JP2010112807A - Optical power meter - Google Patents

Optical power meter Download PDF

Info

Publication number
JP2010112807A
JP2010112807A JP2008284890A JP2008284890A JP2010112807A JP 2010112807 A JP2010112807 A JP 2010112807A JP 2008284890 A JP2008284890 A JP 2008284890A JP 2008284890 A JP2008284890 A JP 2008284890A JP 2010112807 A JP2010112807 A JP 2010112807A
Authority
JP
Japan
Prior art keywords
optical
optical power
optical sensor
light
sensor means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008284890A
Other languages
Japanese (ja)
Inventor
Fumio Narisawa
二三男 成沢
Tomoyuki Maruyama
知行 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2008284890A priority Critical patent/JP2010112807A/en
Publication of JP2010112807A publication Critical patent/JP2010112807A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical power meter for correctly measuring optical power of light to be tested by positively or negatively inclining a spectral sensitivity characteristic of an optical sensor means to a wavelength. <P>SOLUTION: The optical power meter includes: the optical sensor means 11 formed with an array of a plurality of optical sensors S having different spectral sensitivity characteristics whose sensitivity wavelength regions are limited; and a control means 103 for obtaining the optical power based on a signal from the optical sensor means. The control means 103 implements: (a) a weighting operation corresponding to the spectral sensitivity characteristic of different optical sensor, obtains a first optical sensor means A in which the spectral sensitivity characteristic Ra(λ) of the optical sensor is approximately represented as a formula (1): Ra(λ)=aλ+b and a second optical sensor means B in which the spectral sensitivity characteristic Rb(λ) of the optical sensor is approximately represented as a formula (2): Rb(λ)=cλ+d in a wavelength region within a predetermined range ; and (b) obtains a barycentric wavelength of light to be tested from output signals Sa, Sb of the first and second optical sensor means A, B, and calculates the optical power from the barycentric wavelength. The output signals Sa, Sb are represented as a formula (3): Sa=P1*Ra(λ1)+P2*Ra(λ2), and a formula (4): Sb=P1*Rb(λ1)+P2*Rb(λ2). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光源としての、蛍光灯、電球、LED照明、LED素子、LD、LCD(液晶ディスプレー)などからの光のパワーを測定する光パワーメータに関するものである。   The present invention relates to an optical power meter that measures the power of light from a fluorescent lamp, light bulb, LED illumination, LED element, LD, LCD (liquid crystal display) or the like as a light source.

従来、例えば、蛍光灯、電球、LED素子などの測定対象光源からの光(被試験光)のパワーを測定する光パワーメータとして、種々の装置が提案されている。   Conventionally, various devices have been proposed as an optical power meter that measures the power of light (light under test) from a light source to be measured such as a fluorescent lamp, a light bulb, and an LED element.

被試験光の波長が未知の場合、光スペクトラムアナライザや分光放射計などの高額な測定器を用いて光パワーを測定することが可能である。   When the wavelength of the light under test is unknown, the optical power can be measured using an expensive measuring instrument such as an optical spectrum analyzer or a spectroradiometer.

また、安価な構成として、受光素子として、波長に対して異なる感度特性を有するシリコンフォトダイオードなどの量子型の半導体素子を用いた光センサを使用している光パワーメータがある。   Further, as an inexpensive configuration, there is an optical power meter that uses an optical sensor using a quantum semiconductor element such as a silicon photodiode having different sensitivity characteristics with respect to a wavelength as a light receiving element.

従って、このようなパワーメータでは、光パワーを正確に測定するために、測定すべき被試験光の波長を機器に設定して、光センサの分光感度特性を補正して測定する必要がある。   Therefore, in such a power meter, in order to accurately measure the optical power, it is necessary to set the wavelength of the light under test to be measured in the device and correct the spectral sensitivity characteristic of the optical sensor for measurement.

そこで、特許文献1には、本願添付の図6〜図8に示すように、被測定光源1からの被試験光の波長を測定しなくても、光センサ手段としての受光器A、Bが2個という構成でアパーチャー2に入射した光パワーを測定できる光パワーメータが開示されている。   Therefore, in Patent Document 1, as shown in FIGS. 6 to 8 attached to the present application, light receivers A and B as optical sensor means are provided without measuring the wavelength of the light under test from the light source 1 to be measured. An optical power meter that can measure the optical power incident on the aperture 2 with a configuration of two is disclosed.

つまり、この光パワーメータでは、アパーチャー2に入射した被試験光を拡散透過板3で拡散させて、ガラスフィルタfとシリコンフォトダイオードPDで構成した、2個の感度が異なる受光器A、Bで検出する。   That is, in this optical power meter, the light to be tested incident on the aperture 2 is diffused by the diffusion transmission plate 3, and the two light receivers A and B having the glass filter f and the silicon photodiode PD and having different sensitivities are used. To detect.

次いで、シリコンフォトダイオードPDで光を電気に変換し、I−V変換回路(演算回路と帰還抵抗)4、5で電圧に変換後、アナログスイッチ6で交互にA/D変換器7によってAD変換し、CPU8に取り込む。   Next, light is converted into electricity by the silicon photodiode PD, converted into voltage by the IV conversion circuits (arithmetic circuit and feedback resistor) 4 and 5, and then AD converted by the analog switch 6 by the A / D converter 7 alternately. Then, the data is taken into the CPU 8.

