JPS63127127A - Light power measuring device - Google Patents

Light power measuring device

Info

Publication number
JPS63127127A
JPS63127127A JP27327586A JP27327586A JPS63127127A JP S63127127 A JPS63127127 A JP S63127127A JP 27327586 A JP27327586 A JP 27327586A JP 27327586 A JP27327586 A JP 27327586A JP S63127127 A JPS63127127 A JP S63127127A
Authority
JP
Japan
Prior art keywords
light
lambda
formula
spectral sensitivity
diffused
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27327586A
Other languages
Japanese (ja)
Inventor
Yoshihiro Ono
義弘 大野
Hideo Nishiyama
西山 英夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP27327586A priority Critical patent/JPS63127127A/en
Publication of JPS63127127A publication Critical patent/JPS63127127A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To measure the light power of laser at a low power level with high accuracy without using an auxiliary wavelength measuring means, by using a specific formula on the basis of the respective output signals of two light receivers. CONSTITUTION:A part of the light emitted from a light source 1 to be measured passes through an aperture 2 at first and impinges against a pervious diffusion plate 3 to be diffused. A part of the diffused light passes through a glass filter 4 to reach a silicon photodiode 6 and the other part of the diffused light passes through a glass filter 5 to reach a silicon photodiode 7. The photocurrents generated in the photodiodes 6, 7 are amplified by operational amplifiers 9, 10. Next, a microcomputer 13 controls an analogue switch 11 and an A/D converter 12 to calculate the output signal Sa of a light receiver 6 of which the absolute spectral sensitivity Ra(lambda) is shown by a formula Ra(lambda)=alambda+b and the output signal Sb of a light receiver 7 of which the absolute spectral sensitivity Rb(lambda) is shown by a formula Rb(lambda)=clambda+d and, from the respective signals Sa, Sb, the sum total of incident powers can be calculated. In the formulae, a-d are coefficient.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、レーザーやLED、照明用各種光源などの光
放射パワーを求める測定器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a measuring device for measuring the optical radiation power of lasers, LEDs, various light sources for illumination, and the like.

従来の技術 従来の光パワー測定器は、標準器としては感度の波長選
択性のない熱形検出器が使われている。
BACKGROUND OF THE INVENTION Conventional optical power measuring instruments use thermal detectors with no wavelength selectivity in sensitivity as standard equipment.

また、実用的な測定器としては、シリコンホトダイオー
ドやPbS など、波長選択性があってもより感度の高
い量子型検出器を用いて、測定する波長を狭い範囲に限
定して実用的な放射パワーの測定を行なっている。
In addition, as a practical measuring instrument, a quantum detector, such as a silicon photodiode or PbS, which is wavelength selective but has higher sensitivity, is used to limit the wavelength to be measured to a narrow range and to obtain a practical radiation power. are being measured.

発明が解決しようとする問題点 上記のように、波長選択性のない熱形検出器は感度が低
く、交流動作のためチョッパーを必要とし、低レベルの
放射測定時はロックインアンプを必要とするなど、扱い
も難しく、実験室での校正用の標準器として、あるいは
レーザーなどのパワー密度の高い光の測定に使用されて
いるが、光パワーの低い光源の測定は非常に困難である
。一方、シリコンフォトダイオードなどの高感度の量子
型光検出器は、感度の波長選択性が大きいため、レーザ
ー光のように波長のわかった輝線スペクトルを対象とす
る場合は、その波長の値により測定値を補正する方法で
比較的高い精度が得られる。しかしながら、LEDや照
明用光源など発光スペクトルの広いものや波長の判らな
いffl#J!スペクトルの放射に対しては、その分光
分布を測定する以外に測定値を補正する方法がなく、そ
のような光源を対象に精度の高い測定をすることは困難
であった。
Problems to be Solved by the Invention As mentioned above, thermal detectors without wavelength selectivity have low sensitivity, require a chopper for AC operation, and require a lock-in amplifier when measuring low-level radiation. It is difficult to handle and is used as a calibration standard in the laboratory or for measuring high power density light such as lasers, but it is extremely difficult to measure light sources with low optical power. On the other hand, highly sensitive quantum photodetectors such as silicon photodiodes have great wavelength selectivity in their sensitivity, so when the target is an emission line spectrum with a known wavelength, such as a laser beam, measurement is performed based on the value of that wavelength. Relatively high accuracy can be obtained by correcting the values. However, there are LEDs and light sources for lighting that have a wide emission spectrum, and ffl#J whose wavelength cannot be determined! There is no way to correct the measured value of spectral radiation other than by measuring its spectral distribution, and it has been difficult to perform highly accurate measurements for such light sources.

