JP2018036056A - Light power meter - Google Patents

Light power meter Download PDF

Info

Publication number
JP2018036056A
JP2018036056A JP2016166498A JP2016166498A JP2018036056A JP 2018036056 A JP2018036056 A JP 2018036056A JP 2016166498 A JP2016166498 A JP 2016166498A JP 2016166498 A JP2016166498 A JP 2016166498A JP 2018036056 A JP2018036056 A JP 2018036056A
Authority
JP
Japan
Prior art keywords
incident
measurement target
light
target light
diffusion plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016166498A
Other languages
Japanese (ja)
Other versions
JP6755753B2 (en
Inventor
知博 竹迫
Tomohiro Takesako
知博 竹迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2016166498A priority Critical patent/JP6755753B2/en
Publication of JP2018036056A publication Critical patent/JP2018036056A/en
Application granted granted Critical
Publication of JP6755753B2 publication Critical patent/JP6755753B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain reduction in manufacturing costs and miniaturization of a device, and sufficiently alleviate incident position dependency of measurement object light upon the device.SOLUTION: A light power meter comprises: an aperture 11 that has an incident hole 11a allowing measurement object light L to pass through, and defines an incidence allowable range for the light L; a transmission diffusion plate 21 that is arranged allowing the light L passing through the incident hole 11a to transmit, and diffuses the light L; and a diffusion reflection unit 31 that is formed into a cylinder, has the aperture 11 and the transmission diffusion plate 21 disposed on one end part side, and makes the light L transmitting the transmission diffusion plate 21 diffused/reflected upon an inner face 31a. A part of the light L diffused in the diffusion reflection unit 31 is configured to be received by a photoelectric conversion unit, and the diffusion reflection plate 21 is configured in such a way that a concave part 22 is formed in one face of an aperture 11 side, and a part of the light L to be reflected upon a bottom face 22a of the concave part 22 can be incident upon the transmission diffusion plate 21 from the inner lateral face 22b, and has a thin thickness part 23 provided in an outer edge part.SELECTED DRAWING: Figure 2

Description

本発明は、測定対象光の受光量に応じて光電変換部から出力される検出信号の信号レベルに基づいて測定対象光についての予め規定された光学的パラメータを測定可能に構成された光パワーメータに関するものである。   The present invention relates to an optical power meter configured to be able to measure a predetermined optical parameter of a measurement target light based on a signal level of a detection signal output from a photoelectric conversion unit according to the amount of light of the measurement target light. It is about.

この種の光パワーメータとして、レーザーやLEDなどの光源から放射される光のパワー(光放射パワー)を測定可能に構成された光パワー測定器の発明が下記の特許文献に開示されている。   As this type of optical power meter, the following patent document discloses an invention of an optical power measuring device configured to be able to measure the power of light emitted from a light source such as a laser or an LED (optical radiation power).

この光パワー測定器は、測定対象光の通過が可能な入射孔が設けられたアパーチャと、入射孔を通過した測定対象光を拡散させる透過拡散板とが筐体の一端側に配設されると共に、受光面にガラスフィルタが一体的に配設されたシリコンフォトダイオード(以下、「光電変換部」ともいう)が上記の筐体内に配設されている。この光パワー測定器では、光源からの測定対象光がアパーチャの入射孔を通過して透過拡散板に入射することで拡散され、その一部がガラスフィルタを透して光電変換部入射する構成が採用されている。これにより、光電変換部への測定対象光の入射量(光電変換部による測定対象光の受光量)に応じた検出信号が光電変換部から出力され、その信号レベルに基づいて測定対象光のパワーが演算される。   In this optical power measuring device, an aperture provided with an incident hole through which measurement target light can pass and a transmission diffusion plate for diffusing the measurement target light that has passed through the incident hole are disposed on one end side of the casing. In addition, a silicon photodiode (hereinafter also referred to as “photoelectric conversion unit”) in which a glass filter is integrally disposed on the light receiving surface is disposed in the casing. In this optical power measuring device, the light to be measured from the light source is diffused by passing through the incident hole of the aperture and entering the transmission diffusion plate, and a part thereof passes through the glass filter and enters the photoelectric conversion unit. It has been adopted. As a result, a detection signal corresponding to the amount of measurement target light incident on the photoelectric conversion unit (the amount of light received by the photoelectric conversion unit) is output from the photoelectric conversion unit, and the power of the measurement target light is determined based on the signal level. Is calculated.

特開昭63−127127号公報(第1−4頁、第1−4図)JP 63-127127 A (page 1-4, Fig. 1-4)

ところが、従来の光パワー測定器には、以下の解決すべき課題が存在する。すなわち、従来の光パワー測定器では、アパーチャを通過して透過拡散板において拡散された測定対象光の一部が筐体内の光電変換部に入射する構成が採用されている。この場合、従来の光パワー測定器では、レーザー光のような拡散性が低い光(光源から非放射状に出力された光)を測定対象光としたときに、透過拡散板を透過させるだけでは測定対象光を十分に拡散させることができず、アパーチャ(入射孔)への測定対象光の入射位置によっては、入射させた測定対象光を光電変換部によって好適に受光することが困難な状態となる。このため、従来の光パワー測定器では、アパーチャ(入射孔)への測定対象光の入射位置によって光電変換部による受光量が変動してしまうこと(以下、この測定対象光の入射位置による受光量の変動について「入射位置依存性」ともいう)がある。   However, the conventional optical power measuring instrument has the following problems to be solved. That is, the conventional optical power measuring instrument employs a configuration in which part of the measurement target light that has passed through the aperture and diffused in the transmission diffusion plate is incident on the photoelectric conversion unit in the housing. In this case, with a conventional optical power measuring instrument, when the light to be measured is light with low diffusivity such as laser light (light non-radially output from the light source), it is measured simply by transmitting through the transmission diffusion plate. The target light cannot be sufficiently diffused, and depending on the incident position of the measurement target light on the aperture (incident hole), it is difficult to suitably receive the incident measurement target light by the photoelectric conversion unit. . For this reason, in the conventional optical power measuring device, the amount of light received by the photoelectric conversion unit varies depending on the position of the light to be measured entering the aperture (incident hole) (hereinafter, the amount of light received by the light incident position of the light to be measured). (It is also called “incident position dependency”).

そこで、出願人は、上記の光パワー測定器を改良して、透過拡散板を透過させることで拡散させた測定対象光を拡散反射させる(乱反射させる)拡散反射部を透過拡散板に並設した光パワーメータを試作した。具体的には、図6に示すように、出願人が試作した光パワーメータは、筒体の内面31axに拡散反射コーティング剤を塗布した拡散反射部31xを有する受光センサ2xを備えている。以下、出願人が試作した光パワーメータの構成要素については、符号の末尾に「x」を付して説明する。   Therefore, the applicant improved the above-described optical power measuring device, and provided a diffusive reflecting part that diffusely reflects (diffusely reflects) the measurement target light diffused by transmitting through the transmissive diffusing plate, in parallel with the transmissive diffusing plate. An optical power meter was prototyped. Specifically, as shown in FIG. 6, the optical power meter prototyped by the applicant includes a light receiving sensor 2x having a diffuse reflection part 31x in which a diffuse reflection coating agent is applied to the inner surface 31ax of the cylindrical body. Hereinafter, the components of the optical power meter prototyped by the applicant will be described with “x” appended to the end of the reference numerals.

この受光センサ2xでは、拡散反射部31xの一端側(同図における左端側)にアパーチャ11xおよび透過拡散板21xが配設されると共に、拡散反射部31xの他端側(同図における右側において図示を省略している部位)に光電変換部が配設され、アパーチャ11xの入射孔11axを通過して透過拡散板21xに入射した測定対象光Lが透過拡散板21xにおいて拡散されると共に、透過拡散板21xにおいて拡散させられた測定対象光Lが拡散反射部31xの内面31axにおいて拡散反射され、その一部が光電変換部に入射する。したがって、出願人が試作した光パワーメータ(受光センサ2x)では、透過拡散板だけで測定対象光を拡散させる従来の光パワー測定器と比較して、透過拡散板21xおよび拡散反射部31xの双方において測定対象光Lが拡散されることで上記の入射位置依存性が軽減されている。   In the light receiving sensor 2x, an aperture 11x and a transmission diffusion plate 21x are disposed on one end side (left end side in the figure) of the diffuse reflection part 31x, and the other end side (illustrated on the right side in the figure) of the diffuse reflection part 31x. The photoelectric conversion unit is disposed at a portion where the measurement target light L that has passed through the incident hole 11ax of the aperture 11x and entered the transmission diffusion plate 21x is diffused in the transmission diffusion plate 21x and transmitted and diffused. The measurement target light L diffused on the plate 21x is diffusely reflected on the inner surface 31ax of the diffuse reflection part 31x, and a part thereof enters the photoelectric conversion part. Therefore, in the optical power meter (light receiving sensor 2x) prototyped by the applicant, both the transmissive diffuser 21x and the diffuse reflector 31x are compared with the conventional optical power measuring instrument that diffuses the measurement target light only by the transmissive diffuser. In FIG. 5, the measurement target light L is diffused to reduce the dependency on the incident position.

一方、この種の測定器では、その保管性や携行性を良好とするために十分に小形化されることが望まれている。このため、出願人が試作した光パワーメータにおいても、受光センサ2xを十分に小形化するのが好ましい。この場合、受光センサ2xを小形化するために拡散反射部31xの外径L3bxを小径化したときには、その内径L3axも小径化されることとなる。また、出願人は、拡散反射部31xの内径L3axを小径化した場合に、入射孔11axの中央部に測定対象光Lを入射させたときよりも入射孔11axの外縁部寄りに測定対象光Lを入射させたときの方が光電変換部への測定対象光Lの入射量が少なくなる傾向(従来の光パワー測定器の入射位置依存性とは異なる入射位置依存性)があるのを見出した。   On the other hand, this type of measuring device is desired to be sufficiently miniaturized in order to improve its storage and portability. For this reason, it is preferable that the light receiving sensor 2x be sufficiently downsized even in the optical power meter prototyped by the applicant. In this case, when the outer diameter L3bx of the diffuse reflector 31x is reduced in order to reduce the size of the light receiving sensor 2x, the inner diameter L3ax is also reduced. In addition, when the inner diameter L3ax of the diffuse reflection portion 31x is reduced, the applicant assigns the measurement target light L closer to the outer edge portion of the incident hole 11ax than when the measurement target light L is incident on the central portion of the incident hole 11ax. It was found that the incident amount of the measurement target light L to the photoelectric conversion unit tends to be smaller when the light is incident (incident position dependency different from the incident position dependency of the conventional optical power measuring device). .

このような入射位置依存性は、内径L3axを小径化したことで拡散反射部31xの内面31axとアパーチャ11xの入射孔11axとの距離が短くなることに起因するものと推測される。具体的には、入射孔11axの外縁部寄りに入射して、透過拡散板21xにおいて拡散された測定対象光Lが拡散反射部31xの内面31axにおいて拡散反射されたときに、透過拡散板21x側に向かって反射された測定対象光Lの一部が透過拡散板21xを透して入射孔11axから受光センサ2xの外に出射され易くなることが要因と考えられる。したがって、拡散反射部31xの内径L3axを十分に大径化して内面31axを入射孔11axから十分に離間させることにより、このような入射位置依存性が小さくなることが確認された。   Such incident position dependency is presumed to be due to the fact that the distance between the inner surface 31ax of the diffuse reflector 31x and the incident hole 11ax of the aperture 11x is shortened by reducing the inner diameter L3ax. Specifically, when the measurement target light L incident on the outer edge portion of the incident hole 11ax and diffused in the transmission diffusion plate 21x is diffusely reflected on the inner surface 31ax of the diffusion reflection portion 31x, the transmission diffusion plate 21x side It is considered that a part of the measurement target light L reflected toward the light beam is likely to be emitted from the incident hole 11ax to the outside of the light receiving sensor 2x through the transmission diffusion plate 21x. Therefore, it has been confirmed that such an incident position dependency is reduced by sufficiently increasing the inner diameter L3ax of the diffuse reflection portion 31x and sufficiently separating the inner surface 31ax from the incident hole 11ax.

