JPS6020655A - Optical detecting circuit - Google Patents

Optical detecting circuit

Info

Publication number
JPS6020655A
JPS6020655A JP58129050A JP12905083A JPS6020655A JP S6020655 A JPS6020655 A JP S6020655A JP 58129050 A JP58129050 A JP 58129050A JP 12905083 A JP12905083 A JP 12905083A JP S6020655 A JPS6020655 A JP S6020655A
Authority
JP
Japan
Prior art keywords
reverse bias
photodiode
voltage
circuit
bias voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58129050A
Other languages
Japanese (ja)
Other versions
JPH0257740B2 (en
Inventor
Takashi Matsuno
敬司 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatsu Electric Co Ltd
Iwasaki Tsushinki KK
Original Assignee
Iwatsu Electric Co Ltd
Iwasaki Tsushinki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatsu Electric Co Ltd, Iwasaki Tsushinki KK filed Critical Iwatsu Electric Co Ltd
Priority to JP58129050A priority Critical patent/JPS6020655A/en
Publication of JPS6020655A publication Critical patent/JPS6020655A/en
Publication of JPH0257740B2 publication Critical patent/JPH0257740B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/691Arrangements for optimizing the photodetector in the receiver
    • H04B10/6911Photodiode bias control, e.g. for compensating temperature variations

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To improve the minimum measuring level of incident light power and to obtain a wide dynamic range by impressing reverse bias voltage which is zero or minute at a region having small incident light power and large at a region having large power to a photo diode. CONSTITUTION:When the incident light is given to the photo diode 1, a light detecting current I0 flows, a voltage VL corresponding to the current I0 is generated across a load resistance RL and a positive output voltage V0 corresponding thereto is obtained. The output voltage V0 is inputted also to a voltage generating circuit 5 for reverse bias and an output voltage V1 for reverse bias is obtained at the output terminal of an operational amplifier 6 for reverse bias but the diode 8 is kept turned off until the output voltage V0 rises to a prescribed value. Thus, the output voltage V1 is kept nearly zero and the reverse bias voltage of the photo diode 1 is kept also nearly zero. The forward series resistance value of the diode 8 is decreased with the increase in the incident light power, the output voltage V1 is increased and the reverse bias of the photo diode 1 is made deep.

Description

【発明の詳細な説明】 技術分野 本発明は光パワーメータ等に使用される光検出回路に関
し、更に詳細には、ホトダイオードの受光最小測定レベ
ルを改善して広いダイナミックレンジを得ることのでき
る光検出回路に関する。
Detailed Description of the Invention Technical Field The present invention relates to a photodetection circuit used in optical power meters and the like, and more particularly, to a photodetection circuit that can improve the minimum measurement level of light received by a photodiode and obtain a wide dynamic range. Regarding circuits.

従来技術 光通信技術を中心とした光応用技術の実用化によって、
光パワー(レベル又は光量)を測定する装置(光パワー
メータ)の重要性が高まってきた。
Conventional technology Through the practical application of optical application technology centered on optical communication technology,
Devices (optical power meters) that measure optical power (level or amount of light) have become increasingly important.

光通信の分野で使用する光パワーメータの光検出器には
大別して熱変換型光検出器と光電変換型光検出器とがあ
る。前者の熱変換型光検出器としてサーモパイル検出器
があり、標準光パワーメータに使用されている。しかし
光検出感度が低く、広いダイナミックレンジがとれない
という欠点がある。一方、後者の光電変換型光検出器と
してホトダイオードを使用した光検出器がある。このホ
トダイオード光検出器は微弱な光パワーを測定すること
が容易であり且つ比較的広いダイナミックレンジにわた
って直線性の優れた光検出を行うことができる。
Photodetectors for optical power meters used in the field of optical communications can be broadly classified into thermal conversion type photodetectors and photoelectric conversion type photodetectors. A thermopile detector is a thermal conversion type photodetector of the former type, and is used in a standard optical power meter. However, it has the disadvantage that it has low light detection sensitivity and cannot provide a wide dynamic range. On the other hand, there is a photodetector using a photodiode as the latter photoelectric conversion type photodetector. This photodiode photodetector can easily measure weak optical power and can perform photodetection with excellent linearity over a relatively wide dynamic range.