また、量子型光検出器に光学フィルタをかけて相対分光
感度をフラットにする方法もあるが、精度の高いフラッ
トな分光感度を得ることは非常に困難であり、広い波長
範囲にわたって高精度でレベルの低い放射パワーを測定
する実用的な方法がなかった。
Another method is to flatten the relative spectral sensitivity by applying an optical filter to the quantum photodetector, but it is extremely difficult to obtain a highly accurate flat spectral sensitivity, and it is difficult to obtain a highly accurate flat spectral sensitivity over a wide wavelength range. There was no practical way to measure the low radiated power of.

問題点を解決するための手段 本発明は、上記問題点を解決するもので、分光感度はフ
ラットではないが感度の高い量子型光検出器を用い、連
続的な分光分、布をもつ光源の放射パワーや、数本の輝
線の混合したレーザー光のパワーを、補助的な波長測定
の手段なしに高精度で、かつ低い光パワーのレベルで測
定する光パワー測定器を提供することを目的とする。
Means for Solving the Problems The present invention solves the above problems, and uses a quantum photodetector whose spectral sensitivity is not flat but has high sensitivity. The purpose of the present invention is to provide an optical power measuring device that can measure the radiation power or the power of a laser beam that is a mixture of several emission lines with high precision and at a low optical power level without the need for auxiliary wavelength measurement means. do.

本発明は、シリコンフォトダイオードなどの高感度の受
光素子と光学フィルタの組合せにより分光応答度が波長
に対して直線的に変化し、かつ絶対分光応答度の値の付
けられた受光器を2個と、以下に示すような演算を行な
う演算器とから構成される。
The present invention uses two light receivers whose spectral responsivity changes linearly with wavelength by a combination of a highly sensitive light receiving element such as a silicon photodiode and an optical filter, and whose spectral responsivity is assigned a value of absolute spectral responsivity. and an arithmetic unit that performs the following operations.

以下、上述の特性をもつ2個の受光器を用いて、連続し
た分光分布をもつ光源の放射パワーを測定する方法につ
いて説明する。連続した分光分布をもつ光源からの放射
は、多数の輝線の集合と考えられるので、まず、波長の
わからない2本のya線の合計のパワーを求める場合を
考える。
Hereinafter, a method of measuring the radiation power of a light source having a continuous spectral distribution using two light receivers having the above-mentioned characteristics will be described. Since radiation from a light source with a continuous spectral distribution can be considered as a collection of many emission lines, first consider the case of finding the total power of two ya lines whose wavelengths are unknown.

