JP2567908Y2 - Light sensor - Google Patents

Light sensor

Info

Publication number
JP2567908Y2
JP2567908Y2 JP1541492U JP1541492U JP2567908Y2 JP 2567908 Y2 JP2567908 Y2 JP 2567908Y2 JP 1541492 U JP1541492 U JP 1541492U JP 1541492 U JP1541492 U JP 1541492U JP 2567908 Y2 JP2567908 Y2 JP 2567908Y2
Authority
JP
Japan
Prior art keywords
light
signal processing
outputs
analog
processing circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1541492U
Other languages
Japanese (ja)
Other versions
JPH0577735U (en
Inventor
五輪生 中西
健雄 田名網
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP1541492U priority Critical patent/JP2567908Y2/en
Publication of JPH0577735U publication Critical patent/JPH0577735U/en
Application granted granted Critical
Publication of JP2567908Y2 publication Critical patent/JP2567908Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【産業上の利用分野】本考案は、光パワーメータなどの
光量を測定する装置に関し、特に、微弱光から大光量ま
での高ダイナミックレンジを測定できる光量センサに関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring the amount of light, such as an optical power meter, and more particularly to a light amount sensor capable of measuring a high dynamic range from weak light to large light.

【0002】[0002]

【従来の技術】従来の光量センサとしては、微弱光を測
定できる高感度タイプと大光量を測定できる低感度タイ
プの2種類があった。前者の高感度タイプのものとして
は、フォトンカウンティング(以下、単にPCという)
式の光電子増倍管やアバランシェフォトダイオードなど
がある。また、後者の低感度タイプのものとしては、P
INフォトダイオードやアナログ測光式の光電子増倍管
などがある。
2. Description of the Related Art There are two types of conventional light quantity sensors, a high sensitivity type capable of measuring weak light and a low sensitivity type capable of measuring large light quantity. The former high-sensitivity type includes photon counting (hereinafter simply referred to as PC).
Type photomultiplier tube, avalanche photodiode, and the like. The latter low-sensitivity type includes P
There are an IN photodiode and an analog photometry type photomultiplier tube.

【0003】高感度タイプのものの中では、特にPC式
は、光子(フォトン)を1個ずつ測定するために、超微
弱光領域においては、アナログ測光式に較べて、高いS
/N比の測定が可能である。このPC式とは、一般の光
量測定では、光電面に一度にたくさんの光子が降り注
ぎ、光電子増倍管の出力パルスは重なり合い、ゆらぎを
もった直流となる。この光電子増倍管への入射光を減ら
していくと、出力パルスの間隔が開いてゆき、ついには
離散パルスとなる。このような状態では、離散パルスを
平均化して電流測定を行うより、パルスの数をカウント
した方がS/Nや安定度の点で有利な光量測定が行え
る。このパルスカウントによる光量測定がPC式であ
る。一方、低感度タイプのものは、出力信号をアナログ
値で測定するために、大光量の測定時にS/N比が良
い。
[0003] Among the high sensitivity types, the PC method measures a photon (photon) one by one, and therefore has a higher S than that of the analog photometry method in the ultra-low light range.
/ N ratio can be measured. In the PC method, in general light quantity measurement, many photons fall on the photocathode at once, and the output pulses of the photomultiplier tube overlap and become a fluctuating DC. As the light incident on the photomultiplier tube is reduced, the intervals between the output pulses increase, and finally the output pulses become discrete pulses. In such a state, counting the number of pulses enables more advantageous light quantity measurement in terms of S / N and stability than performing current measurement by averaging discrete pulses. The light quantity measurement by this pulse count is a PC method. On the other hand, the low-sensitivity type has a good S / N ratio when measuring a large amount of light because the output signal is measured by an analog value.

【0004】[0004]

【考案が解決しようとする課題】しかしながら、PC式
では、高感度であるために、光量が大きくなると、出力
が飽和してしまうという欠点がある。また、アナログ測
光式では、微弱光領域でのS/N比は、PC式に較べて
良くないというそれぞれの課題があった。
However, the PC system has a drawback that the output is saturated when the amount of light is large because of high sensitivity. In addition, the analog photometry method has a problem that the S / N ratio in a weak light range is not as good as that of the PC method.

