Critical patent/JPS6010688A/en
Publication of JPS6010688A publication Critical patent/JPS6010688A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To enable to improve the periodicity of a photowaveguide by periodically varying the carrier density by implanting ions to the surface of the photowaveguide. CONSTITUTION:H<+> or Si<2+> ions are implanted to the surface of a P type InP layer 3 at a pitch P. When the light which propagates in a P type GaInAsP core layer 2 passes a distributed reflector 9 of a region that periodically varies in the carrier density, the refractive index periodically varies due to the variation in the carrier density, and feedback action is affected, thereby propagating in reverse direction.

Description

【発明の詳細な説明】 発明の技術分野 本発明は分布反射器を有する半導体発光装置及びその製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a semiconductor light emitting device having a distributed reflector and a method for manufacturing the same.

従来技術と問題点 従来の分布反射型の半導体発光装置(レーザ)は、リン
グランイ・マスクと湿式化学エツチング技術によりクラ
ッド層表面に周期的な凹凸を形成して構成されていた。
Prior Art and Problems Conventional distributed reflection type semiconductor light emitting devices (lasers) are constructed by forming periodic irregularities on the surface of a cladding layer using a ring run mask and wet chemical etching technology.

しかし、この場合、形成する凹凸の周期が0.1〜0.
4μmと極めて短かいためマスク製作が困難で、しかも
化学、エツチング時にマスクの下側へもサイドエツチン
グが行われるため周期性の良い凹凸が得にくいという問
題があった。
However, in this case, the period of the unevenness to be formed is 0.1 to 0.
Since the mask is extremely short at 4 μm, it is difficult to manufacture a mask, and since side etching is also performed on the underside of the mask during chemical etching, it is difficult to obtain irregularities with good periodicity.

発明の目的 本発明は上述の問題点を解決するためのもので、周期性
の良い分布反射器を備えた半導体発光装置及びその製造
方法を提供することを目的としている。
OBJECTS OF THE INVENTION The present invention is intended to solve the above-mentioned problems, and it is an object of the present invention to provide a semiconductor light emitting device equipped with a distributed reflector with good periodicity and a method for manufacturing the same.

発明の構成 本発明では、半導体材料の屈折率がキャリア濃度によシ
変わることを利用し表面が平らな分布反射器を構成する
ようにして上記目的の達成を図っている。
Structure of the Invention In the present invention, the above object is achieved by constructing a distributed reflector with a flat surface by utilizing the fact that the refractive index of a semiconductor material changes depending on the carrier concentration.

発明の実施例 以下、図面に関連して本発明の詳細な説明する。Examples of the invention The invention will now be described in detail in conjunction with the drawings.

