JPH05264352A - Spectorophotometer - Google Patents

Spectorophotometer

Info

Publication number
JPH05264352A
JPH05264352A JP6318292A JP6318292A JPH05264352A JP H05264352 A JPH05264352 A JP H05264352A JP 6318292 A JP6318292 A JP 6318292A JP 6318292 A JP6318292 A JP 6318292A JP H05264352 A JPH05264352 A JP H05264352A
Authority
JP
Japan
Prior art keywords
photosensor
light
value
converter
spectrophotometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6318292A
Other languages
Japanese (ja)
Inventor
Toshiaki Yokobayashi
敏昭 横林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6318292A priority Critical patent/JPH05264352A/en
Publication of JPH05264352A publication Critical patent/JPH05264352A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a simple and inexpensive construction by integrating an output signal of a photosensor, by computing an optimum time for integration from an integrated value and by controlling the time for integration on the basis of it. CONSTITUTION:A light of a light source 1 which is passed through a slit 4a is condensed by a lens 2 and applied to a sample 3. The light transmitted through the sample 3 is passed through a slit 4b, separated its spectral components by a grating 5 and detected by an array 6. The array 6 is driven by a driving circuit 7. An output of the array 6 is passed through an integrating circuit 8, selected then by a multiplexer 9, converted into a digital signal by an A/D converter 10 and latched by an arithmetic processing part 11. The processing part 11 computes an optimum time for integration from a value obtained by the A/D conversion and a target value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は分光光度計のフォトセン
サの出力信号処理法に関するもので、特に生化学検査で
利用する分光光度計に適するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an output signal processing method for a photosensor of a spectrophotometer, and more particularly to a spectrophotometer used for biochemical examination.

【0002】[0002]

【従来の技術】分光光度計では光源の光をグレーティン
グやプリズム等で分光し、それをフォトセンサアレイで
検出したり、干渉フィルタ等で選別した光をフォトセン
サで検出している。図4は、ハロゲンランプの光をグレ
ーティングで分光し、それをフォトセンサアレイで検出
した時の出力例である。ハロゲンランプの発光特性とフ
ォトセンサの感度特性とから、波長340〜800nm
の間では出力電流に2桁近い差があることがわかる。ま
た、生化学検査で用いられる分光光度計では通常、同一
波長で3桁程度の光量変化を検出しなければならない。
したがって、あわせて5桁の入力レンジを持った増幅器
とAD変換器とが必要になる。また、それぞれの測定値
で有効数字2桁の分解能が必要とされる。
2. Description of the Related Art In a spectrophotometer, light from a light source is dispersed by a grating, a prism or the like, and the light is detected by a photosensor array or the light selected by an interference filter is detected by a photosensor. FIG. 4 shows an output example when light from a halogen lamp is dispersed by a grating and detected by a photosensor array. Based on the emission characteristics of the halogen lamp and the sensitivity characteristics of the photo sensor, a wavelength of 340 to 800 nm
It can be seen that there is a difference of two orders of magnitude in the output current between the two. Further, a spectrophotometer used in a biochemical test usually has to detect a light quantity change of about three digits at the same wavelength.
Therefore, an amplifier and an AD converter having a 5-digit input range in total are required. Also, a resolution of two significant figures is required for each measured value.

【0003】図5は、従来の分光光度計の構成を示す。
対数変換器の入力レンジを5桁とることは難しいため
に、従来方式では各波長毎に対数変換器を別々に用いて
それぞれを最適入力レンジになるように調整している。
またAD変換器には、測定値に有効数字2桁の分解能を
出すために5桁,17ビット程度のものを用いている。
FIG. 5 shows the structure of a conventional spectrophotometer.
Since it is difficult to set the input range of the logarithmic converter to 5 digits, in the conventional method, the logarithmic converter is separately used for each wavelength and each wavelength is adjusted so as to have the optimum input range.
Further, as the AD converter, a 5-digit, 17-bit type is used in order to provide a measurement value with a resolution of 2 significant digits.