第1図は微弱な光パワーを測定することが可能な従来の
光検出回路を示す。この光検出回路では、ホトダイオー
ド(1)の一端がFET入力型の高入力インピーダンス
の演算増幅器(2)の一方の入力端子(反転入力端子)
に接続され、ホトダイオード(1)の他端及び演算増幅
器(2)の他方の入力端子(非反転入力端子)がそれぞ
れ接地されている。Rfは帰還抵抗であり、演算増幅器
(2)の一方の入力端子と出力端子との間に接続されて
いる。(3)は零点調整用可変抵抗であり、ホトダイオ
ードil+の入射光を零にした時に出力電圧VDを零■
にするように調整する抵抗である。
FIG. 1 shows a conventional photodetection circuit capable of measuring weak optical power. In this photodetection circuit, one end of the photodiode (1) is one input terminal (inverting input terminal) of a high input impedance operational amplifier (2) of FET input type.
The other end of the photodiode (1) and the other input terminal (non-inverting input terminal) of the operational amplifier (2) are each grounded. Rf is a feedback resistor, which is connected between one input terminal and the output terminal of the operational amplifier (2). (3) is a variable resistor for adjusting the zero point, and when the incident light of the photodiode il+ is made zero, the output voltage VD becomes zero.
This is a resistance that can be adjusted to

この回路において、入射光に対応した光検出電流工0が
ホトダイオード(1)から発生すると、演算増幅器(2
)は高入力インピーダンスであるので、ここには光検出
電流工δが流れず、帰還抵抗Rfを通って流れる。一方
、演算増幅器(2)は反転入力端子の電位が非反転入力
端子の゛電位(OV)と同一になるように動作するので
、反転入力端子と非反転入力端子との間が仮想短絡の状
態となる。従って、出力端子にVO= l0Rfの光検
出電圧が得られる。
In this circuit, when the photodetection current corresponding to the incident light is generated from the photodiode (1), the operational amplifier (2
) has a high input impedance, so the photodetection current δ does not flow there, but flows through the feedback resistor Rf. On the other hand, the operational amplifier (2) operates so that the potential of the inverting input terminal becomes the same as the potential (OV) of the non-inverting input terminal, so there is a virtual short circuit between the inverting input terminal and the non-inverting input terminal. becomes. Therefore, a photodetection voltage of VO=l0Rf is obtained at the output terminal.

ところでホトダイオード光検出器の受光最大測定レベル
を決める要素は、ホトダイオードの材質と受光面積によ
って決定される直列抵抗である。
Incidentally, the element that determines the maximum measurement level of light received by a photodiode photodetector is the series resistance determined by the material and light receiving area of the photodiode.

また受光最低測定レベルを決める要素は、ホトダイオー
ドの並列抵抗である。従って直列インピーダンスが小さ
く、並列インピーダンスが大きいホトダイオードを使用
することが広いダイナミックレンジを得るための必要条
件となる。この点を詳細に説明するためにホトダイオー
ドに負荷他を接続したときの等価回路を第2図に示す。
Furthermore, the element that determines the minimum measurement level of light reception is the parallel resistance of the photodiode. Therefore, the use of photodiodes with low series impedance and high parallel impedance is a prerequisite for obtaining a wide dynamic range. To explain this point in detail, FIG. 2 shows an equivalent circuit when a load and other components are connected to the photodiode.

ここでIpは入射光による発生電流(光検出電流)、よ
りはダイオード電流、■′は並列抵抗電流、cjは接合
容量、RIIRは並列抵抗、Rsは直列抵抗、Ioは出
力電流、VOは出力電圧である。この等価回路から工0
=00ときの出力電圧即ち開放電圧vopをめると次式
になる。
Here, Ip is the current generated by the incident light (photodetection current), or diode current, ■' is the parallel resistance current, cj is the junction capacitance, RIIR is the parallel resistance, Rs is the series resistance, Io is the output current, and VO is the output. It is voltage. From this equivalent circuit
By subtracting the output voltage when =00, that is, the open circuit voltage vop, the following equation is obtained.

ここで工s:ホトダイオードの飽和電流、q:電子の電
荷、K:ボルツマン定数、T:素子の絶対温度である。
Here, s is the saturation current of the photodiode, q is the electron charge, K is Boltzmann's constant, and T is the absolute temperature of the element.