いま、この2個の受光器を受光器A、受光器Bと呼ぶと
、それぞれの受光器の絶対分光応答度Ra(λ)、 R
b(λ)は、 Ra(λ)=aλ+b  ・・・・・・・・・・・・・
(1)Rb(λ)=cλ+d  (a−#e) ・・・
・・・(2)と表される。次に、第3図に示すように、
波長がλ1.λ2、放射パワーがPl、P2の2本のv
I線のビームを受光器A、受光器Bで受ける場合、各受
光器の出力信号Sa、Sbは、 Sa =pt Ra(λ1)+P2 Ra(λ2) ・
・(3)Sb =PI Rb(λ+) + P 2 R
b(λ2)・・(4)で表される。また、Ra(λ)?
 Rb(λ)は、直線であるから、入、と入、の間でP
lとP2の割合に応じて次式で示される重心波長λXが
存在する。
Now, if these two light receivers are called light receiver A and light receiver B, the absolute spectral responsivity of each light receiver Ra (λ), R
b(λ) is Ra(λ)=aλ+b・・・・・・・・・・・・・・・
(1) Rb(λ)=cλ+d (a-#e)...
...It is expressed as (2). Next, as shown in Figure 3,
The wavelength is λ1. λ2, two v with radiation power Pl and P2
When the I-line beam is received by receiver A and receiver B, the output signals Sa and Sb of each receiver are as follows: Sa = pt Ra (λ1) + P2 Ra (λ2) ・
・(3) Sb = PI Rb (λ+) + P 2 R
b(λ2)...(4) is expressed. Also, Ra(λ)?
Since Rb(λ) is a straight line, P between input and input is
There is a barycenter wavelength λX expressed by the following equation depending on the ratio of l and P2.

λX二λ1+P2(λ2−λ1)/(P1+22)・・
(5)(3)式、(4)式を展開し整理すると、(5)
式の関係よりλ1、λ2が?再来されて、 Sa =(P1+P2)(aλx十b)−(8)Sb 
==(P1+P2)(Cλ×十d)・・・・・・・(7
)が得られる。(6)式、(7)式は、λXが判れば出
力信号Saまたはsbから入射パワーの総量p、+p2
が求められることを示している。しかしながら、λ1、
λ2、PL、P2の各位が未知であるので、(5)式に
よりλXを求めることはできない。そこで、受光器出力
SaX Sbの比kをとり、 k=5a/Sb  ・・・・・・・・・・・・・・・・
・・(8)と定義すると、(6)式、(7)式より、k
 =(aλx十b)/(Cλx+d) ・・・・(9)
となり、この式を変形して、 λx=(kd−b)/(a−kc)  ・・・・・(1
0)が得られ、受光器出力の比kからλXを導くことが
できる。λXが求まれば、(6)式を用いて、P1+P
2=Ba/{aλx +b )= Sa/(a(d−3
a/5b−b)(a−c−5a/Sb)柿) (11)
が得られ、Pl、P2、λ1、λ2の個々の値を知る必
要なく、各受光器の出力信号の読みSa、Sbから入射
パワーの合計を求めることができる。
λX2 λ1+P2 (λ2-λ1)/(P1+22)...
(5) Expanding and rearranging equations (3) and (4), we get (5)
What are λ1 and λ2 from the relationship in the formula? Sa = (P1 + P2) (aλx + b) - (8) Sb
==(P1+P2)(Cλ×10d)・・・・・・(7
) is obtained. Equations (6) and (7) can be calculated from the total amount of incident power p, +p2 from the output signal Sa or sb if λX is known.
It shows that this is required. However, λ1,
Since each of λ2, PL, and P2 is unknown, λX cannot be determined using equation (5). Therefore, take the ratio k of the photoreceiver output SaX Sb, k=5a/Sb ・・・・・・・・・・・・・・・・・・
...If defined as (8), then from equations (6) and (7), k
= (aλx + b) / (Cλx + d) ... (9)
So, by transforming this formula, λx=(kd-b)/(a-kc)...(1
0) is obtained, and λX can be derived from the ratio k of the photoreceiver outputs. Once λX is found, using equation (6), P1+P
2=Ba/{aλx +b)=Sa/(a(d-3
a/5b-b) (ac-5a/Sb) persimmon) (11)
is obtained, and the total incident power can be determined from the readings of the output signals Sa and Sb of each photoreceiver without having to know the individual values of Pl, P2, λ1, and λ2.