【0004】[0004]

【発明が解決しようとする課題】従来の技術では、対数
変換器の入力レンジが一定であるために、光源ランプが
劣化して光源の光量が低下すれば測定可能なレンジが狭
まるという欠点があった。
In the prior art, since the input range of the logarithmic converter is constant, the measurable range is narrowed if the light source lamp deteriorates and the light amount of the light source decreases. It was

【0005】また、波長により入射光量が大きく違うた
めに、1つの対数変換器で全波長のデータを取ることが
できず、高価な対数変換器が測定波長の数だけ必要とな
った。AD変換器も(測定レンジ+分解能)だけの高分
解能なもの要求され、構成が複雑で高価になるという欠
点があった。本発明の目的は上記の欠点を解消すること
である。
Further, since the amount of incident light greatly varies depending on the wavelength, one logarithmic converter cannot obtain data of all wavelengths, and an expensive logarithmic converter is required for the number of measurement wavelengths. The AD converter is also required to have a high resolution of only (measurement range + resolution), which has a drawback that the configuration is complicated and the cost is high. The object of the invention is to eliminate the above-mentioned drawbacks.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の請求項1の分光光度計は、フォトセンサ
の出力信号を積分する積分器と、その積分値から最適な
積分時間を計算して積分時間を制御する演算処理部とを
設けた。また、演算処理部では積分値と積分時間とか
ら、フォトセンサへの入射光量を計算で求める。
In order to achieve the above object, a spectrophotometer according to claim 1 of the present invention comprises an integrator for integrating an output signal of a photosensor and an optimum integration time from the integrated value. Is provided to control the integration time. Further, the arithmetic processing unit calculates the amount of light incident on the photosensor from the integrated value and the integration time.

【0007】請求項2では積分時間を測定する回路また
はプログラムを追加して、積分値があらかじめ決められ
た値になるまで積分し、その時にかかった積分時間から
フォトセンサへの入射光量を求める。
In the second aspect, a circuit or program for measuring the integration time is added, integration is performed until the integration value reaches a predetermined value, and the amount of light incident on the photosensor is obtained from the integration time taken at that time.

【0008】請求項3では、電荷蓄積型フォトセンサア
レイの駆動パルス発生回路と、フォトセンサの出力電流
検出回路と、その出力をディジタル信号に変換するAD
変換器と、その値から最適な駆動周波数を計算する演算
処理部とを設けた。電荷蓄積型のフォトセンサアレイで
は、駆動パルスの周期が検知光量の積分時間に比例する
ことはよく知られている通りである。駆動パルス発生回
路のパルス周波数は演算処理部で自由にコントロールで
きる。演算処理部では、リニアイメージセンサの出力電
流値と駆動周波数から、リニアイメージセンサへの入射
光量を求める。
According to a third aspect of the present invention, a drive pulse generating circuit for the charge storage type photosensor array, an output current detecting circuit for the photosensor, and an AD for converting the output into a digital signal.
A converter and an arithmetic processing unit for calculating an optimum driving frequency from the value are provided. As is well known, in the charge storage type photo sensor array, the cycle of the drive pulse is proportional to the integration time of the detected light amount. The pulse frequency of the drive pulse generating circuit can be freely controlled by the arithmetic processing unit. The arithmetic processing unit obtains the amount of light incident on the linear image sensor from the output current value of the linear image sensor and the driving frequency.

【0009】[0009]

【作用】以下、本発明での光量測定法を説明する。The light amount measuring method in the present invention will be described below.

【0010】フォトセンサの出力電流を一定時間Tだけ
積分し、その時の積分値をSとしたときフォトセンサへ
の入射光量は次式で求まる。
When the output current of the photo sensor is integrated for a fixed time T, and the integrated value at that time is S, the amount of light incident on the photo sensor is obtained by the following equation.

【0011】 入射光量=K1・S/T …(数1) ここでK1は定数でフォトセンサの感度,増幅器のゲイ
ンできまる。
Incident light amount = K 1 · S / T (Equation 1) Here, K 1 is a constant and can be obtained by the sensitivity of the photosensor and the gain of the amplifier.

【0012】生化学検査で用いられる吸光度のように、
ある基準光量に対しての変化量を求める場合にはこのK
1 の値は次に示すように求めておく必要はない。つま
り、基準光量I0のときの数1を I0=K1・S0/T0 …(数2) 吸光度測定時の光量Isのときの数1を Is=K1・Ss/Ts …(数3) とすると、求める吸光度は 吸光度=Is/I0 =(Ss・T0)/(S0・Ts) …(数4) となり、K1に無関係になる。
Like the absorbance used in biochemical tests,
To obtain the amount of change with respect to a certain reference light amount, use K
The value of 1 need not be determined as shown below. That is, the number 1 when the reference light amount I 0 is I 0 = K 1 · S 0 / T 0 (Equation 2) The number 1 when the light amount Is at the time of absorbance measurement is Is = K 1 · Ss / Ts If the equation 3) is used, the required absorbance is: absorbance = Is / I 0 = (Ss · T 0 ) / (S 0 · Ts) (Equation 4), which is irrelevant to K 1 .

【0013】請求項1では、AD変換器の入力レンジを
有効に利用するために以下の手順で測定する。まずフォ
トセンサの出力電流を一定時間積分し、その時の積分値
Sをもとにして積分値がAD変換器の入力レンジに適す
る値になるようにその積分時間T0を逆算する。次に、
求めた積分時間Tsでフォトセンサの出力電流を積分す
る。二度目に測定したときの積分値S0と積分時間T0
ら、AD変換器の入力レンジを有効に利用した精度の良
いデータが測定できる。
According to the first aspect, in order to effectively use the input range of the AD converter, the measurement is performed by the following procedure. First, the output current of the photosensor is integrated for a certain period of time, and the integration time T 0 is calculated back based on the integration value S at that time so that the integration value becomes a value suitable for the input range of the AD converter. next,
The output current of the photo sensor is integrated at the obtained integration time Ts. From the integration value S 0 and the integration time T 0 measured the second time, it is possible to measure highly accurate data that effectively uses the input range of the AD converter.

【0014】請求項2では、積分値SがAD変換器の入
力レンジに適する一定値Aになるまで積分し、その時か
かった積分時間Tを測定してフォトセンサへの入射光量
を求める。この場合入射光量は次式になる。
In the second aspect, the integration value S is integrated until it becomes a constant value A suitable for the input range of the AD converter, and the integration time T required at that time is measured to obtain the amount of light incident on the photosensor. In this case, the incident light quantity is given by the following equation.

【0015】 入射光量=K2/T …(数5) K2 は定数でフォトセンサの感度,増幅器のゲインでき
まる。ここでも数4で示したのと同じ理由で、吸光度測
定ではK2を求める必要はない。
Incident light amount = K 2 / T (Equation 5) K 2 is a constant and can be determined by the sensitivity of the photosensor and the gain of the amplifier. Again, it is not necessary to determine K 2 in the absorbance measurement for the same reason as shown in equation 4.

【0016】請求項3では、ある駆動周波数Fで測定し
た時のAD変換器の出力値をSとすると、入射光量は次
式で求まる。
In the third aspect, when the output value of the AD converter when measured at a certain driving frequency F is S, the incident light quantity is obtained by the following equation.

【0017】 入射光量=K3・S・F …(数6) K3 は定数でフォトセンサの感度,増幅器のゲインでき
まる。フォトセンサアレイ上の位置によって検出してい
る波長が違うような使用法の場合には、K3 はアレイ上
の位置によって違う値になるが、ここでも吸光度測定で
はK3 を求める必要はない。
Incident light amount = K 3 · S · F (Equation 6) K 3 is a constant and can be determined by the sensitivity of the photosensor and the gain of the amplifier. In the case of usage in which the detected wavelength differs depending on the position on the photosensor array, K 3 has a different value depending on the position on the array, but here again it is not necessary to obtain K 3 in the absorbance measurement.