第1図は本発明に係る半導体発光装置20の正面断面図
である。この半導体発光装置20の製造に際しては、捷
ずp形(100)IrLP基板(第1のクラッド層)1
上に、p形Ga1nAsPコア層(第1のクラッド層よ
り屈折率が大きいコア層、λJ#、1.35μm)2を
厚さ約0.7μ毒に形成し、その上にp形1nP層(コ
ア層より屈折率が小さい第2のクラッド層、p= 2 
X 1018cm−3) 3を厚さ約0.4 μmに形
成して光導波路を構成する。次にその上に、厚さ約0.
17μmのアンドープGa1nAsP層(活性層、λy
= 1.55 ttm ) 4及びn形1nP層5を順
次形成し、該アンドープGa1nP層5の両端部をエツ
チングによシ除去して該除去部に図示のようにp形1n
P層6を露出させる。次にこの露出するp形1nP層6
の表面に第2図に詳細を示すようにH+あるいはSi2
+をイオン注入技術(詳細後述)を用いてピッチ(周期
)Pで打ち込む。6はこのイオンの打ち込み部を示し、
打ち込みの深さDは0.2〜Q、31上m 、幅Wは約
0.15μm、周期Pは480OA(管内波長と同じ)
とする。このイオン打ち込み部6のキャリア濃度は約5
X1016cm−’である。最後に、p形1nP基板1
及びn形1nP層5上にそれぞれ11;極7及び8を形
成して半導体発(6) 光装置20が構成される。
FIG. 1 is a front sectional view of a semiconductor light emitting device 20 according to the present invention. When manufacturing this semiconductor light emitting device 20, a p-type (100) IrLP substrate (first cladding layer) 1
On top of this, a p-type Ga1nAsP core layer (a core layer with a higher refractive index than the first cladding layer, λJ#, 1.35 μm) 2 is formed to a thickness of about 0.7 μm, and on top of this, a p-type 1nP layer ( A second cladding layer with a lower refractive index than the core layer, p=2
x 1018 cm-3) 3 to a thickness of approximately 0.4 μm to constitute an optical waveguide. Then apply a layer on top of it to a thickness of about 0.
17 μm undoped Ga1nAsP layer (active layer, λy
= 1.55 ttm ) 4 and n-type 1nP layer 5 are sequentially formed, both ends of the undoped Ga1nP layer 5 are removed by etching, and p-type 1nP layer 5 is formed in the removed portion as shown in the figure.
The P layer 6 is exposed. Next, this exposed p-type 1nP layer 6
H+ or Si2 on the surface as shown in detail in Figure 2.
+ is implanted at a pitch (period) P using ion implantation technology (details will be described later). 6 shows this ion implantation part,
The implantation depth D is 0.2 to Q, 31m above, the width W is about 0.15μm, and the period P is 480OA (same as the wavelength in the pipe)
shall be. The carrier concentration of this ion implantation part 6 is about 5
X1016cm-'. Finally, p-type 1nP substrate 1
The semiconductor light emitting device 20 is constructed by forming poles 7 and 8 on the n-type 1nP layer 5, respectively.

この半導体発光装置20のp側の市1極7に正。Positive electrode 1 is connected to pole 7 on the p side of this semiconductor light emitting device 20.

n側の電極8に負の電圧を印加すると、活性層(Gal
nAaP層)4に電流が注入され発光する。この発生し
た光は、活性層4を伝搬しながら下側にあるp形Ga1
nAsPコア層2に結合し、活性層4の終端部付近では
主にp形Ga1nAsPコア層2を伝搬する。p形Ga
1nAsPコア層2を伝搬する光は、周期的にキャリア
濃度が変化している領域である分布反射器(光導波路の
打ち込み部6形成部分)9を通過すると、キャリア濃度
変化のだめ屈折率が周期的に変化しているため帰還作用
を受け、逆方向に伝搬する。これを繰シ返すうちに利得
が損失に打ち勝つと矢印A、A’方向のレーザ発振が起
こる。
When a negative voltage is applied to the n-side electrode 8, the active layer (Gal
A current is injected into the nAaP layer) 4 and it emits light. This generated light propagates through the active layer 4 and transmits the p-type Ga1 located below.
It couples to the nAsP core layer 2 and propagates mainly through the p-type Ga1 nAsP core layer 2 near the terminal end of the active layer 4 . p-type Ga
When the light propagating through the 1nAsP core layer 2 passes through the distributed reflector 9 (forming part of the implanted part 6 of the optical waveguide), which is a region where the carrier concentration changes periodically, the refractive index changes periodically due to the carrier concentration change. Since it changes to , it receives a feedback effect and propagates in the opposite direction. As this process is repeated, when the gain overcomes the loss, laser oscillation occurs in the directions of arrows A and A'.

次にイオン打ち込みによる分布反射器9の製造方法を説
明する。
Next, a method of manufacturing the distributed reflector 9 by ion implantation will be explained.

表面を剥離したp形1nP層6にイオンを注入するとき
の条件は、St の場合は、真空度10 torr、!
The conditions for implanting ions into the p-type 1nP layer 6 whose surface has been peeled off are as follows: In the case of St 2 , the degree of vacuum is 10 torr!
.

加速電圧60〜50KOr、打ち込み深さ約0.2μm
、ドーズ量1014個/ cm2であり、マスクレスで
幅を約0.15(4) μ惧に絞ってp=4soo、; で打ち込みを行う。p
形InP層6に打ち込捷れたSL は内部でやや広がる
ため幅が約0.2μmとなる。一方、Hを注入する場合
は、真空度10 torr、加速電圧20〜30□。V
、打ち込み深さ0.2〜0.3μ兜、ドーズ量10 〜
10 個/cm2であシ、同様にマスクレスで幅を約0
.15μmに絞って打ち込みを行う。Si”、H+の両
方の場合とも、p形1nP層3 (’II: 2xL1
018cm−3)中にI X 1 mm2の面積で同量
打ち込んだときに約5 x 10” 6cm”3の値が
C−V測定法よシ得られている。
Accelerating voltage 60-50KOr, driving depth approximately 0.2μm
, the dose is 1014 pieces/cm2, and the implantation is performed maskless with a narrowed width of about 0.15(4) μm and p=4soo; p
The SL implanted into the InP layer 6 expands a little inside, so that the width becomes about 0.2 μm. On the other hand, when injecting H, the degree of vacuum is 10 torr and the acceleration voltage is 20 to 30□. V
, driving depth 0.2~0.3μ, dose amount 10 ~
10 pieces/cm2, similarly without a mask, the width is about 0
.. Implantation is performed with a focus of 15 μm. In both cases, p-type 1nP layer 3 ('II: 2xL1
A value of about 5 x 10"6 cm"3 was obtained by the CV measurement method when the same amount was implanted in an area of I x 1 mm2 in 018 cm-3).

更に第6図は第1図の装置の変形例を示した半導体発光
装置60の正面断面図であシ、第4図はその光導波路部
分を拡大した図である。尚、第1図及び第2図で指示し
た部分と同部分は同記号で示しである。
Further, FIG. 6 is a front sectional view of a semiconductor light emitting device 60 showing a modification of the device shown in FIG. 1, and FIG. 4 is an enlarged view of the optical waveguide portion thereof. Note that the same parts as those indicated in FIGS. 1 and 2 are indicated by the same symbols.

半導体発光装置60では光導波路を構成しているp形G
a1nAsPコア層2にイオン打ち込み部を形成してい
る点で半導体発光装置20とは構成を異にしているが、
装置20と同様な効果を得ることができる。
In the semiconductor light emitting device 60, the p-type G constituting the optical waveguide
The structure is different from the semiconductor light emitting device 20 in that an ion implantation portion is formed in the a1nAsP core layer 2, but
The same effects as the device 20 can be obtained.

発明の効果 以上述べたように、本発明によれば、半導体材料の屈折
率がキャリア濃度によシ変わることを利用し、光導波路
の表面にイオンを注入することによってキャリア濃度を
周期的に変化させて表面の平らな分布反射器を構成する
ように彦っており、イオン打ち込みは高精度で行うこと
ができるため、周期性を向上させることが可能である。
Effects of the Invention As described above, according to the present invention, by utilizing the fact that the refractive index of a semiconductor material changes depending on the carrier concentration, the carrier concentration can be periodically changed by implanting ions into the surface of the optical waveguide. Since the ion implantation structure is designed to form a distributed reflector with a flat surface and ion implantation can be performed with high precision, it is possible to improve the periodicity.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すもので、第1図は半導体発
光装置の正面断面図、第2図は鎖1図の要部拡大図、第
6図は半導体発光装置の他の例を示す正面断面図、第4
図は第6図の要部拡大図である。 図中、1はp形1nP基板(第1のクラッド層)、2は
p形Ga1nAsPコア層(第1のクラッド層よシ屈折
率が大きいコア層)、3はp形1nP層(コア層よシ屈
折率が小さい第2のクラッド層)、4はアンドープGa
1nAsP層(活性層)、5はn形1nP層、6はイオ
ン打ち込み部、7.8は電極、9は分布反射器である。 特許出願人富士通株式会社 代理人弁理士玉蟲久五部(外1名) (7)
The drawings show embodiments of the present invention; FIG. 1 is a front sectional view of a semiconductor light emitting device, FIG. 2 is an enlarged view of the main part of chain 1, and FIG. 6 is another example of the semiconductor light emitting device. Front sectional view, 4th
The figure is an enlarged view of the main part of FIG. In the figure, 1 is a p-type 1nP substrate (first cladding layer), 2 is a p-type Ga1nAsP core layer (core layer with a higher refractive index than the first cladding layer), and 3 is a p-type 1nP layer (more than the core layer). (second cladding layer with a small refractive index), 4 is undoped Ga
1nAsP layer (active layer), 5 is an n-type 1nP layer, 6 is an ion implantation part, 7.8 is an electrode, and 9 is a distributed reflector. Patent applicant Fujitsu Limited Patent attorney Gobe Tamamushi (1 other person) (7)