またRL=0.VO=0のときの電流即ち短絡電流Ia
wをめると次式になる。
Also, RL=0. Current when VO=0, that is, short circuit current Ia
Subtracting w gives the following formula.

・・・・・・・・・・・・・・・・・・(2)開放電圧
vopはIPが大きいとき工pに比例するが、一般的に
は(1)式かられかるようにVOPはIpに対して1次
比例でなく温度の影響も受けるので、開放電圧Vopに
基づいて入射光のレベルを測定することは適肖でない。
・・・・・・・・・・・・・・・・・・(2) The open circuit voltage vop is proportional to p when IP is large, but in general, as seen from equation (1), VOP Since Vop is not linearly proportional to Ip and is also affected by temperature, it is not appropriate to measure the level of incident light based on the open circuit voltage Vop.

このため、短絡電流工gmを利用して光検出することが
望ましい。短絡電流IIHの直線性には(2)式の第2
項と第3項が関係する。
For this reason, it is desirable to perform optical detection using the short-circuit current generator gm. The linearity of short-circuit current IIH is determined by the second equation (2).
and the third term are related.

一般的にはR8は数Ω〜数にΩであり、1(siは10
’Ω〜1011Ωであり、第2項、第3項はかなり広い
範囲において無視できる。例えば可視光から近赤外光に
感度を有するシ゛リコン(Si)のホトダイオードは短
絡電流IIBと光検出電流Ipとの間には一次比例の関
係が成立する。しかし光通信で使用されるいわゆる長波
長(波長λ= 1.0μm %−1,7μm)の光に感
度を有するゲルマニウム(Ge)のホトダイオード等に
おいては光検出電流工pが大きくなってくると(2)式
の第2項が無視できなくなり、短絡電流工sHは飽和し
てくる。
Generally, R8 is several Ω to several Ω, and 1 (si is 10
'Ω to 1011Ω, and the second and third terms can be ignored in a fairly wide range. For example, in a silicon (Si) photodiode that is sensitive to visible light to near-infrared light, a linear proportional relationship is established between short circuit current IIB and photodetection current Ip. However, in germanium (Ge) photodiodes, which are sensitive to so-called long wavelength light (wavelength λ = 1.0 μm% - 1.7 μm) used in optical communications, as the photodetection current p increases ( 2) The second term of the equation can no longer be ignored, and the short circuit current sH becomes saturated.

短絡電流工ggの飽和に基づく非直線性はホトダイオー
ドの直列抵抗R1の増大に応じて大きくなる。
The nonlinearity due to the saturation of the short circuit current gg increases as the series resistance R1 of the photodiode increases.

短絡電流Isaの直線性を例えば偏差0.3%以下に抑
えるためには、直列抵抗R8を約50Ω以下にする必要
がある。しかし、現在市販されている一般的なGe ホ
トダイオードの直列抵抗Raは150Ω〜数蹟の範囲で
あり、入射光パワーの大きな領域で十分な直線性を得る
ことが出来ない。ホトダイオードの基板の抵抗を下げて
直列抵抗R8を下げれば、短絡電流工gftの飽和に基
づく非直線性は改善される。しかし、並列抵抗1(sn
を大きく保って直列抵抗R8のみを大幅に低減させるこ
とは困難である。一般のホトダイオードは、むしろ基板
の抵抗を高めたり、PIN構造とすることによって接合
容量Cjを減らし、応答速度を高めた設計になっている
In order to suppress the linearity of the short circuit current Isa to, for example, a deviation of 0.3% or less, it is necessary to set the series resistance R8 to about 50Ω or less. However, the series resistance Ra of common Ge photodiodes currently on the market is in the range of 150Ω to several orders of magnitude, and sufficient linearity cannot be obtained in a region where the incident light power is large. If the resistance of the photodiode substrate is lowered to lower the series resistance R8, the nonlinearity due to saturation of the short circuit current gft can be improved. However, the parallel resistance 1 (sn
It is difficult to significantly reduce only the series resistance R8 while keeping R8 large. Ordinary photodiodes are designed to reduce junction capacitance Cj and increase response speed by increasing the resistance of the substrate or by adopting a PIN structure.