以上の計算により、合計のパワーと各受光器の出力電流
を変えることなく、波長λいλ2の2本の輝線を重心波
長大Xの1本の輝線に置き換えることができる。この収
態にもう1本輝線λ3が加わった場合、同じ計算を行な
って、やはり合計のパワーと受光器の出力電流を変える
ことなく1本の輝線に置き換えることができ、このとき
の重心波長λ×°は、λ1、λ2、入3の輝線が各受光
器に入射したときの出力電流の比から求めた重心波長と
一致する。したがって、輝線が多数ある場合も結局、同
じ原理で、各受光器の出力電流の比から重心波長λ l
=の1本の輝線に置き換えられ、入射パワーを求めるこ
とができる。さらに、分光分布が連続的に変化する光源
は、多数の輝線の集合と考えられるので、同じ原理で入
射光のパワーを求めることができる。
According to the above calculation, two bright lines with wavelengths λ2 and λ2 can be replaced with one bright line with a center-of-gravity wavelength X, without changing the total power and the output current of each photoreceiver. If another emission line λ3 is added to this convergence, the same calculation can be performed to replace it with one emission line without changing the total power and output current of the receiver, and the center of gravity wavelength λ ×° corresponds to the centroid wavelength determined from the ratio of output currents when the bright lines of λ1, λ2, and input 3 are incident on each photoreceiver. Therefore, even when there are many bright lines, the center wavelength λ
= is replaced by one bright line, and the incident power can be determined. Furthermore, since a light source with a continuously changing spectral distribution can be considered as a collection of many bright lines, the power of the incident light can be determined using the same principle.

以上のように、分光感度が波長に対して直線的に変化し
、かつ絶対分光感度の値の付けられた受光器を2個用い
ることにより、各受光器の出力信号の読みから入射光の
放射パワーの総量を求める手段を実現できる。
As described above, by using two photoreceivers whose spectral sensitivity changes linearly with respect to wavelength and whose absolute spectral sensitivity values are assigned, the radiation of incident light can be determined from the reading of the output signal of each photoreceiver. A method for determining the total amount of power can be realized.

作用 本発明は、感度の高い量子型光検出器と光学フィルタな
どを組合せた受光器2個により順次測定を行なうことに
より、各受光器出力の読みから、入射光の分光分布や輝
線の波長を知る必要なく入射パワーの絶対値を容易に精
度よく測定できる。
The present invention measures the spectral distribution of the incident light and the wavelength of the emission line from the reading of the output of each receiver by sequentially performing measurements using two receivers that combine a highly sensitive quantum photodetector and an optical filter. The absolute value of incident power can be easily and accurately measured without needing to know it.

実施例 第1図は、本発明の実施例における光パワー測定器の光
学系の構成を示すもので、1は被測定光源、2はアパー
チャ、3は透過拡散板、4および5はガラスフィルタ、
6および7はシリコンフォトダイオードである。被測定
光源1は照明用ランプやレーザーなどの光源で、発光ス
ペクトルがλ1からλ2の範囲にあるものとする。
Embodiment FIG. 1 shows the configuration of an optical system of an optical power measuring instrument in an embodiment of the present invention, in which 1 is a light source to be measured, 2 is an aperture, 3 is a transmission diffusion plate, 4 and 5 are glass filters,
6 and 7 are silicon photodiodes. It is assumed that the light source 1 to be measured is a light source such as an illumination lamp or a laser, and has an emission spectrum in the range of λ1 to λ2.

第2図は、本発明の実施例の回路部分の構成を示すもの
で、6および7はシリコンフォトダイオード、9および
10は演算増幅器、11はアナログスイッチ、12はA
/D変換器、13はマイクロコンピュータである。
FIG. 2 shows the configuration of the circuit portion of the embodiment of the present invention, in which 6 and 7 are silicon photodiodes, 9 and 10 are operational amplifiers, 11 is an analog switch, and 12 is an analog switch.
/D converter, 13 is a microcomputer.