【0005】本考案は、上記従来技術の課題を踏まえて
成されたものであり、大光量向きの光量センサと、微弱
光領域向きの光量センサを組み合わせることにより、微
弱光から大光量までの広い領域をS/N良く測定できる
光量センサを提供することを目的としたものである。
The present invention has been made in view of the above-mentioned problems of the prior art. By combining a light amount sensor suitable for a large light amount and a light amount sensor suitable for a weak light region, a wide range from a weak light amount to a large light amount is obtained. It is an object of the present invention to provide a light quantity sensor capable of measuring an area with good S / N.

【0006】特に、この組み合わせ方法として、アナロ
グ測光方式と微弱光測光(PC)方式の両方の出力を演
算することにより、光量を求めるようにしたものでる。
In particular, as this combination method, the amount of light is obtained by calculating the output of both the analog photometry system and the weak photometry (PC) system.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
の本考案の光量センサの構成は、1個または複数の受光
素子と、この受光素子からの出力信号を処理するPC信
号処理回路およびアナログ測光信号処理回路と、これら
2つの信号処理回路の出力をそれぞれ補正する2つの補
正回路とこの2つの補正回路の出力にそれぞれ重みを乗
ずる2つの重み演算回路とこの2つの重み演算回路の出
力を加算する加算回路から成る信号演算回路、とを備え
た構成としたことを特徴とする。
In order to solve the above-mentioned problems, a light quantity sensor according to the present invention has one or more light receiving elements, a PC signal processing circuit for processing an output signal from the light receiving elements, and an analog signal. A photometric signal processing circuit, two correction circuits for correcting the outputs of the two signal processing circuits, two weight calculation circuits for multiplying the outputs of the two correction circuits by weights, and the outputs of the two weight calculation circuits, respectively. And a signal operation circuit comprising an addition circuit for addition.

【0008】[0008]

【作用】PC方式とアナログ測光方式の2つの測光方式
を使用できるため、微弱光領域から大光量領域に渡っ
て、S/N良く光量を測定できる。
Since two photometric methods, the PC method and the analog photometric method, can be used, the light quantity can be measured with good S / N from the weak light area to the large light quantity area.

【0009】[0009]

【実施例】以下、本考案を図面に基づいて説明する。図
1は本考案の光量センサの一実施例を示す構成図であ
る。図1において、1は信号光を受光して電気信号に変
換する受光素子、2は受光素子1からの出力信号を処理
するPC信号処理回路、3は同様に受光素子1からの出
力信号を処理するアナログ測光信号処理回路である。4
はPC信号処理回路2およびアナログ測光信号処理回路
3の出力が入力され光量を求める信号演算回路であり、
その構成は、PC信号処理回路2およびアナログ測光信
号処理回路3の出力を補正する補正回路41a,41
b、補正回路41a,41bの出力に重みを乗ずる重み
演算回路42a,42b、重み演算回路42a,42b
の出力を加算する加算回路43から成る。なお、重み演
算回路42a,42bの重みは、アナログ測光信号処理
回路3の出力の大きさによって制御されるものとする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram showing one embodiment of the light quantity sensor of the present invention. In FIG. 1, reference numeral 1 denotes a light receiving element that receives a signal light and converts the signal light into an electric signal, 2 denotes a PC signal processing circuit that processes an output signal from the light receiving element 1, and 3 similarly processes an output signal from the light receiving element 1. Analog photometric signal processing circuit. 4
Is a signal arithmetic circuit to which the outputs of the PC signal processing circuit 2 and the analog photometric signal processing circuit 3 are input to determine the light quantity;
The configuration includes correction circuits 41 a and 41 for correcting the outputs of the PC signal processing circuit 2 and the analog photometric signal processing circuit 3.
b, weight calculation circuits 42a and 42b for multiplying outputs of the correction circuits 41a and 41b by weight, and weight calculation circuits 42a and 42b
And an addition circuit 43 for adding the outputs of Note that the weights of the weight calculation circuits 42a and 42b are controlled by the magnitude of the output of the analog photometric signal processing circuit 3.