上述の入射光パワーの大きい領域での短絡電流工vtの
飽和は、逆バイアス電圧をホトダイオードに加えること
によって改善される。第3図は従来の逆バイアス方式の
光検出回路を示す。この回路ではホトダイオード(1)
に直列に負荷抵抗Rしを接続し、ホトダイオード(1)
のカソードに■1 の逆バイアスを印加し、負荷抵抗R
Lの両端に得られる電圧VLに対応した光検出電圧■0
を演算増幅器(4)の出力端子に得るように構成されて
いる。しかしこの方式には以下に示すような欠点がある
。まず第1に、ホトダイオード(11を逆バイアスする
ことによって、ホトダイオード+11の暗電流Idが増
大するため、高感度化が困難である。特に一般のホトダ
イオードでは高温環境で暗電流の増加が著しく測定誤差
が大きくなる。また一般に光波長の長い領域で使用され
るGe ホトダイオードの暗電流は短光波長領域で使用
されるSiホトダイオードの暗電流に比べて約3〜4桁
大きいので被測定光波長が1μm以上の領域での実用的
な測定は極めて困難である。
The above-mentioned saturation of the short circuit current VT in the region of high incident optical power can be improved by applying a reverse bias voltage to the photodiode. FIG. 3 shows a conventional reverse bias type photodetector circuit. In this circuit, the photodiode (1)
Connect a load resistor R in series with the photodiode (1).
Apply a reverse bias of ■1 to the cathode of the load resistance R
Photodetection voltage corresponding to voltage VL obtained across L
is obtained at the output terminal of the operational amplifier (4). However, this method has the following drawbacks. First of all, by reverse-biasing the photodiode (11), the dark current Id of the photodiode +11 increases, making it difficult to achieve high sensitivity.Especially with ordinary photodiodes, the increase in dark current is significant in high-temperature environments, causing measurement errors. In addition, the dark current of a Ge photodiode, which is generally used in a long optical wavelength region, is about 3 to 4 orders of magnitude larger than that of a Si photodiode, which is used in a short optical wavelength region. Practical measurements in the above range are extremely difficult.

第2に、一定の逆バイアス電圧ψ“を印加した場合に、
光検出電流の増大に対応して負荷抵抗RLの両端の電圧
VLが増大すれば、実際にホトダイオード(1)にかか
る逆バイアス電圧が低下する。従って、入射光パワーの
変化で光検出感度が変動するという欠点がある。この結
果、第3図の回路によって微弱な入力光パワーを正確に
測定することは困難である。
Second, when applying a constant reverse bias voltage ψ“,
If the voltage VL across the load resistor RL increases in response to an increase in the photodetection current, the reverse bias voltage applied to the photodiode (1) actually decreases. Therefore, there is a drawback that the photodetection sensitivity fluctuates due to changes in the incident light power. As a result, it is difficult to accurately measure weak input optical power using the circuit shown in FIG.

発明の目的 そこで、本発明の目的は、入射光パワーの最小測定レベ
ルを改善して広いダイナミックレンジを得ることが可能
なホトダイオード光検出回路を提供することにある。
OBJECTS OF THE INVENTION Therefore, an object of the present invention is to provide a photodiode photodetection circuit that can improve the minimum measurement level of incident light power and obtain a wide dynamic range.

発明の構成 上記目的を達成するための本発明は、入射光のパワーに
対応した電流を発生するホトダイオードと、前記ホトダ
イオードの一端と接地レベル又は一定電圧レベルを与え
る共通電位付与手段との間に接続された電流検出用抵抗
と、前記ホトダイオードと前記電流検出用抵抗との間に
接続された増幅器と、前記入射光のパワーの小さい領域
で零又は微小の逆バイアス用出力電圧(実施例に於ける
電圧Vl )を発生し前記入射光のパワーの太きい領域
で大きな逆バイアス用出力電圧を発生するように形成さ
れ且つその出力端子が前記ホトダイオードの他端に接続
されている逆バイアス用電圧発生回路とから成る光検出
回路に係わるものである。
Structure of the Invention To achieve the above object, the present invention provides a photodiode that is connected between a photodiode that generates a current corresponding to the power of incident light and a common potential applying means that provides a ground level or a constant voltage level. an amplifier connected between the photodiode and the current detection resistor; a reverse bias voltage generating circuit which is formed to generate a voltage Vl) and generate a large reverse bias output voltage in a region where the power of the incident light is large, and whose output terminal is connected to the other end of the photodiode. This relates to a photodetection circuit consisting of.

発明の作用効果 上記発明によれば、入射光パワーの低い領域で過大な逆
バイアス電圧が印加されることが制限され、暗電流が制
限される。従って、最小測定レベが小さくなり、ダイナ
ミックレンジが拡大される。
Effects of the Invention According to the above invention, application of an excessive reverse bias voltage in a region where the power of incident light is low is restricted, and dark current is restricted. Therefore, the minimum measurement level is reduced and the dynamic range is expanded.

第1の実施例 次に第4図を参照して本発明の第1の実施例に係わる光
検出回路について述べる。この光検出回路の基本的部分
は第3図と同一であり、Ge ホトダイオード111と
、この一端(アノード)と共通電位付与手段としてのグ
ランドとの間に接続された電流検出用負荷抵抗RLと、
抵抗RLとホトダイオードtl+との間にその非反転入
力端子が接続されたFET入力型の演算増幅器(4)と
から成る。なお、演算増幅器(4)の反転入力端子はそ
の出力端子に接続され、またホトダイオードFi+の入
射光が零の時に出力電圧VOが零になるよ5に零調整す
るための可変抵抗Rzが設けられている。
First Embodiment Next, a photodetection circuit according to a first embodiment of the present invention will be described with reference to FIG. The basic parts of this photodetection circuit are the same as those shown in FIG. 3, and include a Ge photodiode 111, a current detection load resistor RL connected between one end (anode) of the photodiode 111, and the ground as a common potential applying means.
It consists of an FET input type operational amplifier (4) whose non-inverting input terminal is connected between the resistor RL and the photodiode tl+. The inverting input terminal of the operational amplifier (4) is connected to its output terminal, and a variable resistor Rz is provided to adjust the output voltage VO to zero when the incident light of the photodiode Fi+ is zero. ing.

(5]は逆バイアス用電圧発生回路であり、その非反転
入力端子が前段の演算増幅器(4)の出力端子に接続さ
れた逆バイアス用演算増幅器(6)と、この演算増幅器
(6)の反転入力端子と出力端子との間に接続された帰
還抵抗Rfと、反転入力端子とグランドとの間に接続さ
れた可変抵抗(7)と整流ダイオード(8)との直列回
路とから成り、演算増幅器(6)の出力端子なホトダイ
オード+1)の他端(カソード)に接続することによっ
て出力電圧■1でホトダイオード(1)を逆バイアスす
るように構成されている。
(5) is a reverse bias voltage generation circuit, which includes a reverse bias operational amplifier (6) whose non-inverting input terminal is connected to the output terminal of the previous stage operational amplifier (4), and It consists of a feedback resistor Rf connected between the inverting input terminal and the output terminal, and a series circuit of a variable resistor (7) and a rectifier diode (8) connected between the inverting input terminal and the ground. By connecting it to the other end (cathode) of the photodiode +1, which is the output terminal of the amplifier (6), the photodiode (1) is reverse biased with the output voltage 1.

次に第4図の光検出回路の動作を説明する。Next, the operation of the photodetection circuit shown in FIG. 4 will be explained.

ホトダイオード11)の入射光パワーが零の場合には、
オフセット零調整された演算増幅器(4)の出力電圧V
Oも零である。即ち、ホトダイオード11+の光検出電
流Ioがほぼ零となり、抵抗RLの両端電圧VLもほぼ
零となり、出力電圧Voが零になる。また逆バイアス用
演算増幅器(6)の出力電圧■1も零となり、ホトダイ
オード11)には逆バイアス電圧が印加されない。
When the incident light power of the photodiode 11) is zero,
Output voltage V of operational amplifier (4) adjusted to zero offset
O is also zero. That is, the photodetection current Io of the photodiode 11+ becomes almost zero, the voltage VL across the resistor RL also becomes almost zero, and the output voltage Vo becomes zero. Further, the output voltage (1) of the reverse bias operational amplifier (6) also becomes zero, and no reverse bias voltage is applied to the photodiode 11).

