JPH0246057Y2 - - Google Patents
Info
- Publication number
- JPH0246057Y2 JPH0246057Y2 JP7457986U JP7457986U JPH0246057Y2 JP H0246057 Y2 JPH0246057 Y2 JP H0246057Y2 JP 7457986 U JP7457986 U JP 7457986U JP 7457986 U JP7457986 U JP 7457986U JP H0246057 Y2 JPH0246057 Y2 JP H0246057Y2
- Authority
- JP
- Japan
- Prior art keywords
- resistor
- temperature
- constant
- differential amplifier
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
Description
【考案の詳細な説明】
(産業上の利用分野)
光波距離測定装置等の測量機械の他、オプトエ
レクトロニクスの分野において、受光素子として
用いられるアバランシエホトダイオードの温度補
償回路に関する。[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a temperature compensation circuit for an avalanche photodiode used as a light receiving element in the field of optoelectronics as well as surveying machines such as optical distance measuring devices.
(従来の技術)
アバランシエホトダイオードは、光検知の光電
増倍率が高く、高速検知の点も優れているため、
その用途が広い。しかしその増倍率は温度の影響
を受け易いので、増倍率を一定に保つためには温
度に応じて印加電圧(バイアス電圧)を変えて温
度補償をする必要がある。この温度補償方式とし
て従来種々の提案がなされており、第2図はその
代表例の回路を示す。(Conventional technology) Avalanche photodiodes have a high photoelectric multiplication factor for light detection and are excellent in high-speed detection.
Its uses are wide. However, since the multiplication factor is easily affected by temperature, in order to keep the multiplication factor constant, it is necessary to perform temperature compensation by changing the applied voltage (bias voltage) according to the temperature. Various proposals have been made for this temperature compensation system, and FIG. 2 shows a typical example circuit.
同図に示すように、差動増幅器aの非反転入力
端子には、定抵抗bを介して定電圧回路cに接続
されたツエナダイオードdの端子電圧Vzが基準
電圧として入力し、反転入力端子には該増幅器a
の出力電圧Voが電圧調整抵抗eを経て入力する
ように構成され、該電圧調整抵抗eを調整するこ
とによりアバランシエホトダイオードfに供給す
る差動増幅器aの出力電圧が該ダイオードfの最
適バイアス電圧になるように設定されている。 As shown in the figure, the terminal voltage Vz of a Zener diode d connected to a constant voltage circuit c via a constant resistor b is input as a reference voltage to the non-inverting input terminal of the differential amplifier a, and the inverting input terminal is the amplifier a
is configured such that the output voltage Vo of the differential amplifier a is inputted via a voltage adjustment resistor e, and by adjusting the voltage adjustment resistor e, the output voltage of the differential amplifier a supplied to the avalanche photodiode f becomes the optimum bias voltage of the diode f. is set to be.
(考案が解決しようとする問題点)
前記ツエナダイオードdは温度検出器として用
いられており、温度が変化したとき前記基準電圧
VzはVz±△Vzに変化するので、出力電圧Voも
N(Vz±△Vz)(但し、Nは差動増幅器の利得)
に変化し、アバランシエダイオードfの温度補償
を行なう。(Problem to be solved by the invention) The Zener diode d is used as a temperature detector, and when the temperature changes, the reference voltage
Since Vz changes to Vz±△Vz, the output voltage Vo is also N(Vz±△Vz) (where N is the gain of the differential amplifier)
temperature compensation of the avalanche diode f.
したがつてこの回路ではアバランシエホトダイ
オードfと同じ温度特性を有するツエナダイオー
ドdを選び出さなければならないが、これは現実
には困難であり、実現したとしてもコスト高とな
る。またツエナダイオード自体の温度特性も余り
安定なものが望めない。 Therefore, in this circuit, it is necessary to select a Zener diode d having the same temperature characteristics as the avalanche photodiode f, but this is difficult in reality, and even if realized, the cost would be high. Furthermore, the temperature characteristics of the Zener diode itself cannot be expected to be very stable.
(問題点を解決するための手段)
本考案は、従来の温度補償回路の以上のような
不都合を解消し、安価で正確な温度補償が容易に
得られるアバランシエホトダイオードの温度補償
回路を提供することを目的とするもので、差動増
幅器と、該差動増幅器を付勢する電源に接続され
る第1定抵抗と第2定抵抗と感温抵抗の直列回路
と、該差動増幅器の出力端子に接続されるアバラ
ンシエホトダイオードとから成り、該2定抵抗及
び感温抵抗の直列回路の両端に生ずる基準電圧を
該差動増幅器に入力させ、該差動増幅器の出力電
圧を電圧調整抵抗を経て該差動増幅器に入力させ
るように接続され、該第1定抵抗,第2定抵抗及
び感温抵抗の各抵抗値は、該基準電圧の温度係数
がアバランシエホトダイオードの温度係数に一致
するような値を有することを特徴とする。(Means for Solving the Problems) The present invention eliminates the above-mentioned disadvantages of conventional temperature compensation circuits and provides a temperature compensation circuit for avalanche photodiodes that can easily obtain accurate temperature compensation at low cost. A differential amplifier, a series circuit of a first constant resistor, a second constant resistor, and a temperature-sensitive resistor connected to a power source for energizing the differential amplifier, and an output of the differential amplifier. The reference voltage generated across the series circuit of the two constant resistors and the temperature-sensitive resistor is input to the differential amplifier, and the output voltage of the differential amplifier is adjusted through the voltage adjustment resistor. The resistance values of the first constant resistor, second constant resistor, and temperature-sensitive resistor are set such that the temperature coefficient of the reference voltage matches the temperature coefficient of the avalanche photodiode. It is characterized by having a value of
(実施例) 以下本考案の実施例を図面につき説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.
第1図において、1は差動増幅器で、該差動増
幅器1の電源である定電圧回路2には、第1定抵
抗(抵抗値R1)3と第2定抵抗(抵抗値R2)4
と感温抵抗(抵抗値RT)5の直列回路が接続さ
れており、第2定抵抗4と感温抵抗5の直列回路
の両端の電圧が非反転入力端子を介して差動増幅
器1に入力するようになつている。該増幅器1の
反転入力端子には、その出力端子が電圧調整抵抗
6を介して接続され出力端子にはアバランシエホ
トダイオード7及び負荷抵抗8が接続されてい
る。 In FIG. 1, 1 is a differential amplifier, and a constant voltage circuit 2 that is the power source of the differential amplifier 1 includes a first constant resistor (resistance value R 1 ) 3 and a second constant resistor (resistance value R 2 ). 4
A series circuit of a second constant resistor 4 and a temperature sensitive resistor (resistance value R T ) 5 is connected, and the voltage across the series circuit of a second constant resistor 4 and a temperature sensitive resistor 5 is applied to the differential amplifier 1 via the non-inverting input terminal. Now you can input it. The output terminal of the amplifier 1 is connected to an inverting input terminal via a voltage adjustment resistor 6, and an avalanche photodiode 7 and a load resistor 8 are connected to the output terminal.
この電圧調整抵抗6は所定温度で差動増幅器1
の出力電圧がアバランシエホトダイオード7の最
適電圧となるように調整されて設定される。 This voltage adjustment resistor 6 is connected to the differential amplifier 1 at a predetermined temperature.
is adjusted and set so that the output voltage of the avalanche photodiode 7 becomes the optimum voltage.
第1定抵抗3及び第2定抵抗4は感温抵抗5に
比べて温度係数が小さく増加分の抵抗が無視でき
る程度の抵抗であり、感温抵抗5は温度係数の範
囲が広く、例えば数100ppm〜数1000ppmの正の
値を有している。 The first constant resistor 3 and the second constant resistor 4 have a small temperature coefficient compared to the temperature sensitive resistor 5, and the increased resistance can be ignored.The temperature sensitive resistor 5 has a wide temperature coefficient range, for example, several It has a positive value of 100 ppm to several thousand ppm.
該第1定抵抗3,第2定抵抗4及び感温抵抗5
は次のようにしてその抵抗値が設定される。 The first constant resistor 3, the second constant resistor 4 and the temperature sensitive resistor 5
The resistance value is set as follows.
第2定抵抗4と感温抵抗5の直列回路の両端の
電圧Vrefは、
Vref=R2+Rt/R1+R2+Rt・Vcc …(1)
Vrefの温度係数Koは
Ko=dVref/dT/Vref
=R1・Rt(25)・K/(R2+Rt)(R1+R2+Rt)…(2
)
である。但しVccは定電圧回路の電圧,Kは感温
抵抗の温度係数Rt(25)は25℃におけるRtの抵抗
値である。 The voltage Vref across the series circuit of the second constant resistor 4 and the temperature-sensitive resistor 5 is: Vref=R 2 +Rt/R 1 +R 2 +Rt・Vcc (1) The temperature coefficient Ko of Vref is Ko=dVref/dT/Vref =R 1・Rt ( 25 )・K/(R 2 +Rt) (R 1 +R 2 +Rt)…(2
). However, Vcc is the voltage of the constant voltage circuit, K is the temperature coefficient of the temperature-sensitive resistor Rt ( 25 ) is the resistance value of Rt at 25°C.
このKoはアバランシエホトダイオード7の温
度係数Kapdと一致させればよい。 This Ko may be made equal to the temperature coefficient Kapd of the avalanche photodiode 7.
故に(2)式は、
Ko=R1・Rt(25)・K/(R2+Rt)(R1+R2+Rt)
=Kapd …(2)′
第1定抵抗3及び第2定抵抗4の抵抗値R1及
びR2が先に決められると、感温抵抗5の抵抗値
Rtは(2)′式から選定できる。 Therefore, formula (2) is: Ko=R 1・Rt( 25 )・K/(R 2 +Rt) (R 1 +R 2 +Rt) = Kapd...(2)' The first constant resistor 3 and the second constant resistor 4 If the resistance values R 1 and R 2 are determined first, the resistance value of the temperature sensitive resistor 5
Rt can be selected from equation (2)′.
感温抵抗5の抵抗及び温度係数が先に決められ
た時は、第1定抵抗3及び第2定抵抗4は次式か
ら選定できる。 When the resistance and temperature coefficient of the temperature sensitive resistor 5 are determined in advance, the first constant resistor 3 and the second constant resistor 4 can be selected from the following equation.
R1=Vcc/Vref(R2+Rt)−(R2+Rt)
=(Vcc/Vref−1)(R2+Rt) …(3)
R2=(Vcc/Vref−1)Rt(25)・K・
Vref/Ko・Vcc−Rt (4)
例えば、アバランシエホトダイオードの温度係
数Kapdを1600ppm,差動増幅器1の利得を3倍、
該増幅器1の出力電圧を100V,Vccを150V(それ
ぞれ25℃において)とし、感温抵抗5として
100KΩ(25℃),温度係数K=2500ppmのものを
用いた場合には、(3)式及び(4)式から第1定抵抗3
の抵抗値R1=425.36KΩ(25℃)第2定抵抗4の
抵抗値R2=21.53KΩ(25℃)が得られる。R 1 = Vcc/Vref (R 2 + Rt) – (R 2 + Rt) = (Vcc/Vref – 1) (R 2 + Rt) …(3) R 2 = (Vcc/Vref – 1) Rt ( 25 )・K・Vref/Ko・Vcc−Rt (4) For example, the temperature coefficient Kapd of the avalanche photodiode is 1600ppm, the gain of differential amplifier 1 is 3 times,
The output voltage of the amplifier 1 is 100V, Vcc is 150V (at 25℃), and the temperature sensitive resistor 5 is
When using 100KΩ (25℃) and temperature coefficient K = 2500ppm, the first constant resistance 3 is calculated from equations (3) and (4).
The resistance value R 1 of the second constant resistor 4 = 425.36KΩ (25°C) and the resistance value R 2 of the second constant resistor 4 = 21.53KΩ (25°C) are obtained.
(考案の効果)
以上説明したように、本考案によるときは、定
抵抗と感温抵抗との組合せを用いることによりア
バランシエホトダイオードの温度特性と同じもの
が容易に得られ、安価で正確な温度補償が得られ
るという効果を有する。(Effects of the invention) As explained above, according to the invention, by using a combination of a constant resistor and a temperature-sensitive resistor, it is possible to easily obtain the same temperature characteristics as an avalanche photodiode, and to obtain an inexpensive and accurate temperature characteristic. This has the effect of providing compensation.
第1図は本考案の1実施例の回路図、第2図は
従来の温度補償回路の回路図である。
1……差動増幅器、3……第1定抵抗、4……
第2定抵抗、5……感温抵抗、6……電圧調整抵
抗、7……アバランシエホトダイオード。
FIG. 1 is a circuit diagram of one embodiment of the present invention, and FIG. 2 is a circuit diagram of a conventional temperature compensation circuit. 1... Differential amplifier, 3... First constant resistor, 4...
2nd constant resistor, 5... temperature sensitive resistor, 6... voltage adjustment resistor, 7... avalanche photodiode.
Claims (1)
接続される第1定抵抗と第2定抵抗と感温抵抗の
直列回路と、該差動増幅器の出力端子に接続され
るアバランシエホトダイオードとから成り、第2
定抵抗及び感温抵抗の直列回路の両端に生ずる基
準電圧を該差動増幅器に入力させ、該差動増幅器
の出力電圧を電圧調整抵抗を経て該差動増幅器に
入力させるように接続され、該第1定抵抗、第2
定抵抗及び感温抵抗の各抵抗値は、該基準電圧の
温度係数がアバランシエホトダイードの温度係数
に一致するような値を有することを特徴とするア
バランシエホトダイオードの温度補償回路。 a differential amplifier; a series circuit of a first constant resistor, a second constant resistor, and a temperature-sensitive resistor connected to a power source for energizing the differential amplifier; and an avalanche photodiode connected to an output terminal of the differential amplifier. and the second
A reference voltage generated across a series circuit of a constant resistor and a temperature-sensitive resistor is input to the differential amplifier, and an output voltage of the differential amplifier is input to the differential amplifier via a voltage adjustment resistor. 1st constant resistance, 2nd
1. A temperature compensation circuit for an avalanche photodiode, wherein each resistance value of the constant resistor and the temperature-sensitive resistor has a value such that a temperature coefficient of the reference voltage matches a temperature coefficient of the avalanche photodiode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7457986U JPH0246057Y2 (en) | 1986-05-20 | 1986-05-20 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7457986U JPH0246057Y2 (en) | 1986-05-20 | 1986-05-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62186443U JPS62186443U (en) | 1987-11-27 |
JPH0246057Y2 true JPH0246057Y2 (en) | 1990-12-05 |
Family
ID=30919915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7457986U Expired JPH0246057Y2 (en) | 1986-05-20 | 1986-05-20 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0246057Y2 (en) |
-
1986
- 1986-05-20 JP JP7457986U patent/JPH0246057Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS62186443U (en) | 1987-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3421103B2 (en) | Photodetection circuit using avalanche photodiode | |
US4298835A (en) | Voltage regulator with temperature dependent output | |
JPH0781876B2 (en) | Temperature compensation circuit | |
US3421009A (en) | Temperature compensated photosensor system | |
JPH0246057Y2 (en) | ||
JPS6020655A (en) | Optical detecting circuit | |
JPH0314244B2 (en) | ||
US4530044A (en) | Self-balancing DC-substitution measuring system | |
JP3067286B2 (en) | Monolithic filter circuit | |
JPS584274Y2 (en) | Fiber optic digital link receiver circuit | |
JP2576414B2 (en) | AC level detection circuit | |
SU1740996A1 (en) | Semiconductor temperature sensor | |
SU618654A1 (en) | Device for compensating for thermocouple cold junction thermoelectromotive force | |
JPH0237047Y2 (en) | ||
JPH05281254A (en) | Semiconductor acceleration sensor | |
SU1046624A1 (en) | Temperature pickup | |
JP2810933B2 (en) | IC temperature detector | |
SU808876A1 (en) | Device for measuring temperature | |
JPH0562374B2 (en) | ||
JPH02109384A (en) | Optical-output stabilizing apparatus for semiconductor laser | |
SU1624278A1 (en) | Device for compensating temperature effect on free ends of termoelectric transducer | |
JPS5947356B2 (en) | Logarithmic conversion circuit for resistance change sensor | |
JPS636820B2 (en) | ||
SU1548673A1 (en) | Photodetector | |
SU1717975A1 (en) | Circuit for measurement of radiation |