第4図は、マイクロコンピュータ13のプログラムの概
略フローチャートを示す。
FIG. 4 shows a schematic flowchart of the program of the microcomputer 13.

第1図において、被測定光源1から放射された光の一部
はまずアパーチャ2を通過し、透過拡散板3に当たった
後拡散される。その拡散光の一部はガラスフィルタ4を
通過後シリコンフォトダイオード6に達し、拡散光の別
の一部はガラスフィルタ5を通過後シリコンフォトダイ
オード7に達する。したがって、ガラスフィルタ4およ
び5の前面にはアパーチャ2を通過した光束に対してそ
れぞれ常に一定の割合の光束が入射する。つまり、アパ
ーチャ2、透過拡散板3、ガラスフィルタ4、シリコン
フォトダイオード6により受光器Aを形成し、アパーチ
ャ2、透過拡散板3、ガラスフィルタ5、シリコンフォ
トダイオード7により受光器Bを形成している。
In FIG. 1, a portion of light emitted from a light source to be measured 1 first passes through an aperture 2, hits a transmission diffusion plate 3, and is then diffused. A part of the diffused light passes through the glass filter 4 and reaches the silicon photodiode 6, and another part of the diffused light passes through the glass filter 5 and reaches the silicon photodiode 7. Therefore, a fixed proportion of the light flux that has passed through the aperture 2 always enters the front surfaces of the glass filters 4 and 5, respectively. That is, the aperture 2, the transmission diffusion plate 3, the glass filter 4, and the silicon photodiode 6 form the light receiver A, and the aperture 2, the transmission diffusion plate 3, the glass filter 5, and the silicon photodiode 7 form the light receiver B. There is.

ガラスフィルタ4はシリコンフォトダイオード6と組合
せたとき、分光感度がλ1から入2の範囲で直線的に変
化するように透過率を調節する。この調節は数枚のガラ
スフィルタを組合せて行なうが、もともとシリコンフォ
トダイオードの分光感度カーブは直線に近いので比較的
容易に実現できる。ガラスフィルタ5についても同様に
分光感度がλ1からλ2の範囲で直線的に変化するよう
に透過率を調節する。ただし、ガラスフィルタ5につい
ては、分光感度の直線の傾きがガラスフィルタ4の場合
とできるだけ大きく異なるように選択する。この場合の
フィルタの透過率の調節も適当な直線の傾きを選べるの
で、分光感度をフラットにする場合よりもはるかに容易
である。
When the glass filter 4 is combined with the silicon photodiode 6, the transmittance is adjusted so that the spectral sensitivity changes linearly in the range from λ1 to λ2. This adjustment is performed by combining several glass filters, but since the spectral sensitivity curve of a silicon photodiode is originally close to a straight line, it can be achieved relatively easily. Similarly, the transmittance of the glass filter 5 is adjusted so that the spectral sensitivity varies linearly in the range from λ1 to λ2. However, the glass filter 5 is selected so that the slope of the straight line of spectral sensitivity differs from that of the glass filter 4 as much as possible. Adjustment of the transmittance of the filter in this case is also much easier than in the case of flattening the spectral sensitivity, since an appropriate slope of the straight line can be selected.

フィルタが決まれば、所定の位置に固定した状態で、被
測定光源1の代わりに標準電球を置いて点灯し、アパー
チャ2からシリコンフォトダイオード6および7までの
それぞれの光学系の絶対感度(A/W)を校正し、1式
、2式における係数a。
Once the filter has been decided, a standard light bulb is placed in place of the light source 1 to be measured while it is fixed in a predetermined position and turned on, and the absolute sensitivity (A/ W), and the coefficient a in equations 1 and 2.

b、c、dを求めておく。Find b, c, and d.