【0010】ここで、既に上述したように、PC法は光
子1個1個に対応する離散パルス数を計測する方法なの
で、極微弱光を測定する場合にはS/Nが良い。一方、
光量が大きくなると、パルスとパルスが重なり合って、
重畳パルスとなるため、パルス1個1個を計測すること
ができなくなるため、PC法よりも出力の直流成分を計
測する方がS/N良く測定できる。この関係を図2
(イ)および(ロ)に示す。
Here, as described above, the PC method is a method of measuring the number of discrete pulses corresponding to each photon. Therefore, when measuring extremely weak light, the S / N is good. on the other hand,
When the light intensity increases, the pulses overlap each other,
Since it becomes a superimposed pulse, it becomes impossible to measure each pulse individually, so that it is possible to measure the output DC component with better S / N than the PC method. This relationship is shown in FIG.
(A) and (b).

【0011】このような構成において、図1に戻り、受
光素子1は信号光を受けると、微弱光の場合は離散パル
スを、また、大光量の場合は重畳パルスを出力する。受
光素子1の出力は、PC信号処理回路2およびアナログ
測光信号処理回路3に入力され、PC信号処理回路2
は、パルスのカウント数を出力し、アナログ測光信号処
理回路3は、受光素子1の直流成分を出力する。この時
の出力−入射光量および出力−S/N特性は、図2
(イ)および(ロ)に示す関係になる。
In such a configuration, returning to FIG. 1, upon receiving the signal light, the light receiving element 1 outputs a discrete pulse in the case of weak light and a superimposed pulse in the case of a large amount of light. The output of the light receiving element 1 is input to a PC signal processing circuit 2 and an analog photometric signal processing circuit 3,
Outputs a pulse count number, and the analog photometric signal processing circuit 3 outputs a DC component of the light receiving element 1. The output-incident light amount and output-S / N characteristics at this time are shown in FIG.
The relationship shown in (a) and (b) is obtained.

【0012】次に、両出力は、信号演算回路4に入力さ
れる。信号演算回路4中の補正回路41a,41bは、
PC信号処理回路2およびアナログ測光信号処理回路3
の光量−出力特性と逆の特性を持たせておけば、補正回
路41a,41bの出力は、入射光量に対してリニアと
なる。この場合、光量−S/N比特性には変化がない。
Next, both outputs are input to the signal operation circuit 4. The correction circuits 41a and 41b in the signal operation circuit 4
PC signal processing circuit 2 and analog photometric signal processing circuit 3
If the characteristics opposite to the light amount-output characteristics are provided, the outputs of the correction circuits 41a and 41b become linear with respect to the incident light amount. In this case, there is no change in the light amount-S / N ratio characteristics.

【0013】重み演算回路42a,42bの制御端子に
アナログ測光信号処理回路の3の出力を入力し、重み演
算回路42a,42bにあるしきい値よりも大きな値が
入力した時には、重み演算回路42bの重みを1にし、
それ以外は0と設定しておく。また、重み演算回路42
aには、しきい値よりも小さい場合は1、それ以外は0
と設定しておくと、その出力は図3に示すようになり、
加算回路43の出力(出力−光量特性)はリニアとな
り、どの光量においてもS/Nは良い。
When the output of the analog photometric signal processing circuit 3 is input to the control terminals of the weight calculation circuits 42a and 42b and a value larger than a threshold value is input to the weight calculation circuits 42a and 42b, the weight calculation circuit 42b Is set to 1 and
Otherwise, it is set to 0. Also, the weight calculation circuit 42
a is 1 when the value is smaller than the threshold value, and 0 otherwise.
The output will be as shown in Fig. 3,
The output (output-light quantity characteristic) of the addition circuit 43 is linear, and the S / N is good at any light quantity.

【0014】このように上記実施例によれば、大光量向
きの光量センサであるアナログ測光方式と微弱光領域向
けの光量センサであるPC方式の両方の出力を演算する
ことにより、光量を求めており、微弱光から大光量まで
の広い領域をS/N良く測定できる。
As described above, according to the above-described embodiment, the light amount is obtained by calculating the outputs of both the analog light metering system which is a light amount sensor suitable for a large light amount and the PC system which is a light amount sensor for a weak light region. Thus, a wide range from weak light to large light can be measured with good S / N.

【0015】なお、上記実施例では、PC法とアナログ
測光法の受光素子が共用されていたが、図4に示すよう
に、PC法とアナログ測光法が別々の受光素子を持ち、
両者への光の分配をビームスプリッタやハーフミラーな
どの光分配器5で行うようにしても良い。ただし、この
場合、ビームスプリッタやハーフミラーなどの分配比率
の波長依存特性や偏光依存特性などは既知であり、光分
配器は取り外しが可能であるとする。また、PC法の受
光素子への光路とアナログ測光法の受光素子への光路を
ミラーにより切り換える(切り換える時間間隔は可変で
ある)ように構成しても良い。また、受光素子の構成
が、PC法の受光素子とアナログ測光法の受光素子が複
数個存在し、両者が同一平面上にランダムに配置されて
いても良い。また、PC信号処理回路2の補正関数を複
数個備えた構成としても良い。ただし、補正関数はアナ
ログ測光信号処理回路の出力の大きさに応じて切り換え
ることとする。さらに、重み演算回路42a,42bで
発生する重みをアナログ測光信号処理回路の出力に対し
て連続的に変化する関数型としても良く、いずれの構成
においても、微弱光から大光量までの広い領域をS/N
良く測定できる。
In the above embodiment, the light receiving elements of the PC method and the analog photometry method are shared. However, as shown in FIG. 4, the PC method and the analog photometry method have separate light receiving elements.
The distribution of light to both may be performed by a light distributor 5 such as a beam splitter or a half mirror. However, in this case, it is assumed that the wavelength dependence and the polarization dependence of the distribution ratio of the beam splitter, the half mirror, and the like are known, and the optical distributor can be removed. The optical path to the light receiving element of the PC method and the optical path to the light receiving element of the analog photometry method may be switched by a mirror (the switching time interval is variable). Further, the light receiving element may have a plurality of light receiving elements of the PC method and a plurality of light receiving elements of the analog photometry method, both of which may be randomly arranged on the same plane. Further, a configuration having a plurality of correction functions of the PC signal processing circuit 2 may be employed. However, the correction function is switched according to the magnitude of the output of the analog photometric signal processing circuit. Furthermore, the weights generated by the weight calculation circuits 42a and 42b may be of a function type that continuously changes with respect to the output of the analog photometric signal processing circuit. In any of the configurations, a wide area from weak light to large light quantity is obtained. S / N
Can measure well.

【0016】[0016]

【考案の効果】以上、実施例と共に具体的に説明したよ
うに、本考案によれば、PC法とアナログ測光法の2つ
の測光法が両方使用できるため、微弱光領域から光量の
大きな領域に渡って高ダイナミックレンジ光量を測定で
きる光量センサを実現できる。
As described above in detail with the embodiments, according to the present invention, both the PC method and the analog photometry method can be used. A light amount sensor capable of measuring a light amount in a high dynamic range can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本考案の光量センサの一実施例を示す構成図で
ある。
FIG. 1 is a configuration diagram showing one embodiment of a light quantity sensor of the present invention.

【図2】入射光量−出力、入射光量−S/N比の関係を
示す図である。
FIG. 2 is a diagram showing a relationship between incident light quantity-output and incident light quantity-S / N ratio.

【図3】本考案の光量センサの信号演算回路の入出力関
係を示す図である。
FIG. 3 is a diagram showing an input / output relationship of a signal calculation circuit of the light quantity sensor according to the present invention.

【図4】本考案の光量センサの他の実施例を示す構成図
である。
FIG. 4 is a configuration diagram showing another embodiment of the light amount sensor of the present invention.

【符号の説明】[Explanation of symbols]

1 受光素子 2 フォトンカウンティング(PC)信号処理回路 3 アナログ測光信号処理回路 4 信号演算回路 41a,41b 補正回路 42a,42b 重み演算回路 43 加算回路 REFERENCE SIGNS LIST 1 light receiving element 2 photon counting (PC) signal processing circuit 3 analog photometric signal processing circuit 4 signal calculation circuit 41 a, 41 b correction circuit 42 a, 42 b weight calculation circuit 43 addition circuit

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】 1個または複数の受光素子と、 この受光素子からの出力信号を処理するフォトンカウン
ティング信号処理回路およびアナログ測光信号処理回路
と、 これら2つの信号処理回路の出力をそれぞれ補正する2
つの補正回路とこの2つの補正回路の出力にそれぞれ重
みを乗ずる2つの重み演算回路とこの2つの重み演算回
路の出力を加算する加算回路から成る信号演算回路、 とを備えた構成としたことを特徴とする光量センサ。
1. One or a plurality of light receiving elements, a photon counting signal processing circuit and an analog photometric signal processing circuit for processing an output signal from the light receiving element, and correcting the outputs of these two signal processing circuits, respectively.
A signal operation circuit including two correction circuits, two weight operation circuits for multiplying the outputs of the two correction circuits by respective weights, and an addition circuit for adding the outputs of the two weight operation circuits. Characteristic light intensity sensor.
JP1541492U 1992-03-24 1992-03-24 Light sensor Expired - Fee Related JP2567908Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1541492U JP2567908Y2 (en) 1992-03-24 1992-03-24 Light sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1541492U JP2567908Y2 (en) 1992-03-24 1992-03-24 Light sensor

Publications (2)

Publication Number Publication Date
JPH0577735U JPH0577735U (en) 1993-10-22
JP2567908Y2 true JP2567908Y2 (en) 1998-04-08

Family

ID=11888095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1541492U Expired - Fee Related JP2567908Y2 (en) 1992-03-24 1992-03-24 Light sensor

Country Status (1)

Country Link
JP (1) JP2567908Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9989657B2 (en) 2015-10-28 2018-06-05 Hamamatsu Photonics K.K. Readout circuit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9518925B2 (en) * 2011-12-22 2016-12-13 Radisens Diagnostics Limited High resolution, wide dynamic range microfluidic detection system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9989657B2 (en) 2015-10-28 2018-06-05 Hamamatsu Photonics K.K. Readout circuit

Also Published As

Publication number Publication date
JPH0577735U (en) 1993-10-22

Similar Documents

Publication Publication Date Title
US4909633A (en) Multi-channel spectral light measuring device
JPH0212215A (en) Distance measuring equipment for camera
JP2567908Y2 (en) Light sensor
US8957363B2 (en) Differential photodiode integrator circuit for absorbance measurements
CN107576482B (en) Optical parameter measuring device and measuring method thereof
JPS63127127A (en) Light power measuring device
FI82863C (en) SPEKTROMETRISKT FOERFARANDE OCH SPEKTROMETER.
JPH05264352A (en) Spectorophotometer
JPH07209185A (en) Surface scattering type turbidity meter
JPH0528515Y2 (en)
JP2674468B2 (en) Distance detection device
JPH0453361B2 (en)
JP2901747B2 (en) Distance measuring device
JP2645111B2 (en) Sun sensor
JPS6040904A (en) Length measuring device
KR930008562B1 (en) Measurement device
JPS623609A (en) Range finder
JPH0943056A (en) Instrument for measuring intensity of light
JPS62100645A (en) Photo absorbance measuring apparatus
JPH09145475A (en) Photometer and camera
JPS62277568A (en) Temperature characteristic correcting device for photodetector
JPH0716963Y2 (en) Optical scanning measuring device
SU1619198A1 (en) Device for measuring modulus of gain ratio of four-terminal networks
JPH05240733A (en) Distributed optical fiber sensor
Lorenzon et al. Count rate dependent non-linearity and pixel size variations in 1.7 micron cut-off detectors

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees