JPS60102532A - Temperature detecting method - Google Patents

Temperature detecting method

Info

Publication number
JPS60102532A
JPS60102532A JP58210574A JP21057483A JPS60102532A JP S60102532 A JPS60102532 A JP S60102532A JP 58210574 A JP58210574 A JP 58210574A JP 21057483 A JP21057483 A JP 21057483A JP S60102532 A JPS60102532 A JP S60102532A
Authority
JP
Japan
Prior art keywords
circuit
temperature
chopper
output
offset
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58210574A
Other languages
Japanese (ja)
Inventor
Ichiro Nakahara
一郎 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP58210574A priority Critical patent/JPS60102532A/en
Publication of JPS60102532A publication Critical patent/JPS60102532A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0803Arrangements for time-dependent attenuation of radiation signals
    • G01J5/0805Means for chopping radiation

Abstract

PURPOSE:To simplify the constitution of circuits, by providing a circuit, whose circuit constant can be changed, in a temperature measuring circuit in a chopper, which intermittently cuts infrared rays emitted from a body, and adjusting the offset of operation amplifiers by the regulation of said circuit constant. CONSTITUTION:Infrared rays emitted from an object A, whose temperature is to be measured, are intermittently cut by a chopper 2 and inputted to an integrating circuit 6 through an infrared-ray sensor 1, an amplifier 3, and a high-pass filter 4. The output of a photointerrupter 2b is imparted to an FET5, and the output of the filter 4 is synchronously rectified. The temperature of a disk 2a of the chopper 2 is detected by a diode 9. The signal corresponding to the temperature difference between the object A and the disk 2a is inputted to an amplifier 8. Variable resistors 4b and 6b for regulating the offset of operation amplifiers 4a and 6a can be omitted. The offset compensation is made by the adjustment of only a voltage dividing circuit 11 in the temperature measuring circuit of the disk 2a.

Description

【発明の詳細な説明】 本発明ば焦電素子を用いた非接触の温度検出方法に関し
、更に詳述すれば検出装置の回路構成を簡略化できる温
度検出方法を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a non-contact temperature detection method using a pyroelectric element, and more specifically, it provides a temperature detection method that can simplify the circuit configuration of a detection device.

第1図は電子レンジ等に用いられているこの種の温度検
出装置の構成を示す模式図である。調理対象食品等の温
度測定対象Aはその表面温度に応じた赤外線を発するが
これを上方に配設した焦電素子よりなる赤外線センサ1
にて検出すべくなしである。赤外線センサ1の直下には
赤外線を断続するチョッパ2が配設しである。チョッパ
2は赤外線を透過する部分と遮断する部分とを交互的に
配した円i2aを図示しないモータにて回転させ、温度
測定対象Aが発する赤外線を赤外線センサ1に断続して
到達せしめるようにしである。換言すれば赤外線センサ
1は温度測定対象Aとチョッパ20円盤2aとからの赤
外線を交互に受けることになる。この信号は増幅器3に
与えられてここで増幅され、次に演算増幅器(以下オペ
アンプという)4aを用いてなるバイパスフィルタ回路
4に与えられる。デジソバ2の円盤2aの回転域にはフ
ォトインクラブタ2bを設けてあり、チョッパ2の赤外
線断続周期に同期した信号を得るようにしてあり、これ
をバイパスフィルタ回路4の出力端子に接続したFET
 5に与え、フィルタ回路出力を同期整流するようにな
しである。このようにして同期整流された信号ばオペア
ンプ6aを用いてなる積分回路6に与えられ、ここで積
分された信号はゲイン闘整回路7にてゲイン調整をされ
て増幅器8へ与えられるようにしである。ゲイン調整回
路7出力は温度測定回路八と円盤2aの赤外線遮断部と
の温度差相当の信号となっている。
FIG. 1 is a schematic diagram showing the configuration of this type of temperature detection device used in microwave ovens and the like. The temperature measurement object A, such as the food to be cooked, emits infrared rays according to its surface temperature.
There is no way to detect it. Directly below the infrared sensor 1 is a chopper 2 that cuts off infrared rays. The chopper 2 uses a motor (not shown) to rotate a circle i2a in which infrared ray transmitting parts and infrared ray blocking parts are arranged alternately, so that the infrared rays emitted by the temperature measurement object A reach the infrared sensor 1 intermittently. be. In other words, the infrared sensor 1 alternately receives infrared rays from the temperature measurement object A and the chopper 20 disk 2a. This signal is applied to an amplifier 3, where it is amplified, and then applied to a bypass filter circuit 4 using an operational amplifier (hereinafter referred to as an operational amplifier) 4a. A photo ink converter 2b is provided in the rotation range of the disc 2a of the digisova 2 to obtain a signal synchronized with the infrared intermittent cycle of the chopper 2, and this is connected to the output terminal of the bypass filter circuit 4.
5, and the output of the filter circuit is synchronously rectified. The signal thus synchronously rectified is applied to an integrating circuit 6 using an operational amplifier 6a, and the signal integrated here is gain adjusted in a gain adjustment circuit 7 and applied to an amplifier 8. be. The output of the gain adjustment circuit 7 is a signal corresponding to the temperature difference between the temperature measurement circuit 8 and the infrared cutoff section of the disk 2a.

ダイオード9はチョッパ2の円!It2 aの赤外線遮
断部の温度を測定するためのものであり、赤外線センサ
1及びチョッパ2等を収納した筐体内に設置される。こ
のダイオード9出力は差動増幅器1゜の一端子に入力さ
れ、またその子端子には可変抵抗器、固定抵抗器からな
る分圧回路11の出力が与えられCいる。そして差動増
幅器10出力は更に増幅されて適宜レベルになされる。
Diode 9 is the circle of chopper 2! It is used to measure the temperature of the infrared cutoff section of It2a, and is installed in a housing that houses the infrared sensor 1, chopper 2, etc. The output of this diode 9 is input to one terminal of the differential amplifier 1°, and the output of a voltage dividing circuit 11 consisting of a variable resistor and a fixed resistor is given to its child terminal. The output of the differential amplifier 10 is further amplified to an appropriate level.

このようなチョッパ温度測定回路12の出力はゲイン調
整回路7出力と共に増幅器8へ与えられる。なお分圧回
路11はチョッパ温度測定回路12出力の調整を行うた
めのものである。
The output of the chopper temperature measuring circuit 12 is applied to the amplifier 8 together with the output of the gain adjustment circuit 7. Note that the voltage dividing circuit 11 is for adjusting the output of the chopper temperature measuring circuit 12.

ごれによっ゛ζ増幅器8出力にばチョッパ2の円i2a
の赤外線遮断91(の温度と、この温度と温度測定対象
Aの表面温度との差との和に相当する信号、つまり温度
測定対象Aの表面温度相当の信号が得られることになる
If the output of ζamplifier 8 is affected by dirt, the circle i2a of chopper 2
A signal corresponding to the sum of the temperature of the infrared cutoff 91 ( ) and the difference between this temperature and the surface temperature of the temperature measurement object A, that is, a signal corresponding to the surface temperature of the temperature measurement object A is obtained.

さて、このような従来の装置にあってはオペアンプ4a
、 6aのオフセント調整が不可欠であり、夫々に内蔵
されているオフセント補償回路に接続された外イ1り可
変抵抗の調節によりオフセント調整を行うようにしてい
た。このような調整を行っておかない場合は入力電圧が
0であっても出力電圧が0とはならず測定誤差を生じる
からである。
Now, in such a conventional device, the operational amplifier 4a
, 6a is indispensable, and the offset adjustment is performed by adjusting a variable resistor connected to an offset compensation circuit built in each. This is because if such adjustment is not performed, the output voltage will not be 0 even if the input voltage is 0, and a measurement error will occur.

本発明はこのようなオペアンプの外付抵抗によるオフセ
ント調整を不要とし、回路構成を簡単になし得る温度検
知方法を提供することを目的とする。
An object of the present invention is to provide a temperature detection method that does not require such offset adjustment using an external resistor of an operational amplifier and can simplify the circuit configuration.

本発明に係る温度、検知方法は物体が放射する赤外線を
チョッパにて断続して赤外線センサに入射し、赤外線セ
ンサ出力を演算増幅器に与えて前記物体とチョッパとの
温度差を測定し、またチョッパの温度を測定して前記物
体の温度をめる温度検知方法において、前記チョッパの
温度測定回路に回路定数可変の回路を設けておき、前記
回路定数の調節により前記演算増幅器のオフセラ)II
整をすることを特徴とする。
In the temperature detection method according to the present invention, infrared rays emitted by an object are intermittently made to enter an infrared sensor using a chopper, and the infrared sensor output is fed to an operational amplifier to measure the temperature difference between the object and the chopper. In the temperature detection method of determining the temperature of the object by measuring the temperature of the object, a temperature measuring circuit of the chopper is provided with a circuit whose circuit constant is variable, and by adjusting the circuit constant, the offset circuit of the operational amplifier is adjusted.
It is characterized by tidying up.

以下本発明を図面に基づき具体的に説明する。The present invention will be specifically explained below based on the drawings.

第2図はオペアンプのオフセントによる測定誤差を説明
するためのものである。第2図(イ)に破線で示すよう
にオフセット電圧VOが調整されていないものとすると
フィルタ回路4出力■4はこのオフセラ1−電圧を中心
に変化するのでFET 5のオンオフの反復(矩形波で
示す)によってフィルタ回路出力V4が積分回路6へ与
えられる期間はA周期より長くなり、第2図(ロ)にハ
ンチングを付して示す分だけ余分に積分されることとな
り、積分の結果は第2図(ハ)に実線で示すように、オ
フセラ1−(II整をした場合に得られる正しい結果(
2点鎖線)よりも大きな値となる。
FIG. 2 is for explaining the measurement error due to the offset of the operational amplifier. If the offset voltage VO is not adjusted as shown by the broken line in FIG. ), the period during which the filter circuit output V4 is given to the integrator circuit 6 becomes longer than the A period, and it is integrated by the amount shown with hunting in FIG. 2 (b), and the integration result is As shown by the solid line in FIG.
(double-dashed line).

さてこのオフセット電圧による出力誤差は入力信号の大
小とは無関係に一定であるので、温度測定対象への温度
が変化しても、赤外線放射エネルギーはその絶対温度の
4乗に比例するというT4特性は一定の大きさでシフト
されたようなものとなると考えられる。第3図は絶対温
度Tと積分回路6出力■6との関係を示すグラフであり
、オフセラl−による誤差がない場合のT Vcの関係
は2点鎖線で、また誤差がある場合は実線で示しである
。そして両者の差αは一定となっている。従ってこの差
αはオペアンプ4a、 6aのオフセント調整によらず
とも積分回路出力■6を入力とするゲイン調整回路7出
力に加えられるチョッパ温度測定回路12の出力の温度
補償回路の調整で補正することが可能である。これを図
面に基づいて説明すると以下のようになる。
Now, the output error due to this offset voltage is constant regardless of the magnitude of the input signal, so even if the temperature of the temperature measurement object changes, the T4 characteristic that infrared radiation energy is proportional to the fourth power of the absolute temperature is It is thought that it will appear as if it were shifted by a certain amount. Figure 3 is a graph showing the relationship between the absolute temperature T and the output of the integrator circuit 6.The relationship between T Vc when there is no error due to off-cellar l- is shown by the two-dot chain line, and when there is an error, the relationship is shown by the solid line. This is an indication. And the difference α between the two is constant. Therefore, this difference α can be corrected by adjusting the temperature compensation circuit of the output of the chopper temperature measuring circuit 12, which is added to the output of the gain adjustment circuit 7 which inputs the integrating circuit output ■6, without adjusting the offset of the operational amplifiers 4a and 6a. is possible. This will be explained as follows based on the drawings.

第4図はオペアンプ4a、 6aのオフセット電圧が0
であり、チョッパ温度が正しく測定された場合について
の絶対温度(横軸)と電圧(縦軸)との関係を示してあ
り、第4図(イ)はフィルタ回路出力V4をFET 5
で同期整流した電圧■5の特性を示しており、温度測定
対象Aが室温Tc (−チョッパ2の温度)である場合
にV5が0となる。
Figure 4 shows that the offset voltage of operational amplifiers 4a and 6a is 0.
This shows the relationship between the absolute temperature (horizontal axis) and voltage (vertical axis) when the chopper temperature is measured correctly.
This shows the characteristics of the voltage (1)5 synchronously rectified by V5, and V5 becomes 0 when the temperature measurement target A is at room temperature Tc (-temperature of chopper 2).

第4図(ロ)はチョッパ温度測定回路12の出力V2の
特性を示しており、室温TcのときにVcとなる。第4
図(ハ)はこの両者を加算した電圧V ADDを示して
いる。(実際には電圧■、が積分され、ゲイン調整され
てV12と加算される)。
FIG. 4(b) shows the characteristics of the output V2 of the chopper temperature measuring circuit 12, which becomes Vc when the room temperature is Tc. Fourth
Figure (c) shows the voltage V ADD that is the sum of these two. (Actually, the voltage ■ is integrated, the gain is adjusted, and it is added to V12).

第5図はオフセット電圧が0でない場合の絶対温度と電
圧との関係を示している。第5図(イ)に示す電圧V5
の特性は第3図に示したものと同様であり、室温Tcの
場合にV5=0となる正しい特性(2点鎖線)から実線
のようにαだけ上方にシフトする。第5図(ロ)はチョ
ッパ温度測定回路出力V12の特性を示すが、本発明に
おいては室温′rcのときにV12=Vcとするオフセ
ント電圧=0の場合の特性(2点鎖線)から、上記した
αの上方へのシフI・を補償すべくαだけ下方へシフト
シた実線で示す出力特性を得るよう分圧回路11にて調
整する。これによりV 5 + V 12を加算した特
性は第5図(ハ)に示したように、第4図(ハ)に示し
たのと同様の特性を得ることができる。
FIG. 5 shows the relationship between absolute temperature and voltage when the offset voltage is not zero. Voltage V5 shown in Figure 5 (a)
The characteristic is similar to that shown in FIG. 3, and is shifted upward by α as shown by the solid line from the correct characteristic (double-dashed line) where V5=0 at room temperature Tc. FIG. 5(B) shows the characteristics of the output V12 of the chopper temperature measurement circuit. In the present invention, from the characteristics when the offset voltage = 0 (double-dashed line) when V12 = Vc at room temperature 'rc, the above In order to compensate for the upward shift of α, the output characteristic is adjusted by the voltage dividing circuit 11 so as to obtain the output characteristic shown by the solid line, which is shifted downward by α. As a result, the characteristic obtained by adding V5+V12 can be obtained as shown in FIG. 5(C), which is similar to that shown in FIG. 4(C).

第6図は本発明方法を実施する場合の温度測定装置の構
成を示している。第1図の回路と相違するのは可変抵抗
器4b、 6bが省略されている点てあり、他は同符号
を付して説明を省略する。つまり本発明による場合はこ
の外付は抵抗を省略することができ、更にオペアンプ4
a、 6aとして外付は端子を有しない安価なものを用
いることが可能となる。更に回路の調整箇処は分圧回路
11のみとなり調整作業の煩わしさが解消される等、本
発明は優れた効果を奏する。
FIG. 6 shows the configuration of a temperature measuring device for carrying out the method of the present invention. The difference from the circuit shown in FIG. 1 is that variable resistors 4b and 6b are omitted, and the others are given the same reference numerals and their explanation will be omitted. In other words, according to the present invention, this external resistor can be omitted, and the operational amplifier 4
As for a and 6a, it is possible to use inexpensive external terminals that do not have terminals. Furthermore, the present invention has excellent effects, such as eliminating the troublesome adjustment work because the voltage dividing circuit 11 is the only part of the circuit that needs to be adjusted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の温度測定装置の模式図、第2゜3図はオ
フセント電圧による誤差を説明するための説明図、第4
.5図は本発明方法の説明図、第6図は本発明方法を適
用する場合の温度測定装置の模式図である。 ■・・・赤外線センサ 2・・・チョッパ 4・・・フ
ィルタ回路 5・・・FliT 6・・・積分回路 9
・・・ダイオード 12・・・チョッパ温度測定回路 時 許 出願人 三洋電機株式会社 代理人 弁理士 河 野 登 夫 (イン ¥、 3 図 T′ 三 T−〒 (ロ)、(ノリ 舞ζ 4 図 (ロ) (ハ) ¥、 S 図
Figure 1 is a schematic diagram of a conventional temperature measuring device, Figures 2 and 3 are explanatory diagrams for explaining errors caused by offset voltage, and Figure 4
.. FIG. 5 is an explanatory diagram of the method of the present invention, and FIG. 6 is a schematic diagram of a temperature measuring device to which the method of the present invention is applied. ■...Infrared sensor 2...Chopper 4...Filter circuit 5...FliT 6...Integrator circuit 9
...Diode 12...Chopper temperature measurement circuit Applicant Sanyo Electric Co., Ltd. Agent Patent Attorney Noboru Kono (B) (C) ¥, S Figure

Claims (1)

【特許請求の範囲】[Claims] 1、物体が放射する赤外線をチョッパにて断続して赤外
線センサに入射し、赤外線センサ出力を演算増幅器に与
えて前記物体とチョッパとの温度差を測定し、またチョ
ッパの温度を測定して前記物体の温度をめる温度検知方
法において、前記チョッパの温度測定回路に回路定数可
変の回路を設けておき、前記回路定数の調節により前記
演算増幅器のオフセン1−a整をすることを特徴とする
温度検知方法。
1. Infrared rays emitted by an object are intermittently incident on an infrared sensor using a chopper, the infrared sensor output is fed to an operational amplifier to measure the temperature difference between the object and the chopper, and the temperature of the chopper is measured to The temperature detection method for measuring the temperature of an object is characterized in that the temperature measuring circuit of the chopper is provided with a circuit whose circuit constant is variable, and the offset 1-a of the operational amplifier is adjusted by adjusting the circuit constant. Temperature detection method.
JP58210574A 1983-11-08 1983-11-08 Temperature detecting method Pending JPS60102532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58210574A JPS60102532A (en) 1983-11-08 1983-11-08 Temperature detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58210574A JPS60102532A (en) 1983-11-08 1983-11-08 Temperature detecting method

Publications (1)

Publication Number Publication Date
JPS60102532A true JPS60102532A (en) 1985-06-06

Family

ID=16591565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58210574A Pending JPS60102532A (en) 1983-11-08 1983-11-08 Temperature detecting method

Country Status (1)

Country Link
JP (1) JPS60102532A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2593285A1 (en) * 1986-01-17 1987-07-24 Toshiba Kk TEMPERATURE DETECTION DEVICE, MICROWAVE COOKING APPARATUS USING SUCH A DEVICE, AND CORRECTION METHOD OF THE SAME

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2593285A1 (en) * 1986-01-17 1987-07-24 Toshiba Kk TEMPERATURE DETECTION DEVICE, MICROWAVE COOKING APPARATUS USING SUCH A DEVICE, AND CORRECTION METHOD OF THE SAME

Similar Documents

Publication Publication Date Title
GB2343245A (en) Temperature sensing circuit using thermopile sensor
KR840009131A (en) Radial pyrometer with dual sensor
US4109196A (en) Resistance measuring circuit
US4907446A (en) Flow sensor incorporating a thermoresistor
JP2004144715A (en) Infrared detection apparatus
JPS60102532A (en) Temperature detecting method
US5345064A (en) Temperature probe conditioner circuit
JPH01227030A (en) Detecting circuit of resistance temperature characteristic
JP2953950B2 (en) Output signal generator
JP2656669B2 (en) Thermal air flow meter that also functions as a temperature measurement meter
US4016423A (en) Infrared analyzer of constant radiant energy
JP3166565B2 (en) Infrared detection circuit
RU2082129C1 (en) Converter of pressure to electric signal
JPH11194061A (en) Pressure sensor driving circuit
JPH05264352A (en) Spectorophotometer
JPH0638069B2 (en) Differential refractometer
JPH0246057Y2 (en)
JP3363272B2 (en) Infrared detection circuit
JPS6034060B2 (en) light detection device
SU647529A1 (en) Displacement-to-elecrtic signal photoelectric transducer
JPS5952271A (en) Temperature controller for heat roller
SU1105763A1 (en) Pyrometer
SU890086A1 (en) Radiant energy meter
JPS586079Y2 (en) Resistance electrical signal converter
JPH03197847A (en) Oil deterioration detector