つぎに、第2図において、シリコンフォトダイオード6
および7に発生した光電流は、演算増幅器9.10によ
り電流電圧変換される。マイクロコンピュータ13は、
アナログスイッチ11およびA/D変換器12を制御し
て、第4図に示すフローチャートのごとく、出力信号S
a、5b(3式、4式)を取り込み、受光器出力の比k
(8式)から重心波長λx(10式)を求め、Saの値
とλXから入射パワー(11式)を算出し、表示する。
Next, in FIG. 2, the silicon photodiode 6
The photocurrent generated at and 7 is converted into a current voltage by an operational amplifier 9.10. The microcomputer 13 is
The analog switch 11 and the A/D converter 12 are controlled to output the output signal S as shown in the flowchart shown in FIG.
Take in a, 5b (3 formulas, 4 formulas), and calculate the ratio k of the receiver output.
The barycenter wavelength λx (formula 10) is obtained from (formula 8), and the incident power (formula 11) is calculated from the value of Sa and λX and displayed.

被測定光源1がレーザー光のようにアパーチャ2より細
いビーム試になっていれば、Pは入射した光ビームその
もののパワーを表す。被測定光源1が電球のように光を
拡散して放出するタイプの光源であれば、Pをアパーチ
ャ2の面積で割ったものが放射照度(W/m2)を表し
ている。
If the light source 1 to be measured has a beam narrower than the aperture 2, such as a laser beam, P represents the power of the incident light beam itself. If the light source 1 to be measured is a type of light source that diffuses and emits light, such as a light bulb, then P divided by the area of the aperture 2 represents the irradiance (W/m2).

発明の効果 本発明の光パワー測定器は、シリコンフォトダイオード
などの、高感度であるが感度の波長選択性のある光検出
器を用いながら、入射光の分光分布を知る必要なく、広
い波長範囲にある光放射のパワーを容易に測定すること
ができ、高感度で測定精度が高く用途の広い光パワー測
定器を提供するものであり、その実用性はきわめて高い
Effects of the Invention The optical power measuring device of the present invention uses a photodetector such as a silicon photodiode that is highly sensitive but has wavelength selectivity, and can measure a wide wavelength range without the need to know the spectral distribution of the incident light. The present invention provides an optical power measuring instrument that can easily measure the power of optical radiation in the area, has high sensitivity, high measurement accuracy, and a wide range of uses, and its practicality is extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例における光パワー測定器の光
学系の構成図、第2図は同測定器の回路部分の構成図、
第3図は、本発明に用いる2個の受光器の分光感度特性
図、第4図は同測定器のマイクロコンピュータのプログ
ラムのフローチャートである。 1・・・・被測定光源 2・・・・アパーチャ3・・・
・透過拡散板 4.5・・・・ガラスフィルタ6.7 
・・・・シリコンフォトダイオード9.10・・・・演
算増幅器 11・・・・アナログスイッチ 12・・・・A/D変換器 13・・・・マイクロコンピュータ 代理人の氏名 弁理士 中尾敏男 ばか1名第1図 第2図 IO演算博喝呑 第3図 ハ A2  乃3 第4図
FIG. 1 is a configuration diagram of an optical system of an optical power measuring device in an embodiment of the present invention, and FIG. 2 is a configuration diagram of a circuit portion of the same measuring device.
FIG. 3 is a spectral sensitivity characteristic diagram of two light receivers used in the present invention, and FIG. 4 is a flowchart of a program of the microcomputer of the same measuring instrument. 1... Light source to be measured 2... Aperture 3...
・Transmission diffuser plate 4.5...Glass filter 6.7
... Silicon photodiode 9.10 ... Operational amplifier 11 ... Analog switch 12 ... A/D converter 13 ... Microcomputer Name of agent Patent attorney Toshio Nakao Idiot 1 Figure 1 Figure 2 IO calculation and gambling Figure 3 C A2 No 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 絶対分光感度Ra(λ)が近似的にRa(λ)=aλ+
bなる式で表される受光器Aと、絶対分光感度Rb(λ
)が近似的にRb(λ)=cλ+dなる式で定義される
受光器Bと、該受光器A、Bそれぞれの出力信号Sa、
SbからP=Ba/{a(d・Sa/Sb−b)/(a
−c・Sa/Sb)+b}なる式により入射放射パワー
Pを求める演算器とから構成されることを特徴とする光
パワー測定器。
Absolute spectral sensitivity Ra(λ) is approximately Ra(λ)=aλ+
The photoreceiver A is expressed by the formula b, and the absolute spectral sensitivity Rb(λ
) is approximately defined by the formula Rb(λ)=cλ+d, and the output signal Sa of each of the photodetectors A and B,
From Sb, P=Ba/{a(d・Sa/Sb−b)/(a
-c.Sa/Sb)+b}; and an arithmetic unit that calculates the incident radiation power P using the formula: -c.Sa/Sb)+b}.
JP27327586A 1986-11-17 1986-11-17 Light power measuring device Withdrawn JPS63127127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27327586A JPS63127127A (en) 1986-11-17 1986-11-17 Light power measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27327586A JPS63127127A (en) 1986-11-17 1986-11-17 Light power measuring device