しかしながら、出願人が試作した光パワーメータ(受光センサ2x)に生じる上記の入射位置依存性を軽減するために拡散反射部31xの内径L3axを大径化した場合、単に小形化が困難となるだけでなく、拡散反射部31xの製作コスト(筒体を生成する材料や拡散反射コーティング剤などの材料コスト)が高騰する結果、受光センサ2xの製作コストが高騰する。したがって、上記のような入射位置依存性を軽減するために拡散反射部31xの内径L3axを大径化した場合には、受光センサ2xの小形化が困難となるだけでなく、光パワーメータの製造コストが高騰するおそれがある。このため、この点を改善する必要がある。   However, if the inner diameter L3ax of the diffuse reflection portion 31x is increased in order to reduce the dependency on the incident position generated in the optical power meter (light receiving sensor 2x) prototyped by the applicant, it is only difficult to reduce the size. In addition, the manufacturing cost of the diffuse reflection part 31x (the material cost of the material for generating the cylinder and the diffuse reflection coating agent) increases, and as a result, the manufacturing cost of the light receiving sensor 2x increases. Therefore, when the inner diameter L3ax of the diffuse reflection portion 31x is increased in order to reduce the incident position dependency as described above, it is not only difficult to reduce the size of the light receiving sensor 2x, but also an optical power meter is manufactured. Costs may rise. For this reason, it is necessary to improve this point.

本発明は、かかる改善すべき課題に鑑みてなされたものであり、製造コストの低減および装置の小型化を図りつつ、装置への測定対象光の入射位置依存性を十分に軽減し得る光パワーメータを提供することを主目的とする。   The present invention has been made in view of the problems to be improved, and can reduce the manufacturing cost and the size of the apparatus, and can sufficiently reduce the dependency of the incident light on the measuring object on the incident position. The main purpose is to provide a meter.

上記目的を達成すべく、請求項1記載の光パワーメータは、測定対象光の受光量に応じた検出信号を出力する光電変換部を備え、前記測定対象光についての予め規定された光学的パラメータを前記検出信号の信号レベルに基づいて測定可能に構成された光パワーメータであって、前記測定対象光の通過が可能な入射孔が設けられて当該光パワーメータへの当該測定対象光の入射許容範囲を規定する入射許容範囲規定部と、前記入射孔を通過した前記測定対象光が透過可能に前記入射許容範囲規定部に隣接配置されて当該測定対象光を拡散させる透過拡散板と、筒状に形成されて一端部側に前記入射許容範囲規定部および前記透過拡散板が配設されると共に当該透過拡散板を透過した前記測定対象光を内面において拡散反射させる拡散反射部とを備えて、当該拡散反射部において拡散された前記測定対象光の一部が前記光電変換部によって受光されるように構成され、前記透過拡散板は、前記入射許容範囲規定部側の一面に凹部が形成されて前記入射孔を通過して当該凹部の底面において反射される前記測定対象光の一部が当該凹部の内側面から当該透過拡散板に入射可能に構成されると共に、前記凹部の周囲の厚みよりも薄い薄厚部が外縁部に設けられている。   In order to achieve the above object, the optical power meter according to claim 1 includes a photoelectric conversion unit that outputs a detection signal corresponding to the amount of light to be measured, and a predetermined optical parameter for the light to be measured. The optical power meter is configured to be capable of measuring based on the signal level of the detection signal, and is provided with an incident hole through which the measurement target light can pass, so that the measurement target light enters the optical power meter. A permissible incident range defining portion that defines a permissible range; a transmission diffusion plate that is arranged adjacent to the permissible incident range defining portion so that the measurement target light that has passed through the incident hole can be transmitted; A diffuse reflection part that is formed in a shape and has the allowable incidence range defining part and the transmission diffusion plate disposed on one end side, and diffusely reflects the measurement target light transmitted through the transmission diffusion plate on the inner surface; A part of the measurement target light diffused in the diffuse reflection part is received by the photoelectric conversion part, and the transmission diffusion plate has a concave part on one side of the incident allowable range defining part side. A portion of the measurement target light that is formed and passes through the incident hole and is reflected at the bottom surface of the recess is configured to be incident on the transmission diffusion plate from the inner surface of the recess, and around the recess. A thin part thinner than the thickness is provided at the outer edge part.

また、請求項2記載の光パワーメータは、測定対象光の受光量に応じた検出信号を出力する光電変換部を備え、前記測定対象光についての予め規定された光学的パラメータを前記検出信号の信号レベルに基づいて測定可能に構成された光パワーメータであって、前記測定対象光の通過が可能な入射孔が設けられて当該光パワーメータへの当該測定対象光の入射許容範囲を規定する入射許容範囲規定部と、前記入射孔を通過した前記測定対象光が透過可能に前記入射許容範囲規定部に隣接配置されて当該測定対象光を拡散させる透過拡散板と、筒状に形成されて一端部側に前記入射許容範囲規定部および前記透過拡散板が配設されると共に当該透過拡散板を透過した前記測定対象光を内面において拡散反射させる拡散反射部とを備えて、当該拡散反射部において拡散された前記測定対象光の一部が前記光電変換部によって受光されるように構成され、前記透過拡散板は、前記入射許容範囲規定部側の一面に凹部が形成されて前記入射孔を通過して当該凹部の底面において反射される前記測定対象光の一部が当該凹部の内側面から当該透過拡散板に入射可能に構成されている。   The optical power meter according to claim 2 further includes a photoelectric conversion unit that outputs a detection signal corresponding to the amount of received light of the measurement target light, and a predetermined optical parameter for the measurement target light is set to the detection signal. An optical power meter configured to be able to measure based on a signal level, and an incident hole through which the measurement target light can pass is provided to define an allowable range of incidence of the measurement target light on the optical power meter An incident allowable range defining portion, a transmission diffusion plate that is arranged adjacent to the incident allowable range defining portion so that the measurement target light that has passed through the incident hole can pass therethrough, and diffuses the measurement target light, and is formed in a cylindrical shape. The incident allowable range defining portion and the transmission diffusion plate are disposed on one end side, and a diffusion reflection portion for diffusing and reflecting the measurement target light transmitted through the transmission diffusion plate on the inner surface thereof. A part of the measurement object light diffused in the reflection part is configured to be received by the photoelectric conversion part, and the transmission diffusion plate has a concave part formed on one surface on the incident allowable range defining part side, and the incident light A part of the measurement target light that passes through the hole and is reflected at the bottom surface of the recess is configured to be incident on the transmission diffusion plate from the inner surface of the recess.

また、請求項3記載の光パワーメータは、請求項1または2記載の光パワーメータにおいて、前記透過拡散板は、前記凹部の内径が前記入射孔の口径よりも大径となるように形成されている。   The optical power meter according to claim 3 is the optical power meter according to claim 1 or 2, wherein the transmission diffusion plate is formed such that an inner diameter of the concave portion is larger than an aperture diameter of the incident hole. ing.

さらに、請求項4記載の光パワーメータは、請求項1から3のいずれかに記載の光パワーメータにおいて、有底円筒状のケーシングを備え、当該ケーシングにおける底板が前記入射許容範囲規定部として機能するように前記入射孔が当該底板に形成されると共に、前記ケーシングの内径よりも小径の円板状に形成された前記透過拡散板、および当該ケーシングの内径よりも小径の円筒状に形成された前記拡散反射部が当該ケーシング内に収容されて当該ケーシングと一体化されている。   Furthermore, the optical power meter according to claim 4 is the optical power meter according to any one of claims 1 to 3, further comprising a bottomed cylindrical casing, wherein a bottom plate of the casing functions as the incident allowable range defining portion. The incident hole is formed in the bottom plate, the transmission diffusion plate formed in a disc shape smaller than the inner diameter of the casing, and the cylindrical shape smaller in diameter than the inner diameter of the casing. The diffuse reflection portion is accommodated in the casing and integrated with the casing.

請求項1記載の光パワーメータでは、入射許容範囲規定部の入射孔を通過した測定対象光が透過可能に入射許容範囲規定部に隣接配置されて測定対象光を拡散させる透過拡散板における入射許容範囲規定部側の一面に凹部が形成されて、凹部の底面において反射される測定対象光の一部が凹部の内側面から透過拡散板に入射可能に構成されると共に、透過拡散板の外縁部に凹部の周囲の厚みよりも薄い薄厚部が設けられている。   The optical power meter according to claim 1, wherein the measurement target light that has passed through the incident hole of the allowable incident range defining portion is arranged adjacent to the allowable input range defining portion so as to be transmissive and diffuses the measured target light. A concave portion is formed on one surface of the range defining portion side, and a part of the measurement target light reflected on the bottom surface of the concave portion is configured to be incident on the transmissive diffusion plate from the inner side surface of the concave portion, and the outer edge portion of the transmissive diffusion plate Is provided with a thin portion thinner than the thickness around the recess.

したがって、請求項1記載の光パワーメータによれば、出願人が試作した光パワーメータと同様にして、透過拡散板に加えて拡散反射部を備えた分だけ、入射孔から入射させた測定対象光を十分に拡散させることができ、これにより、入射孔に対する測定対象光の入射位置依存性を軽減することができるだけでなく、透過拡散板に設けた凹部の存在により、入射孔の外縁部寄りに測定対象光を入射させたときに拡散反射部内に進入した測定対象光の一部が拡散反射部の内面において反射されて入射孔から外部に出射されたとしても、入射孔を通過して凹部の底面において反射された測定対象光の一部が凹部の内側面から透過拡散板内に入射して拡散された後に拡散反射部内に入射するため、この測定対象光の分だけ、最終的に光電変換部に入射する測定対象光の量が増加する結果、入射孔に対する測定対象光の入射位置依存性を十分に軽減することができる。これにより、光パワーメータの性能を低下させることなく拡散反射部を小径化することができるため、光パワーメータを十分に小形化することができると共に、拡散反射部の製作コストを低減して光パワーメータの製造コストを十分に低減することができる。また、入射位置依存性を軽減するために凹部の深さや内径だけを変更して好適な光学的特性を有する透過拡散板を設計するのとは異なり、寸法の変化による影響が小さい外縁部に薄厚部を設けてその厚みを任意に変更することにより、透過拡散板の光学的特性を理想的な状態に容易に近付けることができる。   Therefore, according to the optical power meter of the first aspect, in the same manner as the optical power meter prototyped by the applicant, the measurement object incident from the incident hole by the amount provided with the diffuse reflection part in addition to the transmission diffusion plate. Light can be diffused sufficiently, which not only reduces the dependency of the incident light on the incident position of the light to be measured, but also makes it closer to the outer edge of the incident hole due to the presence of the concave portion provided in the transmission diffusion plate. Even if a part of the measurement target light that has entered the diffuse reflection portion when the measurement target light is incident on is reflected on the inner surface of the diffuse reflection portion and emitted to the outside from the incident hole, the concave portion passes through the incident hole. Since a part of the measurement target light reflected on the bottom surface of the light enters the transmission diffuser plate from the inner side surface of the recess and is diffused, it enters the diffuse reflection part. Enter the converter Results The amount of measured light is increased, it is possible to reduce sufficiently the incident position dependency of the measured light with respect to incident hole. As a result, the diameter of the diffuse reflector can be reduced without degrading the performance of the optical power meter, so that the optical power meter can be sufficiently reduced in size, and the manufacturing cost of the diffuse reflector can be reduced to reduce the light. The manufacturing cost of the power meter can be sufficiently reduced. Unlike designing a transmission diffuser plate that has suitable optical characteristics by changing only the depth and inner diameter of the recess in order to reduce the incidence position dependence, the outer edge is less affected by changes in dimensions. By providing the portion and arbitrarily changing its thickness, the optical characteristics of the transmission diffusion plate can be easily brought close to the ideal state.

請求項2記載の光パワーメータでは、入射許容範囲規定部の入射孔を通過した測定対象光が透過可能に入射許容範囲規定部に隣接配置されて測定対象光を拡散させる透過拡散板における入射許容範囲規定部側の一面に凹部が形成されて、凹部の底面において反射される測定対象光の一部が凹部の内側面から透過拡散板に入射可能に構成されている。   3. The optical power meter according to claim 2, wherein the light to be measured that has passed through the incident hole of the allowable incident range defining portion is arranged adjacent to the allowable incident range defining portion so as to be transmissive and diffuses the measured light. A concave portion is formed on one surface of the range defining portion side, and a part of the measurement target light reflected on the bottom surface of the concave portion can be incident on the transmission diffusion plate from the inner side surface of the concave portion.