【0018】AD変換器の入力レンジを有効に利用する
には、まず、ある標準の駆動周波数で測定し、その時の
測定値をもとにして測定値がAD変換器の入力レンジに
適する値になるように駆動周波数F0 を決める。次に、
新たに決めた駆動周波数で再測定して数6を求める。電
荷蓄積型のフォトセンサアレイの場合、電荷の蓄積時間
は駆動周波数に反比例する (周期に比例する)。微弱光
は蓄積時間を長くすることで、強い光は蓄積時間を短く
することでS/N比の良い、出力が飽和しない最適な測
定が出来る。
In order to effectively use the input range of the AD converter, first, measurement is performed at a certain standard driving frequency, and the measured value is set to a value suitable for the input range of the AD converter based on the measured value at that time. The drive frequency F 0 is determined so that next,
Equation 6 is obtained by re-measurement at the newly determined drive frequency. In the case of the charge storage type photo sensor array, the charge storage time is inversely proportional to the drive frequency (proportional to the period). The weak light has a long storage time, and the strong light has a short storage time, so that an optimum measurement with a good S / N ratio and no output saturation can be performed.

【0019】[0019]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1は請求項1の分光光度計の構成例を示してい
る。この装置は、スリット4aを通した光源1の光をレ
ンズ2で集光しその光をサンプル3に照射する。サンプ
ル3を透過した透過光はスリット4bを通してグレイテ
ィング5で分光されフォトダイオードアレイ6で検出さ
れる。フォトダイオードアレイ6は駆動回路7で駆動さ
れる。フォトダイオードアレイ6の出力は積分回路8を
通ったあとマルチプレクサ9で選別され、AD変換器1
0でディジタル信号に変換され演算処理部11に取り込
まれる。演算処理部11はAD変換された値と目標値と
から最適な積分時間を計算する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a configuration example of the spectrophotometer according to claim 1. In this device, the light of the light source 1 that has passed through the slit 4a is condensed by the lens 2 and the light is applied to the sample 3. The transmitted light that has passed through the sample 3 is dispersed by the grating 5 through the slit 4b and detected by the photodiode array 6. The photodiode array 6 is driven by the drive circuit 7. The output of the photodiode array 6 passes through the integrating circuit 8 and is then screened by the multiplexer 9 to obtain the AD converter 1
When it is 0, it is converted into a digital signal and taken into the arithmetic processing unit 11. The arithmetic processing unit 11 calculates the optimum integration time from the AD-converted value and the target value.

【0020】今、サンプルが無いときの光量を基準光量
と考えて、積分時間1msで測定したとする。その時の
AD変換器入力が2Vであったとする。AD変換器の入
力レンジを0〜10Vとした時、光源の発光量の変動を
考慮し、かつAD変換器の分解能を有効に使うには、入
力電圧は8V程度にするのが望ましい。そこで、積分時
間を例えば8V/2V=4倍の4msにするように演算
処理部は、積分回路を制御する。
Now, assume that the amount of light when there is no sample is considered as the reference amount of light and the measurement is performed with an integration time of 1 ms. It is assumed that the AD converter input at that time is 2V. When the input range of the AD converter is 0 to 10 V, it is desirable that the input voltage is about 8 V in order to consider the fluctuation of the light emission amount of the light source and effectively use the resolution of the AD converter. Therefore, the arithmetic processing unit controls the integration circuit so that the integration time is set to, for example, 8 V / 2 V = 4 times 4 ms.

【0021】吸光度測定のときの手順をまとめると次の
ようになる。
The procedure for measuring the absorbance is summarized as follows.

【0022】(1)まずサンプルが無い状態(基準光量
=入射光量)で、を標準積分時間Tのときの積分値(=
AD変換器入力電圧)Sを求める。
(1) First, in the state where there is no sample (reference light amount = incident light amount), is the integrated value (=
AD converter input voltage) S is obtained.

【0023】(2)Sの値から積分値が目標値になるよ
うに最適積分時間T0(=A・T,A=S0/S)を求め
る。
(2) The optimum integration time T 0 (= A · T, A = S 0 / S) is calculated from the value of S so that the integrated value becomes the target value.

【0024】(3)積分時間T0で再度測定する。基準
光量I0は I0=K1・S0/T0 1:定数 …(数7) (4)サンプルを置いて積分時間T0で測定する。透過
光量Isは Is=K1・Ss/T0 …(数8) (5)吸光度は 吸光度=透過光量/入射光量 =Is/I0 =(K1・Ss/T0)/(K1・S0/T0) =Ss/S0 …(数9) となる。
(3) Measure again at the integration time T 0 . The reference light amount I 0 is I 0 = K 1 · S 0 / T 0 K 1 : constant (Equation 7) (4) A sample is placed and measured at the integration time T 0 . Transmitted light amount Is is Is = K 1 · Ss / T 0 (Equation 8) (5) Absorbance is absorbance = transmitted light amount / incident light amount = Is / I 0 = (K 1 · Ss / T 0 ) / (K 1 · S 0 / T 0 ) = Ss / S 0 (Equation 9)

【0025】透過光量を求めるときに、AD変換器の入
力レンジを有効に利用するために(4)の手順の後で最
適積分時間B・T0を求めてから再測定する方法もあ
る。 Is=K1・Ss/(B・T0) …(数10) となるから、吸光度は 吸光度=Is/I0 =(K1・Ss/T0)/(K1・S0/(B・T0)) =B・Ss/S0 …(数11) となる。
In order to effectively utilize the input range of the AD converter when obtaining the amount of transmitted light, there is also a method of obtaining the optimum integration time B · T 0 after the procedure of (4) and then performing remeasurement. Is = K 1 · Ss / (B · T 0 ) ... (Equation 10) Therefore, the absorbance is: absorbance = Is / I 0 = (K 1 · Ss / T 0 ) / (K 1 · S 0 / (B · T 0 )) = B · Ss / S 0 (Equation 11)

【0026】図2は請求項2の分光光度計の構成例を示
している。この装置では、図1の装置の積分回路8の後
にコンパレータ12が追加されている。このコンパレー
タは、積分回路出力があらかじめ設定された値になると
演算処理部に知らせ、積分時間を求められるようになっ
ている。逐次AD変換器してその値を監視し、目的の値
になるまでの時間を測定するというように、このコンパ
レータの機能は演算処理部だけで実現させることもでき
る。演算処理部は、あらかじめ設定された値になるまで
の積分時間から入射光量を求める。手順をまとめると (1)基準光量I0のときにあらかじめ設定された値に
なるまでの積分時間をT とすると、IとT0の関係
は I0=K2/T0 2:定数 …(数12) (2)サンプルを置いて測定した時の積分時間がTsの
ときの透過光量Isは Is=K2/Ts …(数13) (3)吸光度は数9と同じようにして 吸光度=透過光量/入射光量=Is/I0=(K2/T0)/(K2/Ts) =T0/Ts …(数14) と非常に簡単な式になる。
FIG. 2 shows a structural example of the spectrophotometer according to claim 2.
is doing. In this device, after the integrating circuit 8 of the device of FIG.
Is added with the comparator 12. This COMPARE
When the integrator circuit output reaches a preset value,
Notifying the arithmetic processing unit so that the integration time can be calculated
ing. Sequential AD converter monitors the value, and the target value
This time, it measures the time until
It is also possible to implement the functions of the
It The arithmetic processing unit waits until the preset value is reached.
The amount of incident light is calculated from the integration time of. Summarizing the procedure (1) Reference light intensity I0To the preset value
The integration time until0 Then I0And T0connection of
Is I0= K2/ T0K2: Constant ... (Equation 12) (2) Integration time of Ts
At this time, the amount of transmitted light Is is Is = K2/ Ts (Equation 13) (3) Absorbance is the same as in Equation 9 Absorbance = transmitted light amount / incident light amount = Is / I0= (K2/ T0) / (K2/ Ts) = T0/ Ts ... (Equation 14) becomes a very simple formula.

【0027】図3は請求項3の分光光度計の構成例を示
している。この装置では、リニアイメージセンサ6の駆
動パルスが演算処理部11で制御できる機能が追加され
ている。この例では、駆動パルスの周波数が請求項1の
積分時間に相当する。今、あるサンプルを駆動周波数1
MHzで測定したとする。その時のAD変換器入力が2
Vであったとする。AD変換器の入力レンジが0〜10
Vの時、入力光の変動を考慮し、かつAD変換器の分解
能を有効に使うには、入力電圧は8V程度にするのが望
ましい。そこで、駆動周波数を2V/8V=1/4倍の
250kHzにするように演算処理部11は、駆動回路
7を制御する。手順をまとめると (1)基準光量I0 を標準周波数Fで測定したときのA
D変換器の入力電圧Sを測定する。
FIG. 3 shows an example of the structure of the spectrophotometer of claim 3. In this device, a function that the driving pulse of the linear image sensor 6 can be controlled by the arithmetic processing unit 11 is added. In this example, the frequency of the drive pulse corresponds to the integration time of claim 1. Now, drive a sample to drive frequency 1
Assume that the measurement is made in MHz. The AD converter input at that time is 2
Suppose it was V. Input range of AD converter is 0-10
When the voltage is V, it is desirable to set the input voltage to about 8V in order to consider the fluctuation of the input light and effectively use the resolution of the AD converter. Therefore, the arithmetic processing unit 11 controls the drive circuit 7 so that the drive frequency becomes 250 kHz, which is 2V / 8V = 1/4 times. The procedure is summarized as follows: (1) A when the reference light amount I 0 is measured at the standard frequency F
The input voltage S of the D converter is measured.

【0028】(2)Sの値からAD変換器の入力電圧が
最適値になるように駆動周波数F0 を求める。
(2) The drive frequency F 0 is calculated from the value of S so that the input voltage of the AD converter becomes the optimum value.

【0029】(3)F0でI0を再測定する。(3) I 0 is remeasured at F 0 .

【0030】 I0=K3・F0・S0 3:定数 …(数15) (4)サンプルを置いてF0で測定する。I 0 = K 3 · F 0 · S 0 K 3 : constant (Equation 15) (4) Put a sample and measure at F 0 .

【0031】 Is=K3・F0・Ss …(数16) (5)吸光度は 吸光度=透過光量/入射光量=(K3・F0・Ss)/(K3・F0・S0) =Ft・St/F0・S0 …(数17) となる。Is = K 3 · F 0 · Ss (Equation 16) (5) Absorbance is absorbance = amount of transmitted light / amount of incident light = (K 3 · F 0 · Ss) / (K 3 · F 0 · S 0 ). = Ft · St / F 0 · S 0 (Equation 17)

【0032】(4)の手順の後でSs の値がAD変換器
の最適入力値となるように改めて駆動周波数Fb(=B
・F0)を求めてから再測定する方法もある。このとき
吸光度は 吸光度=(K3・B・F0・Sb)/(K3・F0・S0) =(B・Sb)/S0 …(数18) となる。
After the procedure of (4), the driving frequency Fb (= B) is set again so that the value of Ss becomes the optimum input value of the AD converter.
There is also a method of obtaining F 0 ) and then measuring again. At this time, the absorbance is as follows: absorbance = (K 3 · B · F 0 · Sb) / (K 3 · F 0 · S 0 ) = (B · Sb) / S 0 (Equation 18).

【0033】[0033]

【発明の効果】本発明によれば、フォトセンサの出力を
積分する時間や電荷蓄積型のフォトセンサアレイの蓄積
時間を入射光量に応じて調整しているので、光源の経時
的な光量変化によって測定可能なダイナミックレンジが
狭まるという欠点がない。また、積分器のダイナミック
レンジも小さくでき、AD変換器の入力レベルもほぼ一
定値に制御されるために、要求される分解能も2桁程度
で良くなり、構成が単純で安価になる。
According to the present invention, the time for integrating the output of the photosensor and the storage time for the charge storage type photosensor array are adjusted according to the amount of incident light. There is no drawback that the measurable dynamic range is narrowed. Further, since the dynamic range of the integrator can be reduced and the input level of the AD converter is controlled to a substantially constant value, the required resolution can be improved to about two digits, and the configuration is simple and inexpensive.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の請求項1の分光光度計の一実施例を示
す図である。
FIG. 1 is a diagram showing an embodiment of a spectrophotometer according to claim 1 of the present invention.

【図2】本発明の請求項2の分光光度計の一実施例を示
す図である。
FIG. 2 is a diagram showing an embodiment of the spectrophotometer according to claim 2 of the present invention.

【図3】本発明の請求項3の分光光度計の一実施例を示
す図である。
FIG. 3 is a diagram showing one embodiment of a spectrophotometer according to claim 3 of the present invention.

【図4】フォトセンサアレイの出力例を示す図である。FIG. 4 is a diagram showing an output example of a photo sensor array.

【図5】従来の分光光度計の一実施例を示す図である。FIG. 5 is a diagram showing an example of a conventional spectrophotometer.

【符号の説明】[Explanation of symbols]

1…光源、2…レンズ、3…サンプル、4a,4b…ス
リット、5…グレーティング、6…フォトセンサ、7…
フォトセンサ駆動回路、8…積分回路、9…アナログマ
ルチプレクサ、10…A/D変換器、11…演算装置、
12…コンパレータ、13…しきい値、14…出力電流
検出回路、15…対数変換器。
1 ... Light source, 2 ... Lens, 3 ... Sample, 4a, 4b ... Slit, 5 ... Grating, 6 ... Photosensor, 7 ...
Photosensor driving circuit, 8 ... Integrating circuit, 9 ... Analog multiplexer, 10 ... A / D converter, 11 ... Arithmetic device,
12 ... Comparator, 13 ... Threshold value, 14 ... Output current detection circuit, 15 ... Logarithmic converter.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】光源とその光源の光を分光する光学的機
構,分光された光を電気信号に変換するフォトセンサと
その駆動回路,フォトセンサの電気信号をディジタル信
号に変換するAD変換回路、このAD変換回路からの信
号を演算処理する演算装置とからなる分光光度計におい
て、フォトセンサの出力信号を積分し、その積分時間を
フォトセンサの出力信号レベルに応じて変えることを特
徴とする分光光度計。
1. A light source and an optical mechanism for splitting the light of the light source, a photosensor for converting the split light into an electric signal and its driving circuit, an AD conversion circuit for converting the electric signal of the photosensor into a digital signal, In a spectrophotometer including an arithmetic device for arithmetically processing a signal from the AD conversion circuit, a spectrophotometer characterized by integrating the output signal of the photosensor and changing the integration time according to the output signal level of the photosensor. Photometer.
【請求項2】請求項1において、その積分値が一定値に
なるまでその積分時間を変えることを特徴する分光光度
計。
2. The spectrophotometer according to claim 1, wherein the integration time is changed until the integration value becomes a constant value.
【請求項3】上記分光光度計において、フォトセンサが
電荷蓄積型のフォトセンサアレイ(リニアイメージセン
サ等)の場合、フォトセンサアレイの出力レベルに応じ
てフォトセンサアレイの駆動クロックの周波数を変える
ことを特徴とする分光光度計。
3. In the above spectrophotometer, when the photosensor is a charge storage type photosensor array (linear image sensor, etc.), the frequency of the drive clock of the photosensor array is changed according to the output level of the photosensor array. Is a spectrophotometer.
JP6318292A 1992-03-19 1992-03-19 Spectorophotometer Pending JPH05264352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6318292A JPH05264352A (en) 1992-03-19 1992-03-19 Spectorophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6318292A JPH05264352A (en) 1992-03-19 1992-03-19 Spectorophotometer

Publications (1)

Publication Number Publication Date
JPH05264352A true JPH05264352A (en) 1993-10-12

Family

ID=13221851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6318292A Pending JPH05264352A (en) 1992-03-19 1992-03-19 Spectorophotometer

Country Status (1)

Country Link
JP (1) JPH05264352A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011257296A (en) * 2010-06-10 2011-12-22 Hioki Ee Corp Image sensor, spectral instrument, and method of operating image sensor
DE112011102595T5 (en) 2010-08-04 2013-05-08 Hitachi High-Technologies Corporation Detection method for the amount of light and device therefor
WO2019017413A1 (en) * 2017-07-21 2019-01-24 Atonarp Inc. Current detection device and spectrometer using the same
US11417509B2 (en) 2017-07-21 2022-08-16 Atonarp Inc. Current detection device and spectrometer using ihe same
US11646190B2 (en) 2017-07-21 2023-05-09 Atonarp Inc. Current detection device and spectrometer using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011257296A (en) * 2010-06-10 2011-12-22 Hioki Ee Corp Image sensor, spectral instrument, and method of operating image sensor
DE112011102595T5 (en) 2010-08-04 2013-05-08 Hitachi High-Technologies Corporation Detection method for the amount of light and device therefor
US8797522B2 (en) 2010-08-04 2014-08-05 Hitachi High-Technologies Corporation Light quantity detection method and device therefor
WO2019017413A1 (en) * 2017-07-21 2019-01-24 Atonarp Inc. Current detection device and spectrometer using the same
US10224192B2 (en) 2017-07-21 2019-03-05 Atonarp Inc. High-speed low-noise ion current detection circuit and mass spectrometer using the same
JP2020526903A (en) * 2017-07-21 2020-08-31 アトナープ株式会社 Current detector and spectrometer using it
US11417509B2 (en) 2017-07-21 2022-08-16 Atonarp Inc. Current detection device and spectrometer using ihe same
US11646190B2 (en) 2017-07-21 2023-05-09 Atonarp Inc. Current detection device and spectrometer using the same

Similar Documents

Publication Publication Date Title
JPS6132607B2 (en)
US4236826A (en) Apparatus for optically measuring a property of an object
US4225233A (en) Rapid scan spectrophotometer
JPS6111622A (en) Spectrophotometer
US4348110A (en) Charging current integrating type photodetectors
US4847483A (en) Device for measuring light intensity received by a photosensor
EP0091692B1 (en) Method and apparatus for measuring spectra of materials
US4201472A (en) Apparatus for converting light signals into digital electrical signals
RU2290614C1 (en) Two-channel spectral ratio pyrometer
JPH043492B2 (en)
JPH05264352A (en) Spectorophotometer
US3981586A (en) Continuously monitoring ratiometer
US8957363B2 (en) Differential photodiode integrator circuit for absorbance measurements
JPS6212847B2 (en)
JP2564009Y2 (en) Spectrometer
JP2567908Y2 (en) Light sensor
CN107576482B (en) Optical parameter measuring device and measuring method thereof
SU890086A1 (en) Radiant energy meter
JPH0943056A (en) Instrument for measuring intensity of light
SU934242A1 (en) Multirange photometer
SU1198387A1 (en) Method of measuring object optical characteristics
RU2117936C1 (en) Digital optical moisture measuring device
SU1509680A1 (en) Apparatus for spectral analysis
JPS6315535B2 (en)
JPH0376408B2 (en)