Publications (1)

Publication Number Publication Date
JPS63127127A true JPS63127127A (en) 1988-05-31

Family

ID=17525570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27327586A Withdrawn JPS63127127A (en) 1986-11-17 1986-11-17 Light power measuring device

Country Status (1)

Country Link
JP (1) JPS63127127A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0600636A1 (en) * 1992-11-19 1994-06-08 Varian Associates, Inc. Self-calibrated power meter
JP2010112807A (en) * 2008-11-05 2010-05-20 Hioki Ee Corp Optical power meter
JP2010537363A (en) * 2007-08-13 2010-12-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Lighting device with adaptive color
JP2016118512A (en) * 2014-12-24 2016-06-30 日置電機株式会社 Light-amount measurement device
JP2018036056A (en) * 2016-08-29 2018-03-08 日置電機株式会社 Light power meter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0600636A1 (en) * 1992-11-19 1994-06-08 Varian Associates, Inc. Self-calibrated power meter
JP2010537363A (en) * 2007-08-13 2010-12-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Lighting device with adaptive color
JP2010112807A (en) * 2008-11-05 2010-05-20 Hioki Ee Corp Optical power meter
JP2016118512A (en) * 2014-12-24 2016-06-30 日置電機株式会社 Light-amount measurement device
JP2018036056A (en) * 2016-08-29 2018-03-08 日置電機株式会社 Light power meter

Similar Documents

Publication Publication Date Title
US5332901A (en) Gas analyzing apparatus and method for simultaneous measurement of carbon dioxide and water
US4998018A (en) Two-wavelength type respiratory gas concentration measuring apparatus
US3770354A (en) Photoelectric photometer
JPS6132607B2 (en)
JPS58174833A (en) Fluorescent luminous intensity meter
JP2604754B2 (en) Spectrophotometer
JPH0427494B2 (en)
RU2290614C1 (en) Two-channel spectral ratio pyrometer
JPS63127127A (en) Light power measuring device
JP2007078502A (en) Photometric device of light emitter
EP0261452B1 (en) Gas analyzer
JPH0217429A (en) Concentration measuring method by using laser type gas sensor
JPS63127128A (en) Light power measuring device
JP2567908Y2 (en) Light sensor
Toivanen et al. Realizations of the units of luminance and spectral radiance at the HUT
RU2109269C1 (en) Optical absorption gas analyzer
JPH01235834A (en) Signal processing system of laser system gas sensor
JPS61108931A (en) Measuring method of light quantity
JPH041536A (en) Optical power meter
RU2244935C2 (en) Photometric method and device for measuring bilirubin concentration in blood
SU1567893A1 (en) Pyrometer
JPS6361922A (en) Luminance measuring instrument
RU2243539C2 (en) Device for measuring substance concentration in solution
JPH0943056A (en) Instrument for measuring intensity of light
JPS601528A (en) Spectrophotometer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees