JPS607788A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS607788A
JPS607788A JP11510283A JP11510283A JPS607788A JP S607788 A JPS607788 A JP S607788A JP 11510283 A JP11510283 A JP 11510283A JP 11510283 A JP11510283 A JP 11510283A JP S607788 A JPS607788 A JP S607788A
Authority
JP
Japan
Prior art keywords
layer
type
active layer
groove part
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11510283A
Other languages
Japanese (ja)
Inventor
Yukio Watanabe
幸雄 渡辺
Naoto Mogi
茂木 直人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11510283A priority Critical patent/JPS607788A/en
Publication of JPS607788A publication Critical patent/JPS607788A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode
    • H01S5/2234Buried stripe structure with inner confining structure between the active layer and the lower electrode having a structured substrate surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2237Buried stripe structure with a non-planar active layer

Abstract

PURPOSE:To obtain a semiconductor laser capable of laser oscillation of basic lateral mode in a low threshold current by a method wherein the P type current narrowing layer having a stripe groove part in its center is laminated on the N type semiconductor substrate and the same parts of an N type clad layer and further of a P type active layer are arranged on said current narrowing layer so as to be close to the substrate by utilizing the groove part. CONSTITUTION:The P type CaAs current narrowing layer 22 having a stripe groove part 21 in its center is formed on the N type GaAs substrate 20 and an N type Al0.45Ga0.55As first clad layer 23 is laminated on said layer 22 to fill the groove part 21 with arching inversely. Next, a P type Al0.15Ga0.85As active layer 24 similarly curving downward is grown on the groove part 21 and this curved part is made to be brought to the sustrate 20. After that, a P type Al0.45Ga0.55As second clad layer 25 and a P type GaAs ohmic contact layer 26 are deposited with laminating and the first electrode 27 and the second electrode 28 having the predetermined shape respectively are formed on the front surface and the back surface of the substrate 20.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は半導体レーザに係り、特に発振モードが制御さ
れた埋め込み型の半導体レーザに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a semiconductor laser, and more particularly to a buried type semiconductor laser whose oscillation mode is controlled.

〔従来技術とその問題点〕[Prior art and its problems]

一般に半導体レーザな高温下に於いて連続発振させるた
めには光の損失とむだな再結合を特徴とする特定領域に
元エネルギー及び注入電流を閉じ込める4J?造にする
必要がある。そこで半導体レーザの% 極をストライブ
状電極として活性層3に流れる電流を部分的に集中させ
同時に光エネルギーも集中させる、いわゆる電極ストラ
イプ型半導体レーザが出現した。
Generally speaking, in order to achieve continuous oscillation under high temperatures in a semiconductor laser, the original energy and injected current are confined to a specific region characterized by optical loss and wasteful recombination. It is necessary to make it a structure. Therefore, a so-called electrode stripe type semiconductor laser has appeared in which the electrode of the semiconductor laser is used as a stripe electrode to partially concentrate the current flowing through the active layer 3 and simultaneously concentrate the optical energy.

この電極ストライブ型半導体レーザにより熱ノ発生を少
なくし室温連続発振が可能となったが。
This electrode striped semiconductor laser reduces heat generation and enables continuous oscillation at room temperature.

特性上の大きな難点は活性層に平行に立つ電磁波モード
、即ち横モードの不安定性及び注入電流の変化に対する
横モードの変化であった。
The major drawbacks in terms of characteristics were the instability of the electromagnetic wave mode parallel to the active layer, that is, the transverse mode, and the change of the transverse mode in response to changes in the injection current.

これは電極ストライプ型が活性層の横方向に対してキャ
リア及び光の十分な閉じ込め構造となっていないためで
ある。即ち、しきい倍電流の謹かに上の電流領域でのレ
ーザ発振はストライプygの電極の真下の活性領域での
み発振に必要なオリ得が損失を上回るので零次或いは低
次のモードによる発振である。
This is because the electrode stripe type does not have a sufficient confinement structure for carriers and light in the lateral direction of the active layer. In other words, laser oscillation in a current range well above the threshold current is caused by zero-order or low-order mode oscillation because the gain necessary for oscillation exceeds the loss only in the active region directly under the stripe YG electrode. It is.

しかし、さらに注入電流を増加していくと、活性層への
キャリアの注入領域が広がり高利得領域が拡がるため高
次モードが発生し横モードが不安定となる。
However, as the injection current is further increased, the region in which carriers are injected into the active layer expands, and the high gain region expands, so that higher-order modes occur and the transverse mode becomes unstable.

この横モードの不安定性と注入部:流依存性は元ディス
ク用ピックアップ等にこのような4負モードが不安定な
レーザな使用する場合に、トラッキング等にエラーを生
じる原因になる。そこで横モードの不安定性を補う埋め
込み型の半導体レーザが。
The instability of the transverse mode and the dependence on the flow of the injection section cause errors in tracking and the like when such a laser with unstable four negative modes is used in a pickup for an original disk. This is why a buried semiconductor laser is needed to compensate for the instability of the transverse mode.

例えば特公昭56−53237に於いて考案されている
For example, it was devised in Japanese Patent Publication No. 56-53237.

この埋め込み型の半導体レーザの概略を第1図を参照し
て説明する。
The outline of this embedded type semiconductor laser will be explained with reference to FIG.

この埋め込み型の半導体レーザは、半導体基板(1)上
に拡散層からなる電流狭窄層(2)、光及びキャリアを
閉じ込める第1のクラッド層(3)、中央部が凹状でわ
ん形状となっている活性層(4)、光及びキャリアを閉
じ込める第2のクラッド層(5)、オーミックコンタク
ト層(6)を有する構造となっている。
This embedded semiconductor laser consists of a semiconductor substrate (1), a current confinement layer (2) consisting of a diffusion layer, a first cladding layer (3) that confines light and carriers, and a concave central part that is cup-shaped. The structure includes an active layer (4) that confines light and carriers, a second cladding layer (5) that confines light and carriers, and an ohmic contact layer (6).

活性層(4)の中央部は半導体基板(1)と電流狭窄層
(2)からなる溝部(7)内にある。
A central portion of the active layer (4) is located within a groove (7) formed by the semiconductor substrate (1) and the current confinement layer (2).

第1の電極(8)及び第2の電極(9)は、夫々オーミ
ックコンタクト層(6)及び半導体基板(1)に設けて
あり、第1のクラッド層(3)と活性層(4)の界面に
於いて順方向バイアスの第1の整流整合00)を形成す
る。
The first electrode (8) and the second electrode (9) are provided on the ohmic contact layer (6) and the semiconductor substrate (1), respectively, and are provided on the first cladding layer (3) and the active layer (4). A forward biased first rectifying match 00) is formed at the interface.

半導体基板(1)と朶1のクラッド層(3)は亀流狭軍
層(2)とは異なる導電型のものであり、半導体基板(
1)と電流狭窄層(2)の界面に第2の整流整合側を。
The semiconductor substrate (1) and the cladding layer (3) of the frame 1 are of a conductivity type different from that of the Kamelyu narrow layer (2), and the semiconductor substrate (
1) and the second rectifying matching side at the interface of the current confinement layer (2).

電流狭窄N(2)と第1のクラッド層(3)の界面に第
3の整流接合αつを生じる。第1の層流接合(10)が
順方向バイアスされるとき、第2の整流接合(11)は
順方向にバイアスされ、また第3の整流接合σ2)は逆
バイアスされる。
A third rectifying junction α is generated at the interface between the current confinement N(2) and the first cladding layer (3). When the first laminar junction (10) is forward biased, the second rectifying junction (11) is forward biased and the third rectifying junction σ2) is reverse biased.

例えば半導体基板(1)がN型GaAsなら電流狭窄層
(2) ハP 型GaAs 、 m 1のクラッド層(
3)はN型GaAJAs 、活性層(4)はP型GaA
s 、第2のクラッド層(5)はP型GaAgAs 、
そしてオーミックコンタクト層(6)はP型GaAsと
することができる。活性層(4)の中央部は溝部(7)
の上端に隣接してわん形状となっている。
For example, if the semiconductor substrate (1) is N-type GaAs, the current confinement layer (2) is P-type GaAs, m 1 cladding layer (
3) is N-type GaAJAs, active layer (4) is P-type GaA
s, the second cladding layer (5) is P-type GaAgAs,
The ohmic contact layer (6) can be made of P-type GaAs. The center of the active layer (4) is a groove (7)
It is shaped like a bowl adjacent to the upper end of the .

第1の整流接合00)が順方向バイアスされたとき、キ
ャリアの再結合の結果として発生した屍は第1のクラッ
ド層(3)と第2のクラッド層(5)で挾まれる高屈折
率の活性層(4)に導かれる。そのため、レーザの発振
領域は〜活性層(4)の中央部に限定される。
When the first rectifying junction 00) is forward biased, the dead bodies generated as a result of carrier recombination are sandwiched between the first cladding layer (3) and the second cladding layer (5) with a high refractive index. is guided to the active layer (4). Therefore, the laser oscillation region is limited to ~the center of the active layer (4).

しかし、この埋め込み型の半導体レーザに於いては溝部
(7)の形成工程や結晶成長工程の困離さかうその溝部
(7)の幅は4乃至6μmとなり、活性層(4)の中央
部のわん形状の幅を狭くすることができず、レーザ発振
を十分に基本横モードとすることができないという問題
があった。
However, in this buried type semiconductor laser, the width of the groove (7) is 4 to 6 μm, which makes the process of forming the groove (7) and the crystal growth process difficult. There was a problem in that the width of the shape could not be narrowed, and laser oscillation could not be sufficiently set to the fundamental transverse mode.

〔発明の目的〕[Purpose of the invention]

本発明は上述の問題点を考慮してなされたもので、低し
きい値電流で基本横モードのレーザ発振をすることがで
きる半導体レーザな提供することにある。
The present invention has been made in consideration of the above-mentioned problems, and it is an object of the present invention to provide a semiconductor laser capable of laser oscillation in a fundamental transverse mode with a low threshold current.

〔発明の概要〕[Summary of the invention]

本発明は第1の導電型の半導体基板上に第2の導電型の
電流狭窄層を一部分して第1の導電型の第1のクラッド
層、第1若しくは第2の導電型のオーミックコンタクト
層が順次積層して形成されており、電流狭窄層が形成さ
れていない半導体基板:′−達する溝部に第1のクラッ
ド層を介して活性層がわん形状に形成された半導体レー
ザ於いて。
In the present invention, a current confinement layer of a second conductivity type is partially formed on a semiconductor substrate of a first conductivity type to form a first cladding layer of the first conductivity type, an ohmic contact layer of the first conductivity type, or a second conductivity type ohmic contact layer. In a semiconductor laser, an active layer is formed in a bowl shape through a first cladding layer in a groove portion that reaches a semiconductor substrate in which a current confinement layer is not formed.

活性層がこのわん形状の中央部で半導体基板に最も近接
し、かつ第1のクラッド層の比抵抗が5×10−2乃至
1Ω頷であることを特徴とする半導体レーザ。
A semiconductor laser characterized in that the active layer is closest to the semiconductor substrate at the center of the bowl shape, and the first cladding layer has a specific resistance of 5×10 −2 to 1 Ω.

〔発明の効果〕〔Effect of the invention〕

活性層のわん形状の中央部が最も半導体基板に近接し、
かつ第1のクラッド層の比抵抗が0.05乃至1Ω口と
比較的高抵抗であるため、活性層の各部と半導体基板と
の距離差により活性層への電流注入レベルが変化する。
The central part of the active layer's bowl shape is closest to the semiconductor substrate,
In addition, since the first cladding layer has a relatively high specific resistance of 0.05 to 1 Ω, the level of current injection into the active layer changes depending on the distance difference between each part of the active layer and the semiconductor substrate.

従って溝部中心に電流が集中すると共に活性層がわん形
状pため横方向にも光閉じ込めが十分行なわれ、低しき
い値で基本横モードの安定したレーザが伺られる。
Therefore, the current is concentrated at the center of the groove, and since the active layer has a circular shape, light is sufficiently confined in the lateral direction, resulting in a stable laser with a low threshold value and a fundamental transverse mode.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第2図を参照して説明する。 An embodiment of the present invention will be described with reference to FIG.

第2図はGaMAs半導体レーザの代表例を示した断面
図であり、以下その製造方法とともにその構造を説明す
る。
FIG. 2 is a sectional view showing a typical example of a GaMAs semiconductor laser, and its structure will be explained below along with its manufacturing method.

N型GaAs 1〜3X1018/ぼ3の不純物濃度の
半導体基板C20)上にP型GaAs 層を液相成長、
気相成長、拡散等によって1.5μm形成する。
A P-type GaAs layer is formed by liquid phase growth on a semiconductor substrate C20) with an impurity concentration of 1 to 3×10 18 /about 3 N-type GaAs.
It is formed to a thickness of 1.5 μm by vapor phase growth, diffusion, etc.

P型不純物濃度は基本濃度より少し大ぎい程度で良い。The P-type impurity concentration may be slightly higher than the basic concentration.

次にフォトレジスト膜を付着して、露光した後幅2μm
のストライプ状の窓を設けこれを選択エツチングの際の
マスクとしてストライプ状の溝部(2I)及び電流狭窄
層(22)を形成する。溝部(21)の深さは、半導体
基板(2■に謹かに達する程度であり。
Next, a photoresist film is attached and exposed to a width of 2 μm.
A stripe-shaped window is provided and used as a mask during selective etching to form a stripe-shaped groove (2I) and a current confinement layer (22). The depth of the groove (21) is such that it comfortably reaches the semiconductor substrate (2).

この場合2μmである。溝部(21)は通常の化学エツ
チング液、即ちリン酸1と過酸化水素1とメタノール5
の割合であり20 ”Oで約3分間エツチングすること
によって所望の深さが得られる。この時のストライプ状
の窓は(100)方向と平行にあける。
In this case, it is 2 μm. The groove (21) contains a conventional chemical etching solution, namely 1 part phosphoric acid, 1 part hydrogen peroxide, and 5 parts methanol.
The desired depth can be obtained by etching at 20"O for about 3 minutes. At this time, the striped windows are opened parallel to the (100) direction.

この溝部C!1)の側壁はやや鼓状となる。この溝部(
21)の幅は、溝底で6μ、その上方のくびれだ部分で
4.5μ、最上部で5μとなる。溝部Qυを形成した後
This groove C! The side wall of 1) is slightly drum-shaped. This groove (
The width of 21) is 6μ at the bottom of the groove, 4.5μ at the constriction above it, and 5μ at the top. After forming the groove Qυ.

フォトレジスト膜を除去する。そあ後は液相エピタキシ
ャル成長によって連続して成長される。比抵抗が5×1
0 乃至1Ωm、のN型1’J o、45 Ga o、
56Asからなる第1のクラッド層(23)を溝部01
)で弓形に沈下した状態で成長を終らせ、その上にP型
A13o−+a Ga o、55Asからなる活性層(
24jを同様な弓形となる様に成長させてわん形状とし
、その中央部が半 −導体基板c20)に最も近接する
ようにする。
Remove the photoresist film. After that, it is continuously grown by liquid phase epitaxial growth. Specific resistance is 5×1
0 to 1 Ωm, N type 1'J o, 45 Ga o,
The first cladding layer (23) made of 56As is placed in the groove 01.
), the growth ends in an arcuate state of sinking, and on top of that an active layer consisting of P-type A13o-+aGao, 55As (
24j is grown in a similar arcuate shape to form a dog-like shape, with the center thereof being closest to the semiconductor substrate c20).

次いでP型M 。、、、 Ga o、、、 Asからな
る第2のクラッドJci C2ω、P型GaAsからな
るオーミックコンタクト層(26)を成長さぜる。各層
の厚みは、溝部(2刀中心の第1のクラッド層(23)
は約1μn1 、活性層(2枡i、o、xμm、i2の
クラッド層G!5)は1.3μmである。また溝部C2
1)端の活性層(24から半導体基板(20)間の第1
のクラッド層(2)の厚みは2.1μm以上である。最
後に第1の電極Qηをオ・−ミックコンタ、クト層(3
fi)の上部表面に、第2の電極(2印を半導体基板(
20)の下部表面に形成する。
Next is P type M. A second cladding Jci C2ω made of Gao,..., As, and an ohmic contact layer (26) made of P-type GaAs are grown. The thickness of each layer is as follows:
is approximately 1 μn1, and the active layer (cladding layer G!5 of 2 squares i, o, x μm, i2) is 1.3 μm. Also, groove C2
1) The first layer between the active layer (24) at the edge and the semiconductor substrate (20)
The thickness of the cladding layer (2) is 2.1 μm or more. Finally, the first electrode Qη is connected to the ohmic contact layer (3
A second electrode (marked 2) is placed on the upper surface of the semiconductor substrate (fi).
20).

GaAA!As半導体レーザは以上の様な4F+)造で
あり、動作時は第1の電極(2ηを負、第2の電極08
)を正とすることにより活性層Hと第1のクラッド層(
231からなる第1の整流接合09)は順方向にバイア
スされ。
GaAA! The As semiconductor laser has a 4F+) structure as described above, and during operation, the first electrode (2η is negative, the second electrode is 08
) is positive, the active layer H and the first cladding layer (
The first rectifying junction 09) consisting of 231 is forward biased.

第1のクラッド層(23)と電流狭窄層<22+からな
る第2の整流接合例は逆バイアスされ、従って電流は抵
抗の一番小さな溝部01Jの中央部に集中して流れる。
The second rectifying junction example consisting of the first cladding layer (23) and the current confinement layer <22+ is reverse biased, and therefore the current flows concentrated in the center of the groove 01J with the lowest resistance.

再結合により生じた光は利得が損失を上回ったときレー
ザ発振となるが、この場合光は活性i (24)がわん
曲しているため4黄方向にも閉じ込められて基本楊モー
ド発振する。尚、第1のクラッドm (23)の比抵抗
が5×10 Ω・函未満では活性B ’(2,Dの中央
部での電流集中を図ることが困窮tで、また1Ω・函を
超えると低しきい値電流で発振させることが困難となる
ようである。
The light generated by recombination becomes laser oscillation when the gain exceeds the loss, but in this case, since the active i (24) is curved, the light is also confined in the 4-yellow direction and oscillates in the fundamental Yang mode. Note that when the specific resistance of the first cladding m (23) is less than 5 × 10 Ω·box, it is difficult to concentrate the current at the center of the active B′ (2, D), and when the resistivity exceeds 1Ω·box. It seems difficult to oscillate at a low threshold current.

以上の様な電流集中及び活性層わん形状により低しきい
値電流で基本横モードで発振する半導体レーザとな−る
。また、本実施例では半導体基板(2o)にN型半導体
基板を用いたがP型半導体基板とし電流狭窄層(221
をN型、第1のクラッド層(23)をP型、第2のクラ
ッド層G!ωをN型とした半導体レーザでも適用できる
ことは明らかである。
The current concentration and the active layer's circular shape as described above result in a semiconductor laser that oscillates in the fundamental transverse mode with a low threshold current. Further, in this example, an N-type semiconductor substrate was used as the semiconductor substrate (2o), but a P-type semiconductor substrate was used as the current confinement layer (221).
is N type, the first cladding layer (23) is P type, and the second cladding layer G! It is clear that a semiconductor laser in which ω is of N type can also be applied.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例を示す断面図、第2図は本発明の一実施
例を示ず断面図である。 20・・・半導体基板、21・・・溝部、22・・・電
流狭窄層23・・・第1のクラッド層、24・・・活性
層25・・・第2のクラッド層、26・・・オーミック
コンタクト層27.28.、、電極
FIG. 1 is a sectional view showing a conventional example, and FIG. 2 is a sectional view not showing an embodiment of the present invention. 20... Semiconductor substrate, 21... Groove portion, 22... Current confinement layer 23... First cladding layer, 24... Active layer 25... Second cladding layer, 26... Ohmic contact layer 27.28. ,,electrode

Claims (1)

【特許請求の範囲】 第1の導電型の半導体基板上に第2の導電型の電流狭窄
層を一部分して第1の導電型の第1のクラッド層、第1
若しくは第2の導電型の活性層。 第2の導電型の第2のクラッド層、第2の導電へソのオ
ーミックコンタクト層が順次精層して形成され、前記電
流狭窄層が形成されていない前記半導体基板に達する溝
部に前記第1のクラッド層を介して箭記活性層がわん形
状に形成された半導体レーザに於いて、前記活性層が該
活性層のわん形状の中央部で前記半導体基板に最も近接
し、かつ前記第1のクラッド層の比抵抗が5X10”−
”乃至1Ω・歯であることを%、g、とする半導体レー
ザ。
[Claims] A current confinement layer of a second conductivity type is partially formed on a semiconductor substrate of a first conductivity type, and a first cladding layer of a first conductivity type is formed on a semiconductor substrate of a first conductivity type.
Or a second conductivity type active layer. A second cladding layer of a second conductivity type and a second conductive ohmic contact layer are sequentially formed, and the first In a semiconductor laser in which an active layer is formed in a bowl shape through a cladding layer, the active layer is closest to the semiconductor substrate at the center of the bowl shape of the active layer, and The specific resistance of the cladding layer is 5X10”-
A semiconductor laser whose %, g represents a 1Ω tooth.
JP11510283A 1983-06-28 1983-06-28 Semiconductor laser Pending JPS607788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11510283A JPS607788A (en) 1983-06-28 1983-06-28 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11510283A JPS607788A (en) 1983-06-28 1983-06-28 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS607788A true JPS607788A (en) 1985-01-16

Family

ID=14654267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11510283A Pending JPS607788A (en) 1983-06-28 1983-06-28 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS607788A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5173913A (en) * 1990-06-28 1992-12-22 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5173913A (en) * 1990-06-28 1992-12-22 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser

Similar Documents

Publication Publication Date Title
JPH0518473B2 (en)
JPS607788A (en) Semiconductor laser
JPH0552676B2 (en)
JPH04115588A (en) Semiconductor laser
JPS6362292A (en) Semiconductor laser device and manufacture thereof
JP3108183B2 (en) Semiconductor laser device and method of manufacturing the same
JPH0671121B2 (en) Semiconductor laser device
JPS63124484A (en) Semiconductor laser element
JPS61134094A (en) Semiconductor laser
JPS61220389A (en) Integrated type semiconductor laser
JPS63287079A (en) Manufacture of semiconductor laser
JPS5864085A (en) Semiconductor laser and manufacture thereof
JPH01309393A (en) Semiconductor laser device and its manufacture
JPS6136718B2 (en)
JPS60234392A (en) Manufacture of semiconductor laser element
JPS6262583A (en) Semiconductor laser element
JPS58162091A (en) Semiconductor laser element and manufacture thereof
JPS6292385A (en) Semiconductor laser
JPS6118879B2 (en)
JPS59222984A (en) Semiconductor laser device
JPS6088488A (en) Semiconductor laser device
JPH0265285A (en) Semiconductor laser
JPH0233988A (en) Semiconductor laser
JPH02178987A (en) Semiconductor laser element
JPS5853876A (en) Preparation of semiconductor laser