Claims (1)

【特許請求の範囲】 t 発光領域と光導波路とを備えだ半導体発光装置にお
いて、前記光導波路のキャリア濃度が周期的に変化して
いる分布反射器を有することを特徴とする半導体発光装
置。 2、 光導波路の表面に、イオンを所定のピッチで注入
することによりキャリア濃度の周期的変化を与えたこと
を特徴とする子導体発光装置の製造方法。
[Scope of Claims] t. A semiconductor light emitting device comprising a light emitting region and an optical waveguide, the semiconductor light emitting device comprising a distributed reflector in which the carrier concentration of the optical waveguide changes periodically. 2. A method for manufacturing a child conductor light emitting device, characterized in that periodic changes in carrier concentration are imparted to the surface of an optical waveguide by implanting ions at a predetermined pitch.
JP58118647A 1983-06-30 1983-06-30 Semiconductor light emitting device and manufacture thereof Pending JPS6010688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58118647A JPS6010688A (en) 1983-06-30 1983-06-30 Semiconductor light emitting device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58118647A JPS6010688A (en) 1983-06-30 1983-06-30 Semiconductor light emitting device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6010688A true JPS6010688A (en) 1985-01-19

Family

ID=14741730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58118647A Pending JPS6010688A (en) 1983-06-30 1983-06-30 Semiconductor light emitting device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6010688A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4941148A (en) * 1986-11-12 1990-07-10 Sharp Kabushiki Kaisha Semiconductor laser element with a single longitudinal oscillation mode
EP1705763A2 (en) * 2005-03-24 2006-09-27 Avago Technologies Fiber IP (Singapore) Pte. Ltd. Quantum cascade laser with grating formed by a periodic variation in doping

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4941148A (en) * 1986-11-12 1990-07-10 Sharp Kabushiki Kaisha Semiconductor laser element with a single longitudinal oscillation mode
EP1705763A2 (en) * 2005-03-24 2006-09-27 Avago Technologies Fiber IP (Singapore) Pte. Ltd. Quantum cascade laser with grating formed by a periodic variation in doping
EP1705763A3 (en) * 2005-03-24 2006-10-18 Avago Technologies Fiber IP (Singapore) Pte. Ltd. Quantum cascade laser with grating formed by a periodic variation in doping

Similar Documents

Publication Publication Date Title
US5781577A (en) Semiconductor laser
JPS6010688A (en) Semiconductor light emitting device and manufacture thereof
JPS5858784A (en) Distribution feedback type semiconductor laser
JPH073908B2 (en) Method for manufacturing semiconductor light emitting device
JPS63124484A (en) Semiconductor laser element
JPS62214687A (en) Structure of semiconductor laser
KR100236003B1 (en) Semiconductor laser diode and its manufacturing method
JPS60126880A (en) Semiconductor laser device
JPS6177327A (en) Etchant
JPS63250886A (en) Manufacture of semiconductor laser element
JPS6490578A (en) Manufacture of semiconductor laser device
JPS62165989A (en) Distributed feedback type semiconductor laser element
JPS63233587A (en) Semiconductor laser device
KR100372768B1 (en) Method for fabricating laser diode
JPS6136720B2 (en)
KR100293463B1 (en) Laser diode and method of making the same
CA1290434C (en) Ridge guide distributed feedback laser and method of making same
JPH0385786A (en) Single wavelength semiconductor laser and its manufacture
JPH01215087A (en) Semiconductor light emitting device
JPS607788A (en) Semiconductor laser
JPS61182295A (en) Semiconductor layer device
JPS595688A (en) Semiconductor laser
JPH0283990A (en) Manufacture of semiconductor light emitting device
JPS5927589A (en) Bistable semiconductor laser diode
JPS6480089A (en) Semiconductor laser