したがって、請求項2記載の光パワーメータによれば、出願人が試作した光パワーメータと同様にして、透過拡散板に加えて拡散反射部を備えた分だけ、入射孔から入射させた測定対象光を十分に拡散させることができ、これにより、入射孔に対する測定対象光の入射位置依存性を軽減することができるだけでなく、透過拡散板に設けた凹部の存在により、入射孔の外縁部寄りに測定対象光を入射させたときに拡散反射部内に進入した測定対象光の一部が拡散反射部の内面において反射されて入射孔から外部に出射されたとしても、入射孔を通過して凹部の底面において反射された測定対象光の一部が凹部の内側面から透過拡散板内に入射して拡散された後に拡散反射部内に入射するため、この測定対象光の分だけ、最終的に光電変換部に入射する測定対象光の量が増加する結果、入射孔に対する測定対象光の入射位置依存性を十分に軽減することができる。これにより、光パワーメータの性能を低下させることなく拡散反射部を小径化することができるため、光パワーメータを十分に小形化することができると共に、拡散反射部の製作コストを低減して光パワーメータの製造コストを十分に低減することができる。   Therefore, according to the optical power meter according to claim 2, in the same manner as the optical power meter prototyped by the applicant, the measurement object incident from the incident hole by the amount provided with the diffusing reflection part in addition to the transmission diffusion plate Light can be diffused sufficiently, which not only reduces the dependency of the incident light on the incident position of the light to be measured, but also makes it closer to the outer edge of the incident hole due to the presence of the concave portion provided in the transmission diffusion plate. Even if a part of the measurement target light that has entered the diffuse reflection portion when the measurement target light is incident on is reflected on the inner surface of the diffuse reflection portion and emitted to the outside from the incident hole, the concave portion passes through the incident hole. Since a part of the measurement target light reflected on the bottom surface of the light enters the transmission diffuser plate from the inner side surface of the recess and is diffused, it enters the diffuse reflection part. Enter the converter Results The amount of measured light is increased, it is possible to reduce sufficiently the incident position dependency of the measured light with respect to incident hole. As a result, the diameter of the diffuse reflector can be reduced without degrading the performance of the optical power meter, so that the optical power meter can be sufficiently reduced in size, and the manufacturing cost of the diffuse reflector can be reduced to reduce the light. The manufacturing cost of the power meter can be sufficiently reduced.

請求項3記載の光パワーメータによれば、凹部の内径が入射孔の口径よりも大径となるように透過拡散板を形成したことにより、入射孔の外縁部寄りに測定対象光を入射させたときに内側面から透過拡散板に入射する測定対象光の量が過剰に多くなる事態を回避して、入射孔に対する測定対象光の入射位置依存性を好適に軽減することができる。   According to the optical power meter of the third aspect, since the transmission diffusion plate is formed so that the inner diameter of the recess is larger than the diameter of the incident hole, the measurement target light is made incident near the outer edge of the incident hole. In this case, it is possible to avoid a situation in which the amount of the measurement target light incident on the transmission diffusion plate from the inner surface increases excessively, and to appropriately reduce the dependency of the measurement target light on the incident hole.

請求項4記載の光パワーメータによれば、有底円筒状のケーシングにおける底板が入射許容範囲規定部として機能するように入射孔を底板に形成すると共に、円板状の透過拡散板、および円筒状の拡散反射部をケーシング内に収容してケーシングと一体化したことにより、透過拡散板および拡散反射部がケーシングによって覆われた状態となり、透過拡散板や拡散反射部に対して直接的に外力が加わる事態が回避される結果、光パワーメータの破損を好適に回避することができる。   According to the optical power meter of claim 4, the incident hole is formed in the bottom plate so that the bottom plate in the bottomed cylindrical casing functions as the allowable incidence range defining portion, the disc-shaped transmission diffusion plate, and the cylinder The diffuse diffuser is housed in the casing and integrated with the casing, so that the transmission diffuser and diffuse reflector are covered with the casing, and the external force is directly applied to the diffuse diffuser and diffuse reflector. As a result of avoiding the situation in which the optical power is applied, the optical power meter can be suitably prevented from being damaged.

光パワーメータ1の構成図である。1 is a configuration diagram of an optical power meter 1. FIG. 受光センサ2におけるアパーチャ11(ケーシング10)および拡散光学系12の構成について説明するための断面図である。FIG. 4 is a cross-sectional view for explaining the configuration of an aperture 11 (casing 10) and a diffusion optical system 12 in the light receiving sensor 2. 透過拡散板21に形成された凹部22の中央部における測定対象光Lの反射について説明するための断面図である。FIG. 6 is a cross-sectional view for explaining the reflection of the measurement target light L at the central portion of the recess 22 formed in the transmission diffusion plate 21. 透過拡散板21に形成された凹部22の外縁部における測定対象光Lの反射について説明するための断面図である。FIG. 6 is a cross-sectional view for explaining the reflection of the measurement target light L at the outer edge portion of the recess 22 formed in the transmission diffusion plate 21. 受光センサ2Aにおけるアパーチャ11(ケーシング10)および拡散光学系12Aの構成について説明するための断面図である。It is sectional drawing for demonstrating the structure of the aperture 11 (casing 10) and the diffusion optical system 12A in the light reception sensor 2A. 出願人が試作した受光センサ2xにおけるアパーチャ11x、透過拡散板21xおよび筐体31xの構成について説明するための断面図である。It is sectional drawing for demonstrating the structure of the aperture 11x, the permeation | transmission diffuser plate 21x, and the housing | casing 31x in the light reception sensor 2x made as an experiment by the applicant.

以下、光パワーメータの実施の形態について、添付図面を参照して説明する。   Hereinafter, embodiments of an optical power meter will be described with reference to the accompanying drawings.

図1に示す光パワーメータ1は、「光パワーメータ」の一例であって、受光センサ2、信号処理回路3、操作部4、表示部5、処理部6および記憶部7を備え、レーザー光などの測定対象光Lの放射量や測光量等(「測定対象光についての予め規定された光学的パラメータ」の一例)を測定可能に構成されている。また、図2に示すように、受光センサ2は、ケーシング10、拡散光学系12および光電変換部13(図1参照)を備えて構成されている。   An optical power meter 1 shown in FIG. 1 is an example of an “optical power meter”, and includes a light receiving sensor 2, a signal processing circuit 3, an operation unit 4, a display unit 5, a processing unit 6, and a storage unit 7, and includes laser light. The amount of radiation of the measurement target light L, the amount of light measurement, and the like (an example of “predefined optical parameters for the measurement target light”) can be measured. As shown in FIG. 2, the light receiving sensor 2 includes a casing 10, a diffusion optical system 12, and a photoelectric conversion unit 13 (see FIG. 1).

ケーシング10は、「ケーシング」の一例であって、有底円筒状に形成されている。この場合、本例の光パワーメータ1(受光センサ2)では、ケーシング10の底板10aが「入射許容範囲規定部」の一例であるアパーチャ11として機能するように、円形の入射孔11aが底板10aに形成されている。また、入射孔11aは、その口径L1が、測定対象光Lのビーム径よりも広径であって、かつ、後述するように拡散光学系12において測定対象光Lを十分に拡散させ得る入射範囲(受光センサ2が好適な光学的特性を発揮し得る測定対象光Lの入射位置の範囲)を外れた位置からの測定対象光Lの入射を規制する大きさに規定されている。   The casing 10 is an example of a “casing” and is formed in a bottomed cylindrical shape. In this case, in the optical power meter 1 (light receiving sensor 2) of this example, the circular incident hole 11a has the bottom plate 10a so that the bottom plate 10a of the casing 10 functions as the aperture 11 which is an example of the “incident allowable range defining portion”. Is formed. In addition, the incident hole 11a has an aperture L1 that is wider than the beam diameter of the measurement target light L, and can sufficiently diffuse the measurement target light L in the diffusion optical system 12, as will be described later. It is defined to a size that restricts the incidence of the measurement target light L from a position outside the range of the incident position of the measurement target light L that allows the light receiving sensor 2 to exhibit suitable optical characteristics.

拡散光学系12は、透過拡散板21および拡散反射部31を備えている。透過拡散板21は、「透過拡散板」の一例であって、上記の入射孔11aを通過した測定対象光Lが透過可能に乳白色の樹脂材料等で円板状に形成され、後述するように、拡散反射部31と共にケーシング10内に収容されることでアパーチャ11(ケーシング10の底板10a)に隣接配置される。   The diffusion optical system 12 includes a transmission diffusion plate 21 and a diffusion reflection unit 31. The transmission diffusion plate 21 is an example of a “transmission diffusion plate”, and is formed in a disk shape with a milky white resin material or the like so that the measurement target light L that has passed through the incident hole 11a can be transmitted. By being accommodated in the casing 10 together with the diffuse reflection portion 31, it is disposed adjacent to the aperture 11 (the bottom plate 10 a of the casing 10).

この透過拡散板21は、ケーシング10の内径よりも小径に形成されると共に、アパーチャ11(ケーシング10の底板10a)に接する側の一面に深さD2の凹部22が形成され、図4に示すように、入射孔11aを通過して凹部22の底面22aにおいて反射される測定対象光Lの一部が凹部22の内側面22bから透過拡散板21に入射するように構成されている。この凹部22は、図2に示すように、その内径L2が入射孔11aの口径L1よりも大径となるように形成されている。これにより、本例の光パワーメータ1(受光センサ2)では、アパーチャ11における入射孔11aの口縁部が全周に亘って透過拡散板21の凹部22上に延出した状態となっている。なお、本例の透過拡散板21では、口縁部から底面22aまで内径L2が同径となるように凹部22が形成され、これにより、底面22aの延面と内側面22bの延面とが直角に交わるように構成されている。   The transmission diffusion plate 21 is formed to have a smaller diameter than the inner diameter of the casing 10, and a concave portion 22 having a depth D2 is formed on one surface in contact with the aperture 11 (the bottom plate 10a of the casing 10), as shown in FIG. In addition, a part of the measurement target light L that passes through the incident hole 11 a and is reflected on the bottom surface 22 a of the recess 22 enters the transmission diffusion plate 21 from the inner surface 22 b of the recess 22. As shown in FIG. 2, the recess 22 is formed such that its inner diameter L2 is larger than the diameter L1 of the incident hole 11a. Thereby, in the optical power meter 1 (light receiving sensor 2) of this example, the rim portion of the incident hole 11a in the aperture 11 extends over the concave portion 22 of the transmission diffusion plate 21 over the entire circumference. . In the transmissive diffusion plate 21 of the present example, the recess 22 is formed so that the inner diameter L2 is the same from the rim to the bottom surface 22a, whereby the extended surface of the bottom surface 22a and the extended surface of the inner side surface 22b are formed. It is configured to intersect at right angles.

また、この透過拡散板21では、その外縁部に凹部22の周囲の厚みT1よりも薄い厚みT2(一例として、凹部22の深さD2と同じ厚み)で環状の薄厚部23が設けられている。なお、凹部22や薄厚部23の光学的機能については、後に詳細に説明するが、外縁部の厚みT2については、必要に応じて、凹部22の深さD2よりも薄くしたり、凹部22の深さD2よりも厚くしたりすることができる。   Further, in this transmission diffusion plate 21, an annular thin portion 23 is provided on the outer edge portion thereof with a thickness T <b> 2 that is thinner than the thickness T <b> 1 around the recess 22 (for example, the same thickness as the depth D <b> 2 of the recess 22). . The optical functions of the concave portion 22 and the thin portion 23 will be described in detail later, but the outer edge thickness T2 can be made thinner than the depth D2 of the concave portion 22 as necessary. It can be made thicker than the depth D2.

拡散反射部31は、「拡散反射部」の一例であって、アパーチャ11の入射孔11aを通過して拡散光学系12を透過させられた(拡散光学系12において拡散された)測定対象光Lを内面31aにおいて拡散反射可能に構成されている。この拡散反射部31は、外径L3bがケーシング10の内径と同径で、かつ、内径L3aが入射孔11aの口径L1や凹部22の内径L2よりも大径の円筒状に形成されている。この場合、本例の光パワーメータ1(受光センサ2)では、上記の透過拡散板21および拡散反射部31がケーシング10内に収容されることでケーシング10と一体化され、これにより、アパーチャ11(底板10a)、透過拡散板21および拡散反射部31が、光源からの測定対象光Lの出射方向に沿って隣接配置された状態となっている。   The diffuse reflection unit 31 is an example of a “diffuse reflection unit”, and passes through the incident hole 11a of the aperture 11 and is transmitted through the diffusion optical system 12 (diffused in the diffusion optical system 12). Is configured so that it can be diffusely reflected on the inner surface 31a. The diffuse reflection section 31 is formed in a cylindrical shape having an outer diameter L3b that is the same as the inner diameter of the casing 10, and an inner diameter L3a that is larger than the diameter L1 of the incident hole 11a and the inner diameter L2 of the recess 22. In this case, in the optical power meter 1 (light receiving sensor 2) of this example, the transmission diffuser plate 21 and the diffuse reflector 31 are accommodated in the casing 10 so as to be integrated with the casing 10, thereby the aperture 11. The (bottom plate 10a), the transmissive diffusing plate 21, and the diffusing and reflecting portion 31 are adjacently disposed along the emission direction of the measurement target light L from the light source.

光電変換部13は、測定対象光Lの受光量に応じた検出信号を出力する。この場合、本例の光パワーメータ1(受光センサ2)では、一例として、拡散光学系12(透過拡散板21および拡散反射部31)において拡散された測定対象光Lの一部を受光可能に拡散反射部31における図示しない端部(図2における右側の端部)に光電変換部13が配設されている。なお、実際の光パワーメータ1では、その用途に応じて、任意の波長範囲の測定対象光Lだけを透過させる光学フィルタ、波長毎の透過率が異なる光学フィルタ、および測定対象光Lの光路を変更する反射光学系や屈折光学系などの各種の光学部品が光電変換部13の手前に配設されるが、光パワーメータ1についての理解を容易とするために、これらについての図示および説明を省略する。   The photoelectric conversion unit 13 outputs a detection signal corresponding to the amount of received light of the measurement target light L. In this case, in the optical power meter 1 (light receiving sensor 2) of this example, as an example, a part of the measurement target light L diffused in the diffusing optical system 12 (the transmissive diffusing plate 21 and the diffusive reflecting portion 31) can be received. The photoelectric conversion unit 13 is disposed at an end (not shown) of the diffuse reflection unit 31 (the right end in FIG. 2). In the actual optical power meter 1, depending on the application, an optical filter that transmits only the measurement target light L in an arbitrary wavelength range, an optical filter having a different transmittance for each wavelength, and an optical path of the measurement target light L are provided. Various optical components such as a reflective optical system and a refractive optical system to be changed are disposed in front of the photoelectric conversion unit 13. For easy understanding of the optical power meter 1, these are illustrated and described. Omitted.

信号処理回路3は、光電変換部13から出力される検出信号(電流信号)をI/V変換するI/V変換部やI/V変換部の出力信号(電圧信号)をA/D変換するA/D変換部を備え、光電変換部13による測定対象光Lの受光量に応じたデジタル信号を処理部6に出力する。操作部4は、測定処理の条件の設定操作や、測定処理の開始/停止を指示する各種の操作スイッチを備え、スイッチ操作に応じた操作信号を処理部6に出力する。表示部5は、処理部6の制御に従い、測定条件設定画面や測定結果表示画面など(いずれも図示せず)を表示する。   The signal processing circuit 3 performs A / D conversion on an I / V conversion unit that performs I / V conversion on a detection signal (current signal) output from the photoelectric conversion unit 13 and an output signal (voltage signal) of the I / V conversion unit. An A / D conversion unit is provided, and a digital signal corresponding to the amount of light of the measurement target light L received by the photoelectric conversion unit 13 is output to the processing unit 6. The operation unit 4 includes various operation switches for setting measurement process conditions and instructing start / stop of the measurement process, and outputs an operation signal corresponding to the switch operation to the processing unit 6. The display unit 5 displays a measurement condition setting screen, a measurement result display screen, and the like (both not shown) according to the control of the processing unit 6.

処理部6は、光パワーメータ1を総括的に制御する。具体的には、処理部6は、操作部4の操作によって測定処理の開始を指示されたときに信号処理回路3を制御して光電変換部13からの検出信号の信号処理を開始させ、信号処理回路3から出力される検出信号(光電変換部13による測定対象光Lの受光量に応じて値が相違するデジタル信号)を記憶部7に記憶させる。また、処理部6は、記憶部7に記憶させた検出信号に基づき、測定対象光Lの放射量や測光量などを演算する。さらに、処理部6は、演算した結果を示す測定結果データを生成して記憶部7に記憶させると共に、その値を表示部5に表示させる。記憶部7は、処理部6の動作プログラム、信号処理回路3から出力された検出信号、および測定結果データなどを記憶する。   The processing unit 6 controls the optical power meter 1 as a whole. Specifically, the processing unit 6 controls the signal processing circuit 3 to start signal processing of the detection signal from the photoelectric conversion unit 13 when instructed to start measurement processing by operating the operation unit 4, A detection signal output from the processing circuit 3 (a digital signal having a value different depending on the amount of light L to be measured by the photoelectric conversion unit 13) is stored in the storage unit 7. Further, the processing unit 6 calculates the radiation amount, the light measurement amount, and the like of the measurement target light L based on the detection signal stored in the storage unit 7. Furthermore, the processing unit 6 generates measurement result data indicating the calculated result, stores the measurement result data in the storage unit 7, and causes the display unit 5 to display the value. The storage unit 7 stores an operation program for the processing unit 6, a detection signal output from the signal processing circuit 3, measurement result data, and the like.

この光パワーメータ1の製造に際しては、まず、ケーシング10および拡散光学系12(透過拡散板21および拡散反射部31)をそれぞれ製作して受光センサ2を組み立てる。具体的には、一例として、円柱状のアルミニウム塊を切削して底円筒状に加工すると共に、底板10aの中央部に口径L1の入射孔11aを形成する。これにより、底板10aがアパーチャ11として機能する状態となり、ケーシング10が完成する。   In manufacturing the optical power meter 1, first, the casing 10 and the diffusing optical system 12 (the transmissive diffusing plate 21 and the diffusing / reflecting portion 31) are respectively manufactured, and the light receiving sensor 2 is assembled. Specifically, as an example, a cylindrical aluminum lump is cut and processed into a bottom cylindrical shape, and an incident hole 11a having a diameter L1 is formed in the center portion of the bottom plate 10a. As a result, the bottom plate 10a functions as the aperture 11 and the casing 10 is completed.

また、透過拡散板21については、一例として、ケーシング10の内径と同径で厚みT1(図2参照)の円板を切削加工することにより、一方の面の中央部に内径L2で深さD2の凹部22を形成すると共に、他方の面の外縁部を全周に亘って薄厚化して厚みT2の薄厚部23を形成する。なお、薄厚部23については、凹部22の形成面とは逆側の面を切削する上記の構成に代えて、凹部22の形成面における外縁部を切削して形成することもできる。また、この透過拡散板21については、円板を切削加工する上記の製作方法に変えて、凹部22および薄厚部23を成形可能な金型を使用して射出成形によって製作することもできる。   Further, as an example, the transmission diffusion plate 21 is formed by cutting a disc having the same diameter as the inner diameter of the casing 10 and having a thickness T1 (see FIG. 2). And the outer edge of the other surface is thinned over the entire circumference to form a thin portion 23 having a thickness T2. In addition, about the thin part 23, it can replace with said structure which cuts the surface on the opposite side to the formation surface of the recessed part 22, and can also form it by cutting the outer edge part in the formation surface of the recessed part 22. FIG. Further, the transmission diffusion plate 21 can be manufactured by injection molding using a mold capable of forming the concave portion 22 and the thin portion 23 instead of the above manufacturing method of cutting a disk.

さらに、拡散反射部31については、一例として、PTFE(ポリテトラルフルオロエチレン)の粉体を焼結した外径L3bの円柱状の樹脂焼結体を切削することにより、内径L3aの円筒体に加工する。この場合、上記のような樹脂焼結体が非常に高価であるため、その外径L3bを必要最低限の大きさとすることで拡散反射部31の製作コスト(材料コスト)を低減することができる。   Furthermore, for the diffuse reflection part 31, as an example, a cylindrical resin sintered body having an outer diameter L3b obtained by sintering PTFE (polytetrafluoroethylene) powder is cut into a cylindrical body having an inner diameter L3a. Process. In this case, since the resin sintered body as described above is very expensive, the manufacturing cost (material cost) of the diffuse reflector 31 can be reduced by setting the outer diameter L3b to the minimum necessary size. .

次いで、ケーシング10における底板10aとは逆側の端部から、透過拡散板21および拡散反射部31をこの順で挿入する。この際には、図2に示すように、透過拡散板21における凹部22の形成面が底板10a(アパーチャ11)と対向するように透過拡散板21を挿入する。これにより、透過拡散板21における凹部22の周囲がケーシング10における底板10aの内面に接し、かつ、透過拡散板21における薄厚部23に拡散反射部31の一端部が接した状態となる。この場合、本例の光パワーメータ1(受光センサ2)では、透過拡散板21の外径が拡散反射部31の内径よりも大径となるように(一例として、透過拡散板21の外径が拡散反射部31の外径と同径となるように)形成されている。したがって、上記のようにケーシング10内に透過拡散板21および拡散反射部31を挿入することにより、ケーシング10の底板10a(アパーチャ11)および拡散反射部31の間に透過拡散板21が挟み込まれるようにして、これらが一体化される。   Next, the transmissive diffusion plate 21 and the diffuse reflection portion 31 are inserted in this order from the end of the casing 10 opposite to the bottom plate 10a. At this time, as shown in FIG. 2, the transmissive diffusion plate 21 is inserted so that the formation surface of the recess 22 in the transmissive diffusion plate 21 faces the bottom plate 10 a (aperture 11). As a result, the periphery of the recess 22 in the transmission diffusion plate 21 is in contact with the inner surface of the bottom plate 10 a in the casing 10, and one end portion of the diffuse reflection portion 31 is in contact with the thin portion 23 in the transmission diffusion plate 21. In this case, in the optical power meter 1 (light receiving sensor 2) of this example, the outer diameter of the transmissive diffusion plate 21 is larger than the inner diameter of the diffuse reflection portion 31 (as an example, the outer diameter of the transmissive diffusion plate 21). Is formed to have the same diameter as the outer diameter of the diffuse reflection portion 31. Therefore, by inserting the transmissive diffusion plate 21 and the diffuse reflection portion 31 into the casing 10 as described above, the transmissive diffusion plate 21 is sandwiched between the bottom plate 10 a (aperture 11) and the diffuse reflection portion 31 of the casing 10. Thus, these are integrated.

続いて、一例として、ケーシング10における底板10aとは逆側の端部に光電変換部13を取り付ける。これにより、受光センサ2が完成する。この後、製作した受光センサ2を、信号処理回路3、操作部4、表示部5、処理部6および記憶部7などと共に本体部(図示せず)に組み付ける。なお、光電変換部13をケーシング10の他端部側に予め取り付けておく上記の製造方法に代えて、本体部における受光センサ2の配設部位に光電変換部13を予め取り付けておき、その光電変換部13に測定対象光Lが入射するように、ケーシング10および拡散光学系12を本体部に取り付ける方法を採用することもできる。以上により、光パワーメータ1が完成する   Subsequently, as an example, the photoelectric conversion unit 13 is attached to the end of the casing 10 opposite to the bottom plate 10a. Thereby, the light receiving sensor 2 is completed. Thereafter, the manufactured light receiving sensor 2 is assembled to a main body (not shown) together with the signal processing circuit 3, the operation unit 4, the display unit 5, the processing unit 6, the storage unit 7, and the like. Instead of the manufacturing method in which the photoelectric conversion unit 13 is attached in advance to the other end portion of the casing 10, the photoelectric conversion unit 13 is attached in advance to the site where the light receiving sensor 2 is disposed in the main body, and the photoelectric conversion unit 13 is installed. A method of attaching the casing 10 and the diffusing optical system 12 to the main body so that the measurement target light L is incident on the conversion unit 13 can also be adopted. Thus, the optical power meter 1 is completed.

この光パワーメータ1を使用して測定対象光Lの放射量や測光量等(以下、「被測定量」といもいう)を測定する際には、アパーチャ11の入射孔11aから受光センサ2に測定対象光Lを入射させる。この際には、入射孔11aを通過した測定対象光Lが透過拡散板21を透過させられる際に拡散され、かつ拡散反射部31の内面31aにおいて拡散反射される結果、入射孔11aを通過した測定対象光Lの一部が光電変換部13に対して確実に入射する。これにより、光電変換部13への測定対象光Lの入射量(光電変換部13による受光量)に応じた信号レベルの検出信号が光電変換部13から出力される。   When using this optical power meter 1 to measure the radiation amount, light measurement amount, etc. (hereinafter also referred to as “measurement amount”) of the measurement target light L, the light receiving sensor 2 is irradiated from the incident hole 11 a of the aperture 11. The measurement target light L is incident. At this time, the measurement target light L that has passed through the incident hole 11a is diffused when being transmitted through the transmission diffusion plate 21, and diffused and reflected by the inner surface 31a of the diffusive reflecting portion 31, so that it has passed through the incident hole 11a. Part of the measurement target light L is reliably incident on the photoelectric conversion unit 13. As a result, a detection signal having a signal level corresponding to the amount of the measurement target light L incident on the photoelectric conversion unit 13 (the amount of light received by the photoelectric conversion unit 13) is output from the photoelectric conversion unit 13.

また、信号処理回路3が光電変換部13から出力される検出信号を信号処理し、処理部6が処理後の検出信号のデータを記憶部7に記憶させると共に、その値(検出信号の信号レベル)に基づき、被測定量を演算する。これにより、演算された(測定された)被測定量が表示部5に表示されて測定処理が完了する。   Further, the signal processing circuit 3 performs signal processing on the detection signal output from the photoelectric conversion unit 13, and the processing unit 6 stores the data of the detection signal after processing in the storage unit 7, and the value (signal level of the detection signal). ) To calculate the amount to be measured. Thereby, the calculated (measured) measured amount is displayed on the display unit 5 and the measurement process is completed.

この場合、図3に示すように、上記の測定処理に際して入射孔11aの中央部に測定対象光Lを入射させたときに、入射孔11aを通過して矢印A1で示すように凹部22内に進入した測定対象光Lは、その一部が矢印A2a,A2bなどで示すように底面22aにおいて反射されて入射孔11aから受光センサ2の外に出射されるものの、凹部22内に進入した測定対象光Lの大半は、凹部22の底面22aから透過拡散板21内に入射して透過拡散板21内において拡散され、透過拡散板21におけるアパーチャ11とは逆側の面から拡散反射部31内に出射される。   In this case, as shown in FIG. 3, when the measurement target light L is incident on the central portion of the incident hole 11a in the above measurement process, the light passes through the incident hole 11a and enters the recess 22 as indicated by an arrow A1. The measurement target light L that has entered partly reflects off the bottom surface 22a as shown by arrows A2a, A2b, etc. and is emitted from the incident hole 11a to the outside of the light receiving sensor 2, but enters the recess 22 Most of the light L enters the transmissive diffusion plate 21 from the bottom surface 22 a of the recess 22 and is diffused in the transmissive diffusion plate 21, and enters the diffusing reflection portion 31 from the surface opposite to the aperture 11 in the transmissive diffusion plate 21. Emitted.

また、拡散反射部31内に出射された測定対象光L(透過拡散板21の透過時に拡散された測定対象光L)は、内面31aにおいて拡散反射される。これにより、この光パワーメータ1(受光センサ2)では、入射孔11aの中央部、およびその近傍における測定対象光Lの入射位置依存性が十分に軽減され、入射孔11aを通過した測定対象光Lのうちの一定量の測定対象光Lを図示しない光電変換部13に対して入射させることが可能となっている。   Further, the measurement target light L (measurement target light L diffused when transmitted through the transmission diffusion plate 21) emitted into the diffuse reflection section 31 is diffusely reflected on the inner surface 31a. Thereby, in this optical power meter 1 (light receiving sensor 2), the dependency on the incident position of the measurement target light L in the central portion of the incident hole 11a and in the vicinity thereof is sufficiently reduced, and the measurement target light that has passed through the incident hole 11a. A certain amount of measurement target light L out of L can be incident on the photoelectric conversion unit 13 (not shown).

一方、図4に示すように、入射孔11aの外縁部寄りに測定対象光Lを入射させたときに、入射孔11aを通過して矢印B1で示すように凹部22内に進入した測定対象光Lの大半は、入射孔11aの中央部に測定対象光Lを入射させたときと同様にして、凹部22の底面22aから透過拡散板21内に入射して透過拡散板21内において拡散され、透過拡散板21におけるアパーチャ11とは逆側の面から拡散反射部31内に出射される。   On the other hand, as shown in FIG. 4, when the measurement target light L is incident near the outer edge of the incident hole 11a, the measurement target light that has passed through the incident hole 11a and entered the recess 22 as indicated by an arrow B1. Most of L enters the transmission diffusion plate 21 from the bottom surface 22a of the recess 22 and is diffused in the transmission diffusion plate 21 in the same manner as when the measurement target light L is incident on the central portion of the incident hole 11a. The light is emitted from the surface of the transmissive diffusion plate 21 opposite to the aperture 11 into the diffuse reflector 31.

しかしながら、矢印B1で示すように凹部22内に進入した測定対象光Lの一部は、矢印B2a,B2bなどで示すように底面22aにおいて反射され、そのうちの矢印B2a等で示すように反射された測定対象光Lは、入射孔11aから受光センサ2の外に出射されるものの、矢印B2b等で示すように反射された測定対象光Lは、凹部22の内側面22bから透過拡散板21内に入射して透過拡散板21内において拡散され、凹部22の底面22aから入射した測定対象光Lと共に透過拡散板21におけるアパーチャ11とは逆側の面から拡散反射部31内に出射される。   However, a part of the measurement target light L that has entered the recess 22 as indicated by the arrow B1 is reflected at the bottom surface 22a as indicated by the arrows B2a, B2b, etc., and is reflected as indicated by the arrow B2a among them. Although the measurement target light L is emitted from the incident hole 11a to the outside of the light receiving sensor 2, the measurement target light L reflected as indicated by the arrow B2b or the like enters the transmission diffusion plate 21 from the inner side surface 22b of the recess 22. The light is incident and diffused in the transmissive diffusion plate 21, and is emitted into the diffuse reflection portion 31 from the surface opposite to the aperture 11 in the transmissive diffusion plate 21 together with the measurement target light L incident from the bottom surface 22 a of the recess 22.

このため、入射孔11aの外縁部寄りに測定対象光Lを入射させたときには、入射孔11aの中央部に測定対象光Lを入射させたときのように底面22aにおいて反射された測定対象光Lのすべてが受光センサ2内に入射しない状態と比較して、底面22aにおいて反射された後に内側面22bから透過拡散板21内に入射する測定対象光Lの分だけ、透過拡散板21におけるアパーチャ11とは逆側の面から拡散反射部31内に出射される光量が増加する。   For this reason, when the measurement target light L is incident near the outer edge of the incident hole 11a, the measurement target light L reflected on the bottom surface 22a is reflected as when the measurement target light L is incident on the central part of the incident hole 11a. Compared to a state in which all of the light is not incident on the light receiving sensor 2, the aperture 11 in the transmissive diffusion plate 21 is equivalent to the measurement target light L incident on the transmissive diffusion plate 21 from the inner side surface 22b after being reflected on the bottom surface 22a. The amount of light emitted from the opposite surface to the diffuse reflector 31 increases.

この場合、本例の光パワーメータ1(受光センサ2)では、小形化および材料コストの低減を目的として拡散反射部31の内径L3aを十分に小径化している。したがって、透過拡散板21の凹部22における上記のような測定対象光Lの反射や入射を考慮しなければ、この光パワーメータ1(受光センサ2)においても、出願人が試作した従来の光パワーメータ(受光センサ2x)と同様にして、拡散反射部31の内面31aと入射孔11aとの距離が短いことに起因して入射孔11aの外縁部寄りに測定対象光Lを入射させたときに光電変換部13への測定対象光Lの入射量が少なくなる入射位置依存性が生じることとなる。   In this case, in the optical power meter 1 (light receiving sensor 2) of the present example, the inner diameter L3a of the diffuse reflector 31 is sufficiently reduced for the purpose of reducing the size and reducing the material cost. Therefore, if the reflection and incidence of the measurement target light L as described above in the concave portion 22 of the transmission diffusion plate 21 is not taken into consideration, the conventional optical power prototyped by the applicant is also produced in this optical power meter 1 (light receiving sensor 2). Similar to the meter (light receiving sensor 2x), when the measurement target light L is incident near the outer edge portion of the incident hole 11a due to the short distance between the inner surface 31a of the diffuse reflection part 31 and the incident hole 11a. Incident position dependency that the amount of the measurement target light L incident on the photoelectric conversion unit 13 is reduced occurs.

しかしながら、本例の光パワーメータ1(受光センサ2)では、前述したように、入射孔11aの外縁部寄りに測定対象光Lを入射させたときに、透過拡散板21における凹部22の底面22aにおいて反射された測定対象光Lの一部が内側面22bから透過拡散板21内に入射し、この測定対象光Lの分だけ、透過拡散板21から拡散反射部31内に進入する測定対象光Lの光量が増加する。このため、拡散反射部31の内面31aにおいて拡散反射された測定対象光Lの一部が透過拡散板21を透過して入射孔11aから受光センサ2の外部に出射されたとしても、入射孔11aの中央部に測定対象光Lを入射させたときと同程度の十分な量の測定対象光Lを光電変換部13に入射させることが可能となっている。これにより、本例の光パワーメータ1(受光センサ2)では、入射孔11aに対する測定対象光Lの入射位置依存性が十分に軽減されている。   However, in the optical power meter 1 (light receiving sensor 2) of the present example, as described above, when the measurement target light L is incident near the outer edge of the incident hole 11a, the bottom surface 22a of the concave portion 22 in the transmission diffusion plate 21. Part of the measurement target light L reflected in the step enters the transmission diffuser plate 21 from the inner side surface 22b, and the measurement target light enters the diffuse reflection part 31 from the transmission diffuser plate 21 by this measurement target light L. The light quantity of L increases. For this reason, even if a part of the measurement target light L diffusely reflected on the inner surface 31a of the diffuse reflector 31 is transmitted through the transmission diffusion plate 21 and emitted from the incident hole 11a to the outside of the light receiving sensor 2, the incident hole 11a. It is possible to allow the measurement target light L to be incident on the photoelectric conversion unit 13 with a sufficient amount equivalent to that when the measurement target light L is incident on the center of the photoelectric conversion unit 13. Thereby, in the optical power meter 1 (light receiving sensor 2) of this example, the dependency on the incident position of the measurement target light L with respect to the incident hole 11a is sufficiently reduced.

この場合、入射孔11aの外縁部寄りに測定対象光Lを入射させた際に凹部22の底面22aにおいて反射されて内側面22bから透過拡散板21内に入射する測定対象光Lの量は、内側面22bの高さ、すなわち凹部22の深さD2に応じて変化する。具体的には、凹部22の深さD2が深いとき(内側面22bが高いとき)には、底面22aにおいて反射された測定対象光Lが内側面22bから透過拡散板21内に入射し易くなるため、底面22aにおいて反射される測定対象光Lに占める内側面22bからの入射量が増加する。また、凹部22の深さD2が浅いとき(内側面22bが低いとき)には、底面22aにおいて反射された測定対象光Lが内側面22bから透過拡散板21内に入射し難くなるため、底面22aにおいて反射される測定対象光Lに占める内側面22bからの入射量が減少する。   In this case, when the measurement target light L is incident near the outer edge of the incident hole 11a, the amount of the measurement target light L that is reflected from the bottom surface 22a of the recess 22 and enters the transmission diffusion plate 21 from the inner side surface 22b is: It changes in accordance with the height of the inner side surface 22b, that is, the depth D2 of the recess 22. Specifically, when the depth D2 of the recess 22 is deep (when the inner side surface 22b is high), the measurement target light L reflected on the bottom surface 22a easily enters the transmission diffusion plate 21 from the inner side surface 22b. Therefore, the amount of incident light from the inner side surface 22b in the measurement target light L reflected on the bottom surface 22a increases. Further, when the depth D2 of the concave portion 22 is shallow (when the inner side surface 22b is low), the measurement target light L reflected on the bottom surface 22a is difficult to enter the transmission diffusion plate 21 from the inner side surface 22b. The amount of incident light from the inner side surface 22b in the measurement target light L reflected at 22a decreases.

また、入射孔11aの外縁部寄りに測定対象光Lを入射させた際に凹部22の底面22aにおいて反射されて内側面22bから透過拡散板21内に入射する測定対象光Lの量は、上記の内側面22bの高さだけでなく、底面22aへの測定対象光Lの入射位置と内側面22bとの間の距離、すなわち、入射孔11aの口径L1と凹部22の内径L2との差の大きさにも応じて変化する。   In addition, when the measurement target light L is incident near the outer edge of the incident hole 11a, the amount of the measurement target light L that is reflected from the bottom surface 22a of the recess 22 and enters the transmission diffusion plate 21 from the inner side surface 22b is as described above. In addition to the height of the inner side surface 22b, the distance between the incident position of the measurement target light L on the bottom surface 22a and the inner side surface 22b, that is, the difference between the diameter L1 of the incident hole 11a and the inner diameter L2 of the concave portion 22 It changes according to the size.

具体的には、凹部22の内径L2と入射孔11aの口径L1との差が小さいときには、底面22aへの測定対象光Lの入射位置と内側面22bとの間の距離が短くなることで底面22aにおいて反射された測定対象光Lが内側面22bから透過拡散板21内に入射し易くなるため、底面22aにおいて反射される測定対象光Lに占める内側面22bからの入射量が増加する。また、凹部22の内径L2と入射孔11aの口径L1との差が大きいときには、底面22aへの測定対象光Lの入射位置と内側面22bとの間の距離が長くなることで底面22aにおいて反射された測定対象光Lが内側面22bから透過拡散板21内に入射し難くなるため、底面22aにおいて反射される測定対象光Lに占める内側面22bからの入射量が減少する。   Specifically, when the difference between the inner diameter L2 of the concave portion 22 and the diameter L1 of the incident hole 11a is small, the distance between the incident position of the measurement target light L on the bottom surface 22a and the inner side surface 22b is shortened. Since the measurement target light L reflected at 22a easily enters the transmission diffuser 21 from the inner side surface 22b, the amount of incident light from the inner side surface 22b in the measurement target light L reflected at the bottom surface 22a increases. Further, when the difference between the inner diameter L2 of the concave portion 22 and the aperture L1 of the incident hole 11a is large, the distance between the incident position of the measurement target light L on the bottom surface 22a and the inner side surface 22b is increased, so that the reflection at the bottom surface 22a. Since the measurement target light L is less likely to enter the transmission diffusion plate 21 from the inner side surface 22b, the amount of incidence from the inner side surface 22b in the measurement target light L reflected on the bottom surface 22a is reduced.

このように、透過拡散板21に形成する凹部22の深さD2や内径L2は、入射孔11aの外縁部寄りに測定対象光Lを入射させた際に内側面22bから透過拡散板21内に入射する測定対象光Lの光量に対して大きく影響することが理解できる。このため、光パワーメータ1(受光センサ2)の設計時には、入射孔11aに対する測定対象光Lの入射位置依存性を十分に軽減できるように、凹部22の深さD2や内径L2の値を最適化する必要がある。   As described above, the depth D2 and the inner diameter L2 of the concave portion 22 formed in the transmission diffusion plate 21 are set in the transmission diffusion plate 21 from the inner side surface 22b when the measurement target light L is incident near the outer edge portion of the incident hole 11a. It can be understood that it greatly affects the amount of incident measurement target light L. For this reason, at the time of designing the optical power meter 1 (light receiving sensor 2), the values of the depth D2 and the inner diameter L2 of the recess 22 are optimized so as to sufficiently reduce the incident position dependency of the measurement target light L with respect to the incident hole 11a. It is necessary to make it.

しかしながら、凹部22の深さD2や内径L2については、その寸法を僅かに変更しただけでも、内側面22bからの測定対象光Lの入射量が大きく変化する。また、凹部22の深さD2や内径L2については、内側面22bからの測定対象光Lの入射量だけでなく、透過拡散板21内における測定対象光Lの拡散性に対しても大きく影響するため、内側面22bからの入射量だけを考慮してその寸法を規定することは困難である。   However, with respect to the depth D2 and the inner diameter L2 of the concave portion 22, even if the dimensions are slightly changed, the incident amount of the measurement target light L from the inner side surface 22b greatly changes. Further, the depth D2 and the inner diameter L2 of the recess 22 greatly affect not only the incident amount of the measurement target light L from the inner side surface 22b but also the diffusibility of the measurement target light L in the transmission diffusion plate 21. For this reason, it is difficult to define the dimensions in consideration of only the incident amount from the inner side surface 22b.

したがって、本例の光パワーメータ1(受光センサ2)では、その設計段階において、一例として、まず、入射孔11aの外縁部寄りに測定対象光Lを入射させたときの内側面22bからの測定対象光Lの入射量が理想的な入射量(入射孔11aに対する測定対象光Lの入射位置依存性が実質的に「0」となるような入射量)に満たない状態とはならないことを条件として、透過拡散板21に求められる本来的な光学的特性(透過拡散性)を考慮して凹部22の深さD2や内径L2を規定する。次いで、上記のように深さD2や内径L2を規定することにより、入射孔11aの外縁部寄りに測定対象光Lを入射させたときの内側面22bからの測定対象光Lの入射量が理想的な入射量とは相違する入射量となったときに、理想的な入射量との差を考慮して、透過拡散板21の外縁部に形成する薄厚部23の厚みT2を最適化する。   Therefore, in the optical power meter 1 (light receiving sensor 2) of the present example, at the design stage, as an example, first, measurement from the inner side surface 22b when the measurement target light L is incident near the outer edge of the incident hole 11a. The condition is that the incident amount of the target light L does not become less than the ideal incident amount (the incident amount at which the dependency of the measurement target light L on the incident hole 11a is substantially “0”). As described above, the depth D2 and the inner diameter L2 of the recess 22 are defined in consideration of the inherent optical characteristics (transmission diffusibility) required for the transmission diffusion plate 21. Next, by defining the depth D2 and the inner diameter L2 as described above, the incident amount of the measurement target light L from the inner side surface 22b when the measurement target light L is incident near the outer edge of the incident hole 11a is ideal. When the incident amount is different from the typical incident amount, the thickness T2 of the thin portion 23 formed on the outer edge portion of the transmission diffusion plate 21 is optimized in consideration of the difference from the ideal incident amount.

この場合、透過拡散板21におけるいずれかの部位の厚みを薄厚化することで、その薄厚化した部位における測定対象光Lの拡散性が薄厚化していない状態から変化するため、どの部位をどの程度薄厚化するかを適宜変更することにより、入射孔11aの外縁部寄りに測定対象光Lを入射させたときの内側面22bからの測定対象光Lの入射量を理想的な状態とすることができる。   In this case, by reducing the thickness of any part of the transmissive diffusion plate 21, the diffusibility of the measurement target light L in the thinned part changes from the non-thinned state. By appropriately changing whether the thickness is reduced, the incident amount of the measurement target light L from the inner side surface 22b when the measurement target light L is incident near the outer edge portion of the incident hole 11a may be set to an ideal state. it can.

また、透過拡散板21における中央部寄り(入射孔11aに近い部位)よりも、透過拡散板21における外縁部寄り(入射孔11aから遠い部位)を薄厚化したときの方が、薄厚化による拡散性への影響が小さくなることが確認されている。つまり、薄厚部23の厚みT2については、凹部22の深さD2や内径L2よりも入射位置依存性に対する影響が小さく、また、入射孔11aから十分に離れている外縁部を薄厚部23にすることで、透過拡散板21に求められている本来的な光学的特定に対する影響も十分に小さくなっている。このため、厚みT2については、上記の深さD2や内径L2よりも容易にその寸法を変更することが可能となっている。これにより、凹部22の深さD2や内径L2だけを変更して透過拡散板21に求められる光学的機能(測定対象光Lの拡散)を妨げることなく入射位置依存性を低減するのと比較して、所望の光学的機能を有し、かつ入射位置依存性を十分に低減し得る透過拡散板21を容易に設計することが可能となっている。   Further, the diffusion due to the thinning is closer to the outer edge part (the part far from the incident hole 11a) in the transmissive diffusion plate 21 than the central part (the part near the incident hole 11a) in the transmissive diffusion plate 21. It has been confirmed that the effect on sex is reduced. That is, the thickness T2 of the thin portion 23 has less influence on the incident position dependency than the depth D2 and the inner diameter L2 of the concave portion 22, and the outer edge portion that is sufficiently separated from the incident hole 11a is the thin portion 23. Thus, the influence on the original optical specification required for the transmission diffusion plate 21 is sufficiently reduced. For this reason, it is possible to change the dimension of the thickness T2 more easily than the depth D2 and the inner diameter L2. As a result, only the depth D2 and the inner diameter L2 of the recess 22 are changed to reduce the incident position dependency without disturbing the optical function (diffusion of the measurement target light L) required for the transmission diffusion plate 21. Thus, it is possible to easily design the transmissive diffusion plate 21 having a desired optical function and capable of sufficiently reducing the incident position dependency.

一方、この種の測定器では、携行時や使用時に測定器に対して衝撃や振動が加えられることがある。この場合、樹脂焼結体で構成された拡散反射部31は、一般的な樹脂材料によって射出成形した筒状体と比較して、その物理的強度がやや低くなっている。したがって、上記のような振動や衝撃が拡散反射部31に対して直接的に加えられたときには、拡散反射部31に変形や破損が生じるおそれがある。しかしながら、本例の光パワーメータ1(受光センサ2)では、透過拡散板21と共に拡散反射部31がケーシング10内に収容されてケーシング10と一体化されているため、この拡散反射部31に対して衝撃や振動が直接的に加えられる事態が好適に回避されている。   On the other hand, in this type of measuring device, an impact or vibration may be applied to the measuring device during carrying or use. In this case, the diffuse reflection part 31 made of a resin sintered body has a slightly lower physical strength than a cylindrical body injection-molded with a general resin material. Therefore, when the vibration or impact as described above is directly applied to the diffuse reflector 31, the diffuse reflector 31 may be deformed or damaged. However, in the optical power meter 1 (light receiving sensor 2) of this example, the diffuse reflection part 31 is housed in the casing 10 and integrated with the casing 10 together with the transmissive diffusion plate 21, so Thus, a situation in which an impact or vibration is directly applied is preferably avoided.

このように、この光パワーメータ1では、アパーチャ11の入射孔11aを通過した測定対象光Lが透過可能にアパーチャ11に隣接配置されて測定対象光Lを拡散させる透過拡散板21におけるアパーチャ11側の一面に凹部22が形成されて、凹部22の底面22aにおいて反射される測定対象光Lの一部が凹部22の内側面22bから透過拡散板21に入射可能に構成されると共に、透過拡散板21の外縁部に凹部22の周囲の厚みT1よりも薄い厚みT2の薄厚部23が設けられている。   As described above, in the optical power meter 1, the measurement target light L that has passed through the incident hole 11 a of the aperture 11 is arranged adjacent to the aperture 11 so as to be transmissive, and diffuses the measurement target light L to the aperture 11 side. The concave portion 22 is formed on one surface, and a part of the measurement target light L reflected from the bottom surface 22a of the concave portion 22 is configured to be incident on the transmissive diffusion plate 21 from the inner side surface 22b of the concave portion 22, and the transmissive diffusion plate A thin portion 23 having a thickness T2 thinner than a thickness T1 around the recess 22 is provided on the outer edge portion 21.

したがって、この光パワーメータ1によれば、出願人が試作した光パワーメータと同様にして、透過拡散板21に加えて拡散反射部31を備えた分だけ、入射孔11aから入射させた測定対象光Lを十分に拡散させることができ、これにより、入射孔11aに対する測定対象光Lの入射位置依存性を軽減することができるだけでなく、透過拡散板21に設けた凹部22の存在により、入射孔11aの外縁部寄りに測定対象光Lを入射させたときに拡散反射部31内に進入した測定対象光Lの一部が拡散反射部31の内面31aにおいて反射されて入射孔11aから外部に出射されたとしても、入射孔11aを通過して凹部22の底面22aにおいて反射された測定対象光Lの一部が凹部22の内側面22bから透過拡散板21内に入射して拡散された後に拡散反射部31内に入射するため、この測定対象光Lの分だけ、最終的に光電変換部13に入射する測定対象光Lの量が増加する結果、入射孔11aに対する測定対象光Lの入射位置依存性を十分に軽減することができる。これにより、光パワーメータ1の性能を低下させることなく拡散反射部31を小径化することができるため、光パワーメータ1を十分に小形化することができると共に、拡散反射部31の製作コストを低減して光パワーメータ1の製造コストを十分に低減することができる。また、入射位置依存性を軽減するために凹部22の深さD2や内径L2だけを変更して好適な光学的特性を有する透過拡散板21を設計するのとは異なり、寸法の変化による影響が小さい外縁部に薄厚部23を設けてその厚みT2を任意に変更することにより、透過拡散板21の光学的特性を理想的な状態に容易に近付けることができる。   Therefore, according to this optical power meter 1, in the same manner as the optical power meter prototyped by the applicant, the measurement object incident from the incident hole 11 a by the amount provided with the diffusing reflection portion 31 in addition to the transmission diffusion plate 21. The light L can be sufficiently diffused, whereby not only the incident position dependency of the measurement target light L on the incident hole 11a can be reduced, but also the incident due to the presence of the recess 22 provided in the transmission diffusion plate 21. When the measurement target light L is incident near the outer edge of the hole 11a, a part of the measurement target light L that has entered the diffuse reflection part 31 is reflected by the inner surface 31a of the diffuse reflection part 31 to the outside from the incident hole 11a. Even if the light is emitted, a part of the measurement target light L that has passed through the incident hole 11a and reflected on the bottom surface 22a of the concave portion 22 enters the transmission diffusion plate 21 from the inner side surface 22b of the concave portion 22 and spreads. After that, the amount of the measurement target light L that finally enters the photoelectric conversion unit 13 is increased by the amount of the measurement target light L, so that the measurement target light with respect to the incident hole 11a is increased. The dependence of L on the incident position can be sufficiently reduced. Thereby, since the diameter of the diffuse reflection part 31 can be reduced without reducing the performance of the optical power meter 1, the optical power meter 1 can be sufficiently reduced in size, and the manufacturing cost of the diffuse reflection part 31 can be reduced. The manufacturing cost of the optical power meter 1 can be sufficiently reduced. In addition, in order to reduce the dependency on the incident position, unlike the case where the transmission diffuser plate 21 having suitable optical characteristics is designed by changing only the depth D2 and the inner diameter L2 of the recess 22, there is an influence due to a change in dimensions. By providing the thin portion 23 on the small outer edge portion and arbitrarily changing the thickness T2, the optical characteristics of the transmission diffusion plate 21 can be easily brought close to the ideal state.

また、この光パワーメータ1によれば、凹部22の内径L2が入射孔11aの口径L1よりも大径となるように透過拡散板21を形成したことにより、入射孔11aの外縁部寄りに測定対象光Lを入射させたときに内側面22bから透過拡散板21に入射する測定対象光Lの量が過剰に多くなる事態を回避して、入射孔11aに対する測定対象光Lの入射位置依存性を好適に軽減することができる。   Further, according to the optical power meter 1, the transmission diffuser plate 21 is formed so that the inner diameter L2 of the recess 22 is larger than the diameter L1 of the incident hole 11a, so that the measurement is closer to the outer edge of the incident hole 11a. Avoiding an excessive increase in the amount of measurement target light L that enters the transmission diffuser 21 from the inner side surface 22b when the target light L is incident, and dependency of the measurement target light L on the incident hole 11a. Can be suitably reduced.

さらに、この光パワーメータ1によれば、有底円筒状のケーシング10における底板10aが「入射許容範囲規定部(アパーチャ11)として機能するように入射孔11aを底板10aに形成すると共に、円板状の透過拡散板21、および円筒状の拡散反射部31をケーシング10内に収容してケーシング10と一体化したことにより、透過拡散板21および拡散反射部31がケーシング10によって覆われた状態となり、透過拡散板21や拡散反射部31に対して直接的に外力が加わる事態が回避される結果、光パワーメータ1の破損を好適に回避することができる。   Further, according to the optical power meter 1, the bottom plate 10a in the bottomed cylindrical casing 10 “is formed with the incident hole 11a in the bottom plate 10a so as to function as an incident allowable range defining portion (aperture 11), The transmissive diffuser plate 21 and the cylindrical diffuse reflector 31 are accommodated in the casing 10 and integrated with the casing 10, so that the transmissive diffuser plate 21 and the diffuse reflector 31 are covered with the casing 10. As a result of avoiding a situation in which an external force is directly applied to the transmissive diffusion plate 21 and the diffusive reflecting portion 31, damage to the optical power meter 1 can be preferably avoided.

なお、「光パワーメータ」の構成は、上記の光パワーメータ1の構成に限定されない。例えば、外縁部に薄厚部23を設けた透過拡散板21を有する拡散光学系12を備えた受光センサ2の構成を例に挙げて説明したが、凹部22の深さD2や内径L2の最適化によって入射位置依存性が十分に軽減される状態となる場合には、図5に示す受光センサ2Aのように、外縁部に「薄厚部」が存在しない透過拡散板21Aを有する拡散光学系12Aを備えて構成することもできる。   The configuration of the “optical power meter” is not limited to the configuration of the optical power meter 1 described above. For example, the configuration of the light receiving sensor 2 including the diffusing optical system 12 having the transmissive diffusion plate 21 provided with the thin portion 23 at the outer edge portion has been described as an example. However, the depth D2 and the inner diameter L2 of the concave portion 22 are optimized. If the incident position dependency is sufficiently reduced by the above, a diffusing optical system 12A having a transmissive diffusion plate 21A having no “thin portion” at the outer edge portion is provided as in the light receiving sensor 2A shown in FIG. It can also be prepared.

なお、この受光センサ2A(拡散光学系12A)において前述した受光センサ2(拡散光学系12)の構成要素と同様の機能を有する構成要素については、同一の符号を付して重複する説明を省略する。また、この受光センサ2Aにおいて入射孔11aの外縁部寄りに測定対象光Lを入射させた際の凹部22の機能(内側面22bからの測定対象光Lの入射等)については、受光センサ2(拡散光学系12)に関する上記の説明事項と同様のため、重複する説明を省略する。   In the light receiving sensor 2A (diffusion optical system 12A), components having the same functions as those of the light receiving sensor 2 (diffusion optical system 12) described above are denoted by the same reference numerals and redundant description is omitted. To do. In addition, regarding the function of the recess 22 when the measurement target light L is incident near the outer edge of the incident hole 11a in this light reception sensor 2A (such as the incidence of the measurement target light L from the inner side surface 22b), the light reception sensor 2 ( Since it is the same as the above-mentioned explanation regarding the diffusing optical system 12), the overlapping explanation is omitted.

このように、この受光センサ2Aを備えて構成された光パワーメータ1では、アパーチャ11の入射孔11aを通過した測定対象光Lが透過可能にアパーチャ11に隣接配置されて測定対象光Lを拡散させる透過拡散板21におけるアパーチャ11側の一面に凹部22が形成されて、凹部22の底面22aにおいて反射される測定対象光Lの一部が凹部22の内側面22bから透過拡散板21に入射可能に構成されている。   As described above, in the optical power meter 1 configured to include the light receiving sensor 2A, the measurement target light L that has passed through the incident hole 11a of the aperture 11 is disposed adjacent to the aperture 11 so as to be transmissive and diffuses the measurement target light L. A concave portion 22 is formed on one surface of the transmissive diffusion plate 21 on the aperture 11 side, and a part of the measurement target light L reflected on the bottom surface 22a of the concave portion 22 can enter the transmissive diffusion plate 21 from the inner side surface 22b of the concave portion 22. It is configured.

したがって、この光パワーメータ1によれば、出願人が試作した光パワーメータと同様にして、透過拡散板21Aに加えて拡散反射部31を備えた分だけ、入射孔11aから入射させた測定対象光Lを十分に拡散させることができ、これにより、入射孔11aに対する測定対象光Lの入射位置依存性を軽減することができるだけでなく、透過拡散板21Aに設けた凹部22の存在により、入射孔11aの外縁部寄りに測定対象光Lを入射させたときに拡散反射部31内に進入した測定対象光Lの一部が拡散反射部31の内面31aにおいて反射されて入射孔11aから外部に出射されたとしても、入射孔11aを通過して凹部22の底面22aにおいて反射された測定対象光Lの一部が凹部22の内側面22bから透過拡散板21A内に入射して拡散された後に拡散反射部31内に入射するため、この測定対象光Lの分だけ、最終的に光電変換部13に入射する測定対象光Lの量が増加する結果、入射孔11aに対する測定対象光Lの入射位置依存性を十分に軽減することができる。これにより、光パワーメータ1の性能を低下させることなく拡散反射部31を小径化することができるため、光パワーメータ1を十分に小形化することができると共に、拡散反射部31の製作コストを低減して光パワーメータ1の製造コストを十分に低減することができる。   Therefore, according to this optical power meter 1, in the same manner as the optical power meter prototyped by the applicant, the measurement object incident from the incident hole 11a by the amount provided with the diffusing reflection portion 31 in addition to the transmission diffusion plate 21A. The light L can be sufficiently diffused, whereby not only the incidence position dependency of the measurement target light L with respect to the incident hole 11a can be reduced, but also the incidence due to the presence of the recess 22 provided in the transmission diffusion plate 21A. When the measurement target light L is incident near the outer edge of the hole 11a, a part of the measurement target light L that has entered the diffuse reflection part 31 is reflected by the inner surface 31a of the diffuse reflection part 31 to the outside from the incident hole 11a. Even if it is emitted, a part of the measurement target light L that has passed through the incident hole 11a and reflected on the bottom surface 22a of the recess 22 enters the transmission diffusion plate 21A from the inner surface 22b of the recess 22. After being diffused in this manner, the light enters the diffuse reflection part 31. As a result, the amount of the measurement target light L finally incident on the photoelectric conversion unit 13 is increased by the amount of the measurement target light L. The dependency on the incident position of the target light L can be sufficiently reduced. Thereby, since the diameter of the diffuse reflection part 31 can be reduced without reducing the performance of the optical power meter 1, the optical power meter 1 can be sufficiently reduced in size, and the manufacturing cost of the diffuse reflection part 31 can be reduced. The manufacturing cost of the optical power meter 1 can be sufficiently reduced.

また、樹脂焼結体を切削加工した円筒状の拡散反射部31を有する拡散光学系12,12Aを備えた受光センサ2,2Aの構成を例に挙げて説明したが、このような構成に代えて、出願人が試作した光パワーメータの受光センサ2xにおける拡散反射部31xのように、筒状体(円筒体)の内面に硫化バリュウム粉体含有塗料などの白色拡散反射コーティング剤を塗布することによって「拡散反射部」を構成することもできる(図示せず)。このような構成を採用した場合、「入射許容範囲規定部(アパーチャ)」については、板体の中央部に「入射孔」を形成したもので構成することもできる(図示せず)。   In addition, the configuration of the light receiving sensors 2 and 2A including the diffusing optical systems 12 and 12A having the cylindrical diffuse reflection portion 31 obtained by cutting the resin sintered body has been described as an example. Then, like the diffuse reflection part 31x in the light receiving sensor 2x of the optical power meter prototyped by the applicant, a white diffuse reflection coating agent such as a barium sulfide powder-containing paint is applied to the inner surface of the cylindrical body (cylindrical body). A "diffuse reflection part" can also be configured (not shown). When such a configuration is adopted, the “incident allowable range defining portion (aperture)” may be configured by forming an “incident hole” in the central portion of the plate (not shown).