2個の感度の異なる受光器、即ち、分光感度特性R(λ)が波長に対して正の傾きを有する、即ち、Ra(λ)=aλ+bの受光器Aと、負の傾きを有する、即ち、Rb(λ)=cλ+dの受光器Bとの出力から被試験光の重心波長λxを求め、光パワーを測定する。
特開昭63−127127号公報
Two light receivers having different sensitivities, that is, the spectral sensitivity characteristic R (λ) has a positive inclination with respect to the wavelength, that is, the light receiver A with Ra (λ) = aλ + b, and a negative inclination, , Rb (λ) = cλ + d is obtained from the output from the light receiver B, the center-of-gravity wavelength λx of the light under test is obtained, and the optical power is measured.
JP 63-127127 A

上記特許文献1の光パワーメータでは、2個の受光器A、Bの分光感度特性は、波長に対して感度が直線的に変化しなければならない。この傾きに歪みが生じると測定誤差が生じる。   In the optical power meter disclosed in Patent Document 1, the sensitivity of the spectral sensitivity characteristics of the two light receivers A and B must change linearly with respect to the wavelength. If this inclination is distorted, a measurement error occurs.

一般に、光パワーメータ用の光センサSは、光学フィルタfと受光素子(シリコンフォトダイオード)PDで構成している。   In general, the optical sensor S for an optical power meter includes an optical filter f and a light receiving element (silicon photodiode) PD.

しかし、一般に、光学フィルタfの色ガラスフィルタは、一例として波長領域400nm〜700nmなどとされる比較的ブロードは領域で分光透過率が直線的に変化する特性を得ることは難しい。また、受光素子PDも波長に対して感度の傾きが一定でなく、一例として波長400nmと波長700nmの領域では波長に対する感度の傾きが異なる。   However, in general, it is difficult for the colored glass filter of the optical filter f to obtain a characteristic in which the spectral transmittance changes linearly in a relatively broad wavelength range of 400 nm to 700 nm, for example. In addition, the sensitivity gradient of the light receiving element PD is not constant with respect to the wavelength. For example, the sensitivity gradient with respect to the wavelength is different in the wavelength range of 400 nm and the wavelength of 700 nm.

また、光センサを量産する場合、光学フィルタの分光透過特性や受光素子の分光感度特性にばらつきが生じると構成上そのばらつきを補正することができない。   Further, in the case of mass production of optical sensors, if variations occur in the spectral transmission characteristics of the optical filters and the spectral sensitivity characteristics of the light receiving elements, the variations cannot be corrected due to the configuration.

従って、従来の方法では、高精度に光パワーを測定することは困難である。   Therefore, it is difficult to measure the optical power with high accuracy by the conventional method.

本発明の目的は、光センサ手段の分光感度特性を波長に対して正又は負に傾斜させることで、被試験光の光パワーを正確に測ることのできる光パワーメータを提供することである。   An object of the present invention is to provide an optical power meter that can accurately measure the optical power of light under test by tilting the spectral sensitivity characteristic of the optical sensor means positively or negatively with respect to the wavelength.

上記目的は本発明に係る光パワーメータにて達成される。要約すれば、本発明は、所定範囲の波長領域に感度特性を有する光センサ手段を備えた検出部と、前記検出部からの受光信号により光パワーを計算する測定部とを備えた光パワーメータにおいて、
前記光センサ手段は、光学フィルタと受光素子とを備え、それぞれ感度波長領域が制限された異なる分光感度特性を有した光センサを複数個配列することにより構成され、
前記測定部は、前記光センサ手段からの信号に基づき光パワーを求める制御手段を備え、
前記制御手段は、
(a)それぞれ異なる前記光センサの分光感度特性に対応して重み付けを行い、前記各光センサの分光感度特性が、前記所定範囲の波長領域において、近似的にRa(λ)=aλ+bなる式で表される第1の光センサ手段Aと、近似的にRb(λ)=cλ+d(a≠c)なる式で表される第2の光センサ手段Bと、を求め、
(b)次いで、前記第1の光センサ手段A及び前記第2の光センサ手段Bのそれぞれの出力信号Sa及びSbから、被試験光の重心波長を求め、該重心波長から光パワーを演算する、
ことを特徴とする光パワーメータである。
The above object is achieved by an optical power meter according to the present invention. In summary, the present invention provides an optical power meter including a detection unit including an optical sensor unit having sensitivity characteristics in a wavelength range of a predetermined range, and a measurement unit that calculates optical power based on a light reception signal from the detection unit. In
The optical sensor means includes an optical filter and a light receiving element, and is configured by arranging a plurality of optical sensors each having a different spectral sensitivity characteristic in which a sensitivity wavelength region is limited,
The measurement unit includes control means for obtaining optical power based on a signal from the optical sensor means,
The control means includes
(A) Weighting is performed corresponding to the spectral sensitivity characteristics of the different optical sensors, and the spectral sensitivity characteristics of the optical sensors are approximately expressed by Ra (λ) = aλ + b in the wavelength range of the predetermined range. A first photosensor means A represented, and a second photosensor means B approximately represented by the formula Rb (λ) = cλ + d (a ≠ c),
(B) Next, the centroid wavelength of the light under test is obtained from the output signals Sa and Sb of the first optical sensor means A and the second optical sensor means B, and the optical power is calculated from the centroid wavelengths. ,
This is an optical power meter.

本発明の一実施態様によれば、前記光パワーをPとすると、前記光パワーPは、下記式、
P=Sa/{a(d・Sa/Sb−b)/(a−c・Sa/Sb)+b}
により求められる。
According to an embodiment of the present invention, when the optical power is P, the optical power P is represented by the following formula:
P = Sa / {a (d.Sa/Sb-b) / (ac-Sa / Sb) + b}
Is required.

本発明の他の実施態様によれば、前記検出部は、内部に前記光センサ手段が設置された筐体を有しており、前記筐体には、被試験光が入射する入射部開口が設けられ、前記入射部開口には拡散板が設置されている。   According to another embodiment of the present invention, the detection unit includes a housing in which the optical sensor means is installed, and the housing has an incident portion opening through which light under test enters. A diffusion plate is provided in the entrance opening.

本発明の他の実施態様によれば、
前記測定部の前記制御手段は、
前記光センサ手段からの受光信号である電流信号を電圧に変換するI/V変換アンプと、前記I/V変換アンプからの受光信号をデジタル値に変換するA/D変換器と、前記A/D変換器にて変換された受光信号を保存する第1の記憶手段と、前記重み付け係数を記憶する第2の記憶手段と、を備え、
前記第1の記憶手段に保存されている前記受光信号と、前記第2記憶手段に保存されている重み付け係数を用いて、前記各光センサの感度特性を重み付けさせて、加算することにより、合算後の光センサの分光感度特性を所定範囲の波長領域に対して正又は負の方向に傾いた特性の前記第1の光センサ手段A又は前記第2の光センサ手段Bを形成することができる。
According to another embodiment of the invention,
The control means of the measuring unit is
An I / V conversion amplifier that converts a current signal, which is a light reception signal from the optical sensor means, into a voltage; an A / D converter that converts a light reception signal from the I / V conversion amplifier into a digital value; First storage means for storing the received light signal converted by the D converter, and second storage means for storing the weighting coefficient,
Using the received light signal stored in the first storage means and the weighting coefficient stored in the second storage means, the sensitivity characteristics of the photosensors are weighted and added together to add together. The first photosensor means A or the second photosensor means B having a characteristic in which the spectral sensitivity characteristic of the subsequent photosensor is inclined in a positive or negative direction with respect to a predetermined wavelength range can be formed. .

本発明によれば、光センサ手段の分光感度特性を波長に対して正又は負に傾斜させることで、被試験光の光パワーを正確に測ることができる。   According to the present invention, the optical power of the light under test can be accurately measured by tilting the spectral sensitivity characteristic of the optical sensor means positively or negatively with respect to the wavelength.

以下、本発明に係る光パワーメータを図面に則して更に詳しく説明する。   Hereinafter, the optical power meter according to the present invention will be described in more detail with reference to the drawings.

実施例1
本発明の光パワーメータの測定原理は、先に「背景技術」の項にて説明した特許文献1に記載の技術と同様であるが、図8を参照して再度簡単に説明すると次の通りである。
Example 1
The measurement principle of the optical power meter of the present invention is the same as the technique described in Patent Document 1 described in the section of “Background Art”, but briefly described again with reference to FIG. It is.

(測定原理)
図8にて、光パワーメータは、分光感度特性を波長に対して正又は負に傾斜した2つの受光器、即ち、第1の受光器Aと第2の受光器Bとを備えている。
(Measurement principle)
In FIG. 8, the optical power meter includes two light receivers whose spectral sensitivity characteristics are inclined positively or negatively with respect to the wavelength, that is, a first light receiver A and a second light receiver B.

第1の受光器Aと第2の受光器Bの分光感度特性Ra(λ)、Rb(λ)は、
Ra(λ)=aλ+b (1)
Rb(λ)=cλ+d (a≠c) (2)
と表される。波長がλ1、λ2、放射(光)パワーがP1、P2の2本の輝線のビームを第1の受光器Aと第2の受光器Bで受ける場合、各第1、第2の受光器A、Bの出力信号Sa、Sbは、
Sa=P1・Ra(λ1)+P2・Ra(λ2) (3)
Sb=P1・Rb(λ1)+P2・Rb(λ2) (4)
で表される。
The spectral sensitivity characteristics Ra (λ) and Rb (λ) of the first light receiver A and the second light receiver B are as follows:
Ra (λ) = aλ + b (1)
Rb (λ) = cλ + d (a ≠ c) (2)
It is expressed. When the first light receiver A and the second light receiver B receive beams of two bright lines having wavelengths of λ1 and λ2 and radiation (light) powers of P1 and P2, the first and second light receivers A and B respectively. , B output signals Sa, Sb are:
Sa = P1 · Ra (λ1) + P2 · Ra (λ2) (3)
Sb = P1 · Rb (λ1) + P2 · Rb (λ2) (4)
It is represented by

また、Ra(λ)、Rb(λ)は、直線であるから、λ1とλ2の間でP1、P2の割合に応じて次式で示される重心波長λxが存在する。
λx=λ1+P2(λ2−λ1)/(P1+P2) (5)
上記式(3)、(4)、(5)より、
Sa=(P1+P2)(aλx+b) (6)
Sb=(P1+P2)(cλx+d) (7)
が得られる。
Since Ra (λ) and Rb (λ) are straight lines, a centroid wavelength λx represented by the following equation exists between λ1 and λ2 according to the ratio of P1 and P2.
λx = λ1 + P2 (λ2−λ1) / (P1 + P2) (5)
From the above formulas (3), (4), (5),
Sa = (P1 + P2) (aλx + b) (6)
Sb = (P1 + P2) (cλx + d) (7)
Is obtained.

ここで、第1、第2の受光器A、Bの出力信号Sa、Sbの比kを取り、
k=Sa/Sb (8)
と定義すると、上記式(6)、(7)より、
k=(aλx+b)/(cλx+d) (9)
となり、この式を変形し得て、
λx=(kd−b)/(a−kc) (10)
が得られ、受光器の比kからλxを導くことができる。λxが求まれば、上記式(6)を用いて、
P1+P2=Sa/(aλx+b)
=Sa/{a(d・Sa/Sb−b)/(a−c・Sa/Sb)+b}(11)
が得られ、P1、P2、λ1、λ2の個々の値を知る必要なく、各受光器の出力信号の読みSa、Sbから入射(光)パワーの合計を求めることができる。
Here, the ratio k of the output signals Sa and Sb of the first and second light receivers A and B is taken,
k = Sa / Sb (8)
From the above formulas (6) and (7),
k = (aλx + b) / (cλx + d) (9)
And this equation can be transformed and
λx = (kd−b) / (a−kc) (10)
Λx can be derived from the ratio k of the light receiver. If λx is obtained, the above equation (6) is used.
P1 + P2 = Sa / (aλx + b)
= Sa / {a (d.Sa/Sb-b) / (ac-Sa / Sb) + b} (11)
The total of incident (light) power can be obtained from the readings Sa and Sb of the output signals of the respective light receivers without the need to know the individual values of P1, P2, λ1, and λ2.

(光パワーメータ全体構成)
図1及び図2を参照して、本発明に係る光パワーメータ1の一実施例を説明する。
(Whole optical power meter configuration)
An embodiment of an optical power meter 1 according to the present invention will be described with reference to FIGS.

図1は、本実施例における光パワーメータ1の電気的構成の一実施例を示すブロック図であり、図2は、光センサ手段11を備えた検出部10の構成を示す。   FIG. 1 is a block diagram showing an embodiment of an electrical configuration of the optical power meter 1 in the present embodiment, and FIG. 2 shows a configuration of a detection unit 10 including an optical sensor means 11.

本実施例によると、光パワーメータ1は、検出部10と測定部100とを備えている。検出部10は、内部に光センサ手段11が設置された筐体(ケーシング)12を有しており、本実施例では、左側に位置して測定対象光源からの光(被試験光)が入射する入射部開口13が設けられている。また、入射部開口13には拡散板14が設置されている。拡散板14の作用については、後述する。   According to the present embodiment, the optical power meter 1 includes a detection unit 10 and a measurement unit 100. The detection unit 10 includes a housing (casing) 12 in which an optical sensor means 11 is installed. In this embodiment, the detection unit 10 is located on the left side and receives light (light under test) from a light source to be measured. An incident portion opening 13 is provided. In addition, a diffusion plate 14 is installed in the entrance opening 13. The operation of the diffusion plate 14 will be described later.

ケーシング12の内部に配置された光センサ手段11は、入射部開口13から拡散板14により拡散された光を検出するために、複数個の光センサS(S1、S2、S3、・・・・Sn−2、Sn−1、Sn)にて構成されている。各光センサSは、光学フィルタf(f1、f2、f3、・・・・fn−2、fn−1、fn)と受光素子(光電変換素子)PD(PD1、PD2、PD3、・・・・PDn−2、PDn−1、PDn)にて構成されており、各光センサSは、ある制限された感度波長領域を有している。   The optical sensor means 11 disposed inside the casing 12 is provided with a plurality of optical sensors S (S1, S2, S3,...) In order to detect light diffused by the diffusion plate 14 from the entrance opening 13. Sn-2, Sn-1, Sn). Each optical sensor S includes an optical filter f (f1, f2, f3,... Fn-2, fn-1, fn) and a light receiving element (photoelectric conversion element) PD (PD1, PD2, PD3,... PDn-2, PDn-1, PDn), and each optical sensor S has a limited sensitivity wavelength region.

つまり、本発明によると、光センサ手段11を構成する個々の各光センサS1、S2、S3、・・・・Sn−2、Sn−1、Snは、図3に示すように、それぞれ個々の分光感度特性S’1(λ)、S’2(λ)、S’3(λ)、・・・・S’n−2(λ)、S’n−1(λ)、S’n(λ)を有している。即ち、個々の光センサSの分光感度特性S’1(λ)、S’2(λ)、S’3(λ)、・・・・S’n−2(λ)、S’n−1(λ)、S’n(λ)がバンドパスの特性を有している。なお、個々の光センサSの分光感度特性S’は、光センサSを光パワーメータに組み込んだ後に、分光手段などを使用して、各光センサ毎に測定することにより求める。   That is, according to the present invention, each of the individual optical sensors S1, S2, S3,... Sn-2, Sn-1, and Sn constituting the optical sensor means 11 is shown in FIG. Spectral sensitivity characteristics S′1 (λ), S′2 (λ), S′3 (λ),... S′n−2 (λ), S′n−1 (λ), S′n ( λ). That is, the spectral sensitivity characteristics S′1 (λ), S′2 (λ), S′3 (λ),... S′n−2 (λ), S′n−1 of the individual optical sensors S (Λ) and S′n (λ) have bandpass characteristics. The spectral sensitivity characteristic S ′ of each optical sensor S is obtained by measuring each optical sensor using a spectroscopic means after the optical sensor S is incorporated in the optical power meter.

従って、複数個の光センサS1、S2、S3、・・・・Sn−2、Sn−1、Snにて、光センサ手段11の所定範囲とされる波長領域、例えば、400〜600nmの検出波長領域を構成している。   Accordingly, a wavelength range that is a predetermined range of the optical sensor means 11 in a plurality of optical sensors S1, S2, S3,... Sn-2, Sn-1, Sn, for example, a detection wavelength of 400 to 600 nm. It constitutes an area.

図1を参照すると、本実施例にて光パワーメータ1は、上記検出部10を構成する複数個の光センサS(S1、S2、S3、・・・・Sn−2、Sn−1、Sn)から成る光センサ手段11の受光信号(電流信号)を測定部100へと送信する。測定部100は、受光信号(電流信号)を電圧に変換するI/V変換アンプ(ゲインは全て等しい)101と、I/V変換アンプ101からの受光信号をデジタル値に変換するA/D変換器102と、A/D変換器102にて変換された受光信号を受信する制御手段(CPU)103とを備えており、光パワーを計算し、表示手段106にて表示する。   Referring to FIG. 1, in this embodiment, the optical power meter 1 includes a plurality of optical sensors S (S1, S2, S3,... Sn-2, Sn-1, Sn that constitute the detection unit 10 described above. ) Is transmitted to the measuring unit 100. The measurement unit 100 includes an I / V conversion amplifier (all gains are equal) 101 that converts a received light signal (current signal) into a voltage, and an A / D conversion that converts a received light signal from the I / V conversion amplifier 101 into a digital value. And a control means (CPU) 103 that receives the light reception signal converted by the A / D converter 102, calculates the optical power, and displays it on the display means 106.

なお、本実施例によると、制御手段103は、A/D変換器102から送信される受光信号をRAM(第1の記憶手段)104に保存し、RAM104に保存されている受光信号、及び、ROM(第2の記憶手段)105に保存されている重み付け係数を用いて、各光センサSの分光感度特性に対応して重み付けさせて、加算する。これにより、光センサ手段は、合算後の光センサの分光感度特性が所定範囲の波長領域に対して、所望の特性有するように構成することができる。   According to the present embodiment, the control unit 103 stores the light reception signal transmitted from the A / D converter 102 in the RAM (first storage unit) 104, the light reception signal stored in the RAM 104, and Using the weighting coefficient stored in the ROM (second storage means) 105, weighting is performed corresponding to the spectral sensitivity characteristic of each photosensor S, and the addition is performed. Thereby, the optical sensor means can be configured so that the spectral sensitivity characteristics of the combined optical sensor have desired characteristics with respect to a predetermined wavelength range.

本実施例によると、このとき、重み付け係数の設定仕方により、合算後の光センサの分光感度特性が所定範囲の波長領域に対して、
(a)正方向に傾いた直線状の感度特性(図4参照)を有するようにした第1の光センサ手段Aと、
(b)負方向に傾いた直線状の感度特性(図5参照)を有するようにした第2の光センサ手段Bと、
が構成される。
According to the present embodiment, at this time, depending on the setting method of the weighting coefficient, the spectral sensitivity characteristic of the photosensor after the summation is in a wavelength range of a predetermined range,
(A) first optical sensor means A having a linear sensitivity characteristic (see FIG. 4) inclined in the positive direction;
(B) second optical sensor means B having a linear sensitivity characteristic (see FIG. 5) inclined in the negative direction;
Is configured.

つまり、合算後の光センサの分光感度特性SΣ(λ)は、
SΣ(λ)=k1・S’1(λ)+k2・S’2(λ)+・・・・+knS’n(λ)
で表される。k1〜knは、重み付け係数である。
That is, the spectral sensitivity characteristic SΣ (λ) of the photosensor after the summation is
SΣ (λ) = k1 · S′1 (λ) + k2 · S′2 (λ) +... + KnS′n (λ)
It is represented by k1 to kn are weighting coefficients.

第一の重み付けにより、合算後の光センサSの分光感度特性SΣ(λ)は、所定範囲の波長領域に対して正方向に傾斜した特性Ra(λ)(図4参照)を有した第1の光センサ手段Aが形成される。また、第二の重み付けにより、合算後の光センサSの分光感度特性SΣ(λ)は、所定範囲の波長領域に対して負方向に傾斜した特性Rb(λ)(図5参照)を有した第2の光センサ手段Bが形成される。   Due to the first weighting, the spectral sensitivity characteristic SΣ (λ) of the optical sensor S after the addition has a first characteristic Ra (λ) (see FIG. 4) inclined in the positive direction with respect to a predetermined range of wavelength region. The optical sensor means A is formed. In addition, due to the second weighting, the spectral sensitivity characteristic SΣ (λ) of the optical sensor S after the addition has a characteristic Rb (λ) (see FIG. 5) that is inclined in the negative direction with respect to a predetermined wavelength range. Second optical sensor means B is formed.

つまり、第1及び第2の光センサ手段A及びBの分光感度特性Ra(λ)及びRb(λ)は、それぞれ、近似的に、
Ra(λ)=aλ+b
Rb(λ)=cλ+d (a≠c)
で表される。
That is, the spectral sensitivity characteristics Ra (λ) and Rb (λ) of the first and second photosensor means A and B are approximately,
Ra (λ) = aλ + b
Rb (λ) = cλ + d (a ≠ c)
It is represented by

本実施例では、パワーメータ1は、光センサ手段11として、16個の光センサSを有している。また、各光センサSは、受光素子PDとして、シリコンフォトダイオードを使用した。本実施例における各光センサSの分光感度特性S’1(λ)、S’2(λ)、S’3(λ)、・・・・S’16(λ)(n=16)が図3に示される。   In this embodiment, the power meter 1 has 16 optical sensors S as the optical sensor means 11. Each photosensor S uses a silicon photodiode as the light receiving element PD. The spectral sensitivity characteristics S′1 (λ), S′2 (λ), S′3 (λ),..., S′16 (λ) (n = 16) of each optical sensor S in this embodiment are illustrated. It is shown in 3.

つまり、本実施例によれば、16個の光センサSを備えた光センサ手段11は、図3に示すように、420nm〜580nmまで16nmピッチでピークを持つ16個の受光信号を出力する。なお、光センサSの数は、16個に限定されるものではなく、所望により、これ以外の個数とすることもできる。   That is, according to the present embodiment, the optical sensor means 11 having 16 optical sensors S outputs 16 received light signals having peaks at a pitch of 16 nm from 420 nm to 580 nm as shown in FIG. Note that the number of the optical sensors S is not limited to 16, but may be other numbers if desired.

各受光信号にこの光センサSの分光感度特性に対応した重み付けをさせて、合算し、合算した後の光センサSの分光感度特性SΣ(λ)の一例を図4及び図5に示す。   FIG. 4 and FIG. 5 show an example of the spectral sensitivity characteristic SΣ (λ) of the optical sensor S after the light receiving signals are weighted corresponding to the spectral sensitivity characteristics of the optical sensor S and added together.

図4により、本実施例の光パワーメータ1の第1の光センサ手段Aによると、波長420nm〜580nmの領域において正方向に傾斜した直線状の特性を有することが確認できた。また、図5により、本実施例の光パワーメータ1の第2の光センサ手段Bによると、波長420nm〜580nmの領域において負方向に傾斜した直線状の特性を有することが確認できた。   From FIG. 4, according to the first optical sensor means A of the optical power meter 1 of the present embodiment, it was confirmed that it had a linear characteristic inclined in the positive direction in the wavelength range of 420 nm to 580 nm. Moreover, according to FIG. 5, according to the 2nd optical sensor means B of the optical power meter 1 of a present Example, it has confirmed that it had the linear characteristic inclined in the negative direction in the wavelength range of 420 nm-580 nm.

なお、上述したように、本実施例では、図2に示すように、ケーシング12の入射部開口13に拡散板14が設置されている。拡散板14の作用について説明する。   As described above, in this embodiment, as shown in FIG. 2, the diffusion plate 14 is installed in the incident portion opening 13 of the casing 12. The operation of the diffusion plate 14 will be described.

被試験光が検出部10に入射する入射角度(θ)が極端に変化した場合には、光分布に偏りが生じる。   When the incident angle (θ) at which the light under test enters the detector 10 changes extremely, the light distribution is biased.

本発明によると、上述のように、光センサ手段11は、透過波長が異なる複数の光センサS1、S2、・・・Snで構成される。従って、被試験光の検出部10への入射角度(θ)が極端に変化し、光分布に偏りが生じた場合には、被試験光の入射角度によって複数の光センサS1、S2、・・・Sn上の光量が変化して測定値が変化することとなる。   According to the present invention, as described above, the optical sensor means 11 is composed of a plurality of optical sensors S1, S2,. Therefore, when the incident angle (θ) of the light under test changes to the detection unit 10 extremely and the light distribution is biased, a plurality of optical sensors S1, S2,. -The light quantity on Sn changes and a measured value changes.

そこで、本実施例では、入射部開口13の領域を全面的に覆って、拡散板14が入射部開口13に固定される。拡散板14としては、オパール型拡散板(商品名:シグマ光機株式会社製)が好適に使用される。   Therefore, in this embodiment, the diffusion plate 14 is fixed to the incident part opening 13 so as to cover the entire area of the incident part opening 13. As the diffusion plate 14, an opal type diffusion plate (trade name: manufactured by Sigma Koki Co., Ltd.) is preferably used.

本実施例によると、拡散板14をケーシング12の入射部開口13に固定することで、検出部10に入射する被試験光が拡散されて入射し、被試験光の入射角度(θ)が変化しても、透過波長が異なる各光センサSに照射する光束分布は偏りが生じず、均一である。   According to the present embodiment, by fixing the diffusion plate 14 to the incident portion opening 13 of the casing 12, the light to be tested incident on the detection portion 10 is diffused and incident, and the incident angle (θ) of the light to be tested changes. Even so, the distribution of the light beam applied to each optical sensor S having a different transmission wavelength is uniform and uniform.

従って、本実施例の光パワーメータ1によれば、被試験光の入射角度が変化しても高精度に被試験光のパワーや色度を高精度に測定することが可能である。   Therefore, according to the optical power meter 1 of the present embodiment, it is possible to measure the power and chromaticity of the light under test with high accuracy even when the incident angle of the light under test changes.

(光パワー測定)
上述したように、本発明の光パワーメータの測定原理は、図6〜図8を参照して説明した特許文献1に記載の技術と同様である。つまり、上記説明にて、第1の受光器A及び第2の受光器Bを、それぞれ、本実施例における第1の光センサ手段A及び第2の光センサ手段Bに置き換えて読むことにより、本実施例の測定原理が理解されるであろう。
(Optical power measurement)
As described above, the measurement principle of the optical power meter of the present invention is the same as the technique described in Patent Document 1 described with reference to FIGS. That is, in the above description, by replacing the first light receiver A and the second light receiver B with the first light sensor means A and the second light sensor means B in the present embodiment, respectively, The measurement principle of this example will be understood.

つまり、本実施例にて、光パワーメータの測定部100の設けた、光センサ手段11からの信号に基づき光パワーを求める制御手段103は、
(a)それぞれ異なる光センサの分光感度特性に対応して重み付けを行い、各光センサの分光感度特性が、前記所定範囲の波長領域において、近似的にRa(λ)=aλ+bなる式で表される第1の光センサ手段Aと、近似的にRb(λ)=cλ+dなる式で表される第2の光センサ手段Bと、を求め、
(b)次いで、第1の光センサ手段Aと、第2の光センサ手段Bのそれぞれの出力信号Sa、Sbから、被試験光の重心波長を求め、この重心波長から光パワーPを演算する。
That is, in the present embodiment, the control means 103 for obtaining the optical power based on the signal from the optical sensor means 11 provided in the measuring unit 100 of the optical power meter is:
(A) Weighting is performed corresponding to the spectral sensitivity characteristics of the different optical sensors, and the spectral sensitivity characteristics of the optical sensors are approximately expressed by the formula Ra (λ) = aλ + b in the wavelength range of the predetermined range. First optical sensor means A and second optical sensor means B approximately expressed by the equation Rb (λ) = cλ + d,
(B) Next, the centroid wavelength of the light under test is obtained from the output signals Sa and Sb of the first optical sensor means A and the second optical sensor means B, and the optical power P is calculated from the centroid wavelength. .

また、光パワーPは、下記式、
P=Sa/{a(d・Sa/Sb−b)/(a−c・Sa/Sb)+b}
により求められる。
The optical power P is expressed by the following formula:
P = Sa / {a (d.Sa/Sb-b) / (ac-Sa / Sb) + b}
Is required.

このように、本発明によれば、光センサ手段の分光感度特性を波長に対して正又は負に傾斜させることで、被試験光の光パワーを正確に測ることができる。   Thus, according to the present invention, the optical power of the light under test can be accurately measured by tilting the spectral sensitivity characteristic of the optical sensor means positively or negatively with respect to the wavelength.

本発明に係る光パワーメータの一実施例の電気的構成を示すブロック図である。It is a block diagram which shows the electrical constitution of one Example of the optical power meter which concerns on this invention. 本発明に係る光パワーメータの検出部の一実施例の概略構成図である。It is a schematic block diagram of one Example of the detection part of the optical power meter which concerns on this invention. 光センサ手段を構成する各光センサの相対分光感度特性を示す図である。It is a figure which shows the relative spectral sensitivity characteristic of each optical sensor which comprises an optical sensor means. 第1の光センサ手段Aを構成する各光センサの合算後の相対分光感度特性を示す図である。It is a figure which shows the relative spectral sensitivity characteristic after the summation of each optical sensor which comprises the 1st optical sensor means A. 第2の光センサ手段Bを構成する各光センサの合算後の相対分光感度特性を示す図である。It is a figure which shows the relative spectral sensitivity characteristic after the summation of each photosensor which comprises the 2nd photosensor means B. FIG. 従来の光センサの一例を示す図である。It is a figure which shows an example of the conventional optical sensor. 従来の光パワーメータの電気的構成を示す概略図である。It is the schematic which shows the electrical structure of the conventional optical power meter. 従来の光パワーメータの測定原理を説明する図である。It is a figure explaining the measurement principle of the conventional optical power meter.

符号の説明Explanation of symbols

1 光パワーメータ
10 検出部
11 光センサ手段
11A 第1の光センサ手段
11B 第2の光センサ手段
12 ケーシング(筐体)
13 入射開口
14 拡散板
100 測定部
101 A/D変換器
102 制御手段
103 RAM(第1の記憶手段)
104 ROM(第2の記憶手段)
105 表示手段
f 光学フィルタ
PD 受光素子
S 光センサ
DESCRIPTION OF SYMBOLS 1 Optical power meter 10 Detection part 11 Optical sensor means 11A 1st optical sensor means 11B 2nd optical sensor means 12 Casing (housing | casing)
13 entrance aperture 14 diffuser plate 100 measuring unit 101 A / D converter 102 control means 103 RAM (first storage means)
104 ROM (second storage means)
105 Display means f Optical filter PD Light receiving element S Optical sensor

Claims (4)

所定範囲の波長領域に感度特性を有する光センサ手段を備えた検出部と、前記検出部からの受光信号により光パワーを計算する測定部とを備えた光パワーメータにおいて、
前記光センサ手段は、光学フィルタと受光素子とを備え、それぞれ感度波長領域が制限された異なる分光感度特性を有した光センサを複数個配列することにより構成され、
前記測定部は、前記光センサ手段からの信号に基づき光パワーを求める制御手段を備え、
前記制御手段は、
(a)それぞれ異なる前記光センサの分光感度特性に対応して重み付けを行い、前記各光センサの分光感度特性が、前記所定範囲の波長領域において、近似的にRa(λ)=aλ+bなる式で表される第1の光センサ手段Aと、近似的にRb(λ)=cλ+d(a≠c)なる式で表される第2の光センサ手段Bと、を求め、
(b)次いで、前記第1の光センサ手段A及び前記第2の光センサ手段Bのそれぞれの出力信号Sa及びSbから、被試験光の重心波長を求め、該重心波長から光パワーを演算する、
ことを特徴とする光パワーメータ。
In an optical power meter including a detection unit including an optical sensor means having sensitivity characteristics in a wavelength region of a predetermined range, and a measurement unit that calculates optical power based on a light reception signal from the detection unit,
The optical sensor means includes an optical filter and a light receiving element, and is configured by arranging a plurality of optical sensors having different spectral sensitivity characteristics, each of which has a limited sensitivity wavelength region,
The measurement unit includes control means for obtaining optical power based on a signal from the optical sensor means,
The control means includes
(A) Weighting is performed corresponding to the spectral sensitivity characteristics of the different optical sensors, and the spectral sensitivity characteristics of the optical sensors are approximately expressed by the equation Ra (λ) = aλ + b in the wavelength range of the predetermined range. A first photosensor means A represented, and a second photosensor means B approximately represented by the formula Rb (λ) = cλ + d (a ≠ c),
(B) Next, the centroid wavelength of the light under test is obtained from the output signals Sa and Sb of the first optical sensor means A and the second optical sensor means B, and the optical power is calculated from the centroid wavelengths. ,
An optical power meter characterized by that.
前記光パワーをPとすると、前記光パワーPは、下記式、
P=Sa/{a(d・Sa/Sb−b)/(a−c・Sa/Sb)+b}
により求められることを特徴とする請求項1に記載の光パワーメータ。
When the optical power is P, the optical power P is expressed by the following formula:
P = Sa / {a (d.Sa/Sb-b) / (ac-Sa / Sb) + b}
The optical power meter according to claim 1, wherein the optical power meter is obtained by:
前記検出部は、内部に前記光センサ手段が設置された筐体を有しており、前記筐体には、被試験光が入射する入射部開口が設けられ、前記入射部開口には拡散板が設置されていることを特徴とする請求項1又は2に記載の光パワーメータ。   The detector has a housing in which the optical sensor means is installed, and the housing is provided with an entrance opening through which the light to be tested is incident, and the entrance opening has a diffuser plate. The optical power meter according to claim 1, wherein the optical power meter is installed. 前記測定部の前記制御手段は、
前記光センサ手段からの受光信号である電流信号を電圧に変換するI/V変換アンプと、前記I/V変換アンプからの受光信号をデジタル値に変換するA/D変換器と、前記A/D変換器にて変換された受光信号を保存する第1の記憶手段と、前記重み付け係数を記憶する第2の記憶手段と、を備え、
前記第1の記憶手段に保存されている前記受光信号と、前記第2記憶手段に保存されている重み付け係数を用いて、前記各光センサの感度特性を重み付けさせて、加算することにより、合算後の光センサの分光感度特性を所定範囲の波長領域に対して正又は負の方向に傾いた特性の前記第1の光センサ手段A又は前記第2の光センサ手段Bを形成し得ることを特徴とする請求項1〜3のいずれかの項に記載の光パワーメータ。
The control means of the measuring unit is
An I / V conversion amplifier that converts a current signal, which is a light reception signal from the optical sensor means, into a voltage; an A / D converter that converts a light reception signal from the I / V conversion amplifier into a digital value; First storage means for storing the received light signal converted by the D converter, and second storage means for storing the weighting coefficient,
Using the received light signal stored in the first storage means and the weighting coefficient stored in the second storage means, the sensitivity characteristics of the photosensors are weighted and added together to add together. It is possible to form the first photosensor means A or the second photosensor means B having a characteristic in which the spectral sensitivity characteristic of the subsequent photosensor is inclined in a positive or negative direction with respect to a predetermined wavelength range. The optical power meter according to any one of claims 1 to 3.
JP2008284890A 2008-11-05 2008-11-05 Optical power meter Pending JP2010112807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008284890A JP2010112807A (en) 2008-11-05 2008-11-05 Optical power meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008284890A JP2010112807A (en) 2008-11-05 2008-11-05 Optical power meter

Publications (1)

Publication Number Publication Date
JP2010112807A true JP2010112807A (en) 2010-05-20

Family

ID=42301473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008284890A Pending JP2010112807A (en) 2008-11-05 2008-11-05 Optical power meter

Country Status (1)

Country Link
JP (1) JP2010112807A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016118512A (en) * 2014-12-24 2016-06-30 日置電機株式会社 Light-amount measurement device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185128A (en) * 1986-02-10 1987-08-13 Toshiba Corp Light and color measuring apparatus
JPS62284228A (en) * 1986-06-02 1987-12-10 Minolta Camera Co Ltd Spectrometric instrument
JPS6336121A (en) * 1986-07-29 1988-02-16 Minolta Camera Co Ltd Colorimetric sensor
JPS63127127A (en) * 1986-11-17 1988-05-31 Matsushita Electric Ind Co Ltd Light power measuring device
JPH041536A (en) * 1990-04-18 1992-01-07 Nippon Laser Denshi Kk Optical power meter
JPH07318423A (en) * 1993-08-17 1995-12-08 Tektronix Inc Photosensor
JPH10125888A (en) * 1996-10-23 1998-05-15 Hamamatsu Photonics Kk Semiconductor energy detector
JP2001100023A (en) * 1999-09-29 2001-04-13 Minolta Co Ltd Optical filter and light receiving device of photometric equipment
JP2002013981A (en) * 2000-06-28 2002-01-18 Minolta Co Ltd Photometer
WO2008065170A1 (en) * 2006-11-30 2008-06-05 Osram Opto Semiconductors Gmbh Radiation detector with an adjustable spectral sensitivity

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185128A (en) * 1986-02-10 1987-08-13 Toshiba Corp Light and color measuring apparatus
JPS62284228A (en) * 1986-06-02 1987-12-10 Minolta Camera Co Ltd Spectrometric instrument
JPS6336121A (en) * 1986-07-29 1988-02-16 Minolta Camera Co Ltd Colorimetric sensor
JPS63127127A (en) * 1986-11-17 1988-05-31 Matsushita Electric Ind Co Ltd Light power measuring device
JPH041536A (en) * 1990-04-18 1992-01-07 Nippon Laser Denshi Kk Optical power meter
JPH07318423A (en) * 1993-08-17 1995-12-08 Tektronix Inc Photosensor
JPH10125888A (en) * 1996-10-23 1998-05-15 Hamamatsu Photonics Kk Semiconductor energy detector
JP2001100023A (en) * 1999-09-29 2001-04-13 Minolta Co Ltd Optical filter and light receiving device of photometric equipment
JP2002013981A (en) * 2000-06-28 2002-01-18 Minolta Co Ltd Photometer
WO2008065170A1 (en) * 2006-11-30 2008-06-05 Osram Opto Semiconductors Gmbh Radiation detector with an adjustable spectral sensitivity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016118512A (en) * 2014-12-24 2016-06-30 日置電機株式会社 Light-amount measurement device

Similar Documents

Publication Publication Date Title
US11680850B2 (en) Method for correcting optical sensor array module through characteristic evaluation
JP2007218787A (en) Wavelength calibration method and device
Zaid et al. Differential spectral responsivity measurement of photovoltaic detectors with a light-emitting-diode-based integrating sphere source
KR20150077302A (en) Sensor apparatus and method based on wavelength centroid detection
JP7410340B2 (en) Apparatus and method
CN102680097B (en) Dichroism measuring method and dichroism measurement mechanism
CN101782428A (en) Spectrum self-correction photometer and measuring method thereof
US6643011B2 (en) SNR calculation method and optical spectrum measurement apparatus
US20060146330A1 (en) Color measurements of ambient light
JP2011107114A (en) Photometric device
US7675618B2 (en) Multiplexing spectrometer
JP2010133833A (en) Photometric device
JP2010112808A (en) Optical power meter
RU2290614C1 (en) Two-channel spectral ratio pyrometer
US20120105847A1 (en) Spectrometric measurement system and method for compensating for veiling glare
JP2008268106A (en) Method of measuring temperature information
CN102445325A (en) Device and method for measuring shade number of automatic darkening welding filter
JP2014081275A (en) Correction method for spectral sensitivity characteristic of light metering device and light metering device
JP2010112807A (en) Optical power meter
WO2016000001A1 (en) Device and method for measuring circular dichroism
Lee et al. Wavelength-scanning calibration of detection efficiency of single photon detectors by direct comparison with a photodiode
JP2013088263A (en) Spectroscopic instrument calibration method
JP2013171007A (en) Optical power meter
JPH0217429A (en) Concentration measuring method by using laser type gas sensor
CN102253011A (en) Method for calculating relative equivalent transmittance of integrating sphere and uses thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130129