さらに、凹部22の内径L2を入射孔11aの口径L1よりも大径とした透過拡散板21,21Aを備えた構成を例に挙げて説明したが、「凹部」の内径と「入射孔」の口径(内径)とを同径とすることもできる。また、底面22aの延面と内側面22bの延面とが直角に交わるように形成された凹部22を備えた透過拡散板21を例に挙げて説明したが、「底面」の延面と「内側面」の延面とが直角以外の任意の角度で交わるように「凹部」を形成することもできる。具体的には、口縁部側の内径よりも底面側の内径の方が大径となるように「凹部」を形成したり、口縁部側の内径よりも底面側の内径の方が小径となるように「凹部」を形成したりすることができる。   Further, the configuration including the transmission diffusion plates 21 and 21A in which the inner diameter L2 of the concave portion 22 is larger than the diameter L1 of the incident hole 11a has been described as an example, but the inner diameter of the “concave portion” and the “incident hole” The diameter (inner diameter) may be the same. Further, the transmission diffusion plate 21 having the recess 22 formed so that the extending surface of the bottom surface 22a and the extending surface of the inner side surface 22b intersect at right angles has been described as an example. The “concave portion” can be formed so that the extended surface of the “inner side surface” intersects at an arbitrary angle other than a right angle. Specifically, a "concave part" is formed so that the inner diameter on the bottom surface side is larger than the inner diameter on the mouth edge side, or the inner diameter on the bottom surface side is smaller than the inner diameter on the mouth edge side. A “concave portion” can be formed so that

1 光パワーメータ
2,2A 受光センサ
10 ケーシング
10a 底板
11 アパーチャ
11a 入射孔
12,12A 拡散光学系
13 光電変換部
21,21A 透過拡散板
22 凹部
22a 底面
22b 内側面
23 薄厚部
31 拡散反射部
31a 内面
D2 深さ
L 測定対象光
L1 口径
L2,L3a 内径
L3b 外径
T1,T2 厚み
DESCRIPTION OF SYMBOLS 1 Optical power meter 2, 2A Light reception sensor 10 Casing 10a Bottom plate 11 Aperture 11a Incident hole 12, 12A Diffusion optical system 13 Photoelectric conversion part 21, 21A Transmission diffusion plate 22 Recessed part 22a Bottom face 22b Inner side surface 23 Thin part 31 Diffuse reflection part 31a Inner surface D2 Depth L Light to be measured L1 Diameter L2, L3a Inner diameter L3b Outer diameter T1, T2 Thickness

Claims (4)

測定対象光の受光量に応じた検出信号を出力する光電変換部を備え、前記測定対象光についての予め規定された光学的パラメータを前記検出信号の信号レベルに基づいて測定可能に構成された光パワーメータであって、
前記測定対象光の通過が可能な入射孔が設けられて当該光パワーメータへの当該測定対象光の入射許容範囲を規定する入射許容範囲規定部と、前記入射孔を通過した前記測定対象光が透過可能に前記入射許容範囲規定部に隣接配置されて当該測定対象光を拡散させる透過拡散板と、筒状に形成されて一端部側に前記入射許容範囲規定部および前記透過拡散板が配設されると共に当該透過拡散板を透過した前記測定対象光を内面において拡散反射させる拡散反射部とを備えて、当該拡散反射部において拡散された前記測定対象光の一部が前記光電変換部によって受光されるように構成され、
前記透過拡散板は、前記入射許容範囲規定部側の一面に凹部が形成されて前記入射孔を通過して当該凹部の底面において反射される前記測定対象光の一部が当該凹部の内側面から当該透過拡散板に入射可能に構成されると共に、前記凹部の周囲の厚みよりも薄い薄厚部が外縁部に設けられている光パワーメータ。
A light that includes a photoelectric conversion unit that outputs a detection signal corresponding to the amount of light to be measured, and is configured to measure a predetermined optical parameter for the measurement target light based on the signal level of the detection signal A power meter,
An incident hole capable of passing the measurement target light is provided, and an allowable incidence range defining part for defining an allowable incidence range of the measurement target light to the optical power meter; and the measurement target light passing through the incident hole A transmission diffusing plate that is arranged adjacent to the allowable incidence range defining portion so as to be transmissive and diffuses the light to be measured, and is formed in a cylindrical shape, and the allowable incidence range defining portion and the transmissive diffusion plate are disposed on one end side. And a diffuse reflection unit that diffusely reflects the measurement target light transmitted through the transmission diffusion plate on the inner surface, and a part of the measurement target light diffused in the diffuse reflection unit is received by the photoelectric conversion unit Configured to be
The transmission diffuser plate has a concave portion formed on one surface on the incident allowable range defining portion side, passes through the incident hole, and reflects a part of the measurement target light reflected from the bottom surface of the concave portion from the inner side surface of the concave portion. An optical power meter configured so as to be incident on the transmission diffusion plate, and having a thin portion thinner than a thickness around the concave portion at an outer edge portion.
測定対象光の受光量に応じた検出信号を出力する光電変換部を備え、前記測定対象光についての予め規定された光学的パラメータを前記検出信号の信号レベルに基づいて測定可能に構成された光パワーメータであって、
前記測定対象光の通過が可能な入射孔が設けられて当該光パワーメータへの当該測定対象光の入射許容範囲を規定する入射許容範囲規定部と、前記入射孔を通過した前記測定対象光が透過可能に前記入射許容範囲規定部に隣接配置されて当該測定対象光を拡散させる透過拡散板と、筒状に形成されて一端部側に前記入射許容範囲規定部および前記透過拡散板が配設されると共に当該透過拡散板を透過した前記測定対象光を内面において拡散反射させる拡散反射部とを備えて、当該拡散反射部において拡散された前記測定対象光の一部が前記光電変換部によって受光されるように構成され、
前記透過拡散板は、前記入射許容範囲規定部側の一面に凹部が形成されて前記入射孔を通過して当該凹部の底面において反射される前記測定対象光の一部が当該凹部の内側面から当該透過拡散板に入射可能に構成されている光パワーメータ。
A light that includes a photoelectric conversion unit that outputs a detection signal corresponding to the amount of light to be measured, and is configured to measure a predetermined optical parameter for the measurement target light based on the signal level of the detection signal A power meter,
An incident hole capable of passing the measurement target light is provided, and an allowable incidence range defining part for defining an allowable incidence range of the measurement target light to the optical power meter; and the measurement target light passing through the incident hole A transmission diffusing plate that is arranged adjacent to the allowable incidence range defining portion so as to be transmissive and diffuses the light to be measured, and is formed in a cylindrical shape, and the allowable incidence range defining portion and the transmissive diffusion plate are disposed on one end side. And a diffuse reflection unit that diffusely reflects the measurement target light transmitted through the transmission diffusion plate on the inner surface, and a part of the measurement target light diffused in the diffuse reflection unit is received by the photoelectric conversion unit Configured to be
The transmission diffuser plate has a concave portion formed on one surface on the incident allowable range defining portion side, passes through the incident hole, and reflects a part of the measurement target light reflected from the bottom surface of the concave portion from the inner side surface of the concave portion. An optical power meter configured to be incident on the transmission diffusion plate.
前記透過拡散板は、前記凹部の内径が前記入射孔の口径よりも大径となるように形成されている請求項1または2記載の光パワーメータ。   The optical power meter according to claim 1 or 2, wherein the transmission diffusion plate is formed such that an inner diameter of the concave portion is larger than a diameter of the incident hole. 有底円筒状のケーシングを備え、当該ケーシングにおける底板が前記入射許容範囲規定部として機能するように前記入射孔が当該底板に形成されると共に、前記ケーシングの内径よりも小径の円板状に形成された前記透過拡散板、および当該ケーシングの内径よりも小径の円筒状に形成された前記拡散反射部が当該ケーシング内に収容されて当該ケーシングと一体化されている請求項1から3のいずれかに記載の光パワーメータ。   A bottomed cylindrical casing is provided, and the incident hole is formed in the bottom plate so that the bottom plate in the casing functions as the incident allowable range defining portion, and is formed in a disk shape having a smaller diameter than the inner diameter of the casing. The transmissive diffuser plate and the diffuse reflection part formed in a cylindrical shape smaller in diameter than the inner diameter of the casing are accommodated in the casing and integrated with the casing. The optical power meter described in 1.
JP2016166498A 2016-08-29 2016-08-29 Optical power meter Active JP6755753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016166498A JP6755753B2 (en) 2016-08-29 2016-08-29 Optical power meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016166498A JP6755753B2 (en) 2016-08-29 2016-08-29 Optical power meter

Publications (2)

Publication Number Publication Date
JP2018036056A true JP2018036056A (en) 2018-03-08
JP6755753B2 JP6755753B2 (en) 2020-09-16

Family

ID=61565707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016166498A Active JP6755753B2 (en) 2016-08-29 2016-08-29 Optical power meter

Country Status (1)

Country Link
JP (1) JP6755753B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113945279A (en) * 2021-09-14 2022-01-18 中国科学院上海技术物理研究所 Testing method for solar diffuse reflection calibration aperture factor of space optical remote sensing instrument

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63127127A (en) * 1986-11-17 1988-05-31 Matsushita Electric Ind Co Ltd Light power measuring device
JPH11241946A (en) * 1998-02-24 1999-09-07 Miyachi Technos Corp Laser output measuring device
JPH11251626A (en) * 1998-03-02 1999-09-17 Amada Eng Center Co Ltd Output-monitoring device of laser transmitter
JP2012159457A (en) * 2011-02-02 2012-08-23 Unitec Co Ltd Integrating sphere device and light measuring method
JP5406402B1 (en) * 2013-04-24 2014-02-05 日本分光株式会社 Integrating sphere and transmitted light measurement method
CN103792949A (en) * 2013-08-21 2014-05-14 哈尔滨理工大学 Diffusion scattering sunlight tracking sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63127127A (en) * 1986-11-17 1988-05-31 Matsushita Electric Ind Co Ltd Light power measuring device
JPH11241946A (en) * 1998-02-24 1999-09-07 Miyachi Technos Corp Laser output measuring device
JPH11251626A (en) * 1998-03-02 1999-09-17 Amada Eng Center Co Ltd Output-monitoring device of laser transmitter
JP2012159457A (en) * 2011-02-02 2012-08-23 Unitec Co Ltd Integrating sphere device and light measuring method
JP5406402B1 (en) * 2013-04-24 2014-02-05 日本分光株式会社 Integrating sphere and transmitted light measurement method
CN103792949A (en) * 2013-08-21 2014-05-14 哈尔滨理工大学 Diffusion scattering sunlight tracking sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113945279A (en) * 2021-09-14 2022-01-18 中国科学院上海技术物理研究所 Testing method for solar diffuse reflection calibration aperture factor of space optical remote sensing instrument
CN113945279B (en) * 2021-09-14 2023-09-12 中国科学院上海技术物理研究所 Test method for solar diffuse reflection calibration aperture factor of space optical remote sensing instrument

Also Published As

Publication number Publication date
JP6755753B2 (en) 2020-09-16

Similar Documents

Publication Publication Date Title
JP5808910B2 (en) Lighting device with adaptive color
TWI759400B (en) Vcsel narrow divergence proximity sensor
US20170199342A1 (en) Optical device and optical module
US10048163B1 (en) Monitoring DOE performance using total internal reflection
JP5870270B2 (en) Detector
JP2013072981A5 (en)
KR20140096169A (en) Epoxy molded gas cell for optical measurement and method of forming
JP2018036056A (en) Light power meter
JP2007205920A (en) Multiple reflection type cell, and infrared type gas detector
JP2015158388A (en) photoelectric sensor
US9915604B2 (en) Gas concentration measurement device
JP2006145373A (en) Multi-angle colorimeter, lighting device, and light-receiving apparatus
TW201918694A (en) Optical sensor package and method of producing same
CN110234968A (en) Electron optic elements and method for detecting environment light
JP2019139830A (en) Limited reflection type sensor
US9939530B2 (en) Optical system for extended time of flight ranging
US10753806B2 (en) Non-contact temperature measuring device
KR101996899B1 (en) Method for calibrating light-scattering type particle sensor
US20190017878A1 (en) Non-contact temperature measuring device
JP4270181B2 (en) Horizontal sensor
JP2015108555A (en) Photosensor and head-up display device
JP4710510B2 (en) Orientation meter
JP2016053550A (en) Photometric apparatus
JP2014048155A (en) Electronic device having ring member
KR102001109B1 (en) Apparatus for emitting laser for lidar and lens for emitting uniform energy density

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200826

R150 Certificate of patent or registration of utility model

Ref document number: 6755753

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250