ホトダイオード(1)に入射光が与えられると光検出電
流Ioが流れ、負荷抵抗RLに電流IOに対応する電圧
VLが発生し、この電圧VLに対応した正の出力電圧V
oが得られる。そして、出力電圧Voは例工ばアナログ
−デジタル変換器(図示せず)でデジタル信号に変換さ
れる。出力電圧VOは逆バイアス用電圧発生回路(5)
にも入力し、逆バイアス用の逆バイアス用出力電圧が得
られ、これがホトダイオード+11のカソードに印加さ
れる。但し、上記式のR1は抵抗(力の抵抗値とダイオ
ード(8)の抵抗値との和である。
When incident light is applied to the photodiode (1), a photodetection current Io flows, a voltage VL corresponding to the current IO is generated in the load resistor RL, and a positive output voltage V corresponding to this voltage VL is generated.
o is obtained. The output voltage Vo is then converted into a digital signal by, for example, an analog-to-digital converter (not shown). Output voltage VO is reverse bias voltage generation circuit (5)
A reverse bias output voltage is obtained, which is applied to the cathode of the photodiode +11. However, R1 in the above formula is the sum of the resistance value of the force and the resistance value of the diode (8).

ところで、ダイオード(8)は光検出出力電圧Voが一
定の値に上昇するまでオフに保たれ、しかる後オンにな
る。このため、入射光パワーが低い領域ではダイオード
(8)の抵抗値が犬であり、逆バイアス用演算増幅器(
6)の出力電圧■1ははぼ零に保たれる。従って、ホト
ダイオード(1)の逆バイアス電圧もほぼ零に保たれ、
暗電流が流れない。この結果、入射光パワーの最小測定
レベルが小さくなる。また低入射光パワーを正確に測定
することが可能になる。
By the way, the diode (8) is kept off until the photodetection output voltage Vo rises to a certain value, and then turned on. Therefore, in the region where the incident light power is low, the resistance value of the diode (8) is small, and the reverse bias operational amplifier (
6) The output voltage ■1 is kept at approximately zero. Therefore, the reverse bias voltage of the photodiode (1) is also kept almost zero,
Dark current does not flow. As a result, the minimum measurement level of the incident optical power becomes smaller. Furthermore, it becomes possible to accurately measure low incident optical power.

入射光パワーの増大によってダイオード(8)が導通す
れば、ダイオード(8)の順方向直列抵抗値が小さくな
り、出力電圧■1が高くなり、ホトダイオード(1)の
逆バイアスが深くなる。ホトダイオード(11の両端に
加わる逆バイアス電圧VDは、逆バイアス電圧発生回路
(5)の出力電圧v1から負荷抵抗RLのとなる。この
実施例では、入射光パワーの増大に応じて逆バイアス用
電圧発生回路(5)の出力電圧Vlが増大するので、ホ
トダイオード(1)が要求する逆バイアス電圧を確実に
得ることが出来る。
When the diode (8) becomes conductive due to an increase in the incident light power, the forward series resistance value of the diode (8) decreases, the output voltage (1) increases, and the reverse bias of the photodiode (1) becomes deeper. The reverse bias voltage VD applied to both ends of the photodiode (11) becomes equal to the output voltage v1 of the reverse bias voltage generating circuit (5) to the load resistor RL. Since the output voltage Vl of the generating circuit (5) increases, the reverse bias voltage required by the photodiode (1) can be reliably obtained.

ところで、Ge −P I Nホトダイオードの暗電流
について調べたところ、ホトダイオードの温度が一定の
とき、逆バイアス電圧が0.5V以上では暗電流はほぼ
一定であり、逆バイアス電圧が1.0〜10.0 mV
の範囲では暗電流は微小であり感度の変化もほぼ無視で
きることがわかった。従って第4図では入射光パワーが
約400μWまでは逆バイアス電圧VDを0.0〜3.
0mWとし、ホトダイオード(1)の光検出電流の飽和
にもとすいて直線性が悪化する入射光パワーが600μ
Wを越える前後から逆バイアス電圧VDを例えば540
μWのとき11mV、 630 μWのとき20mV、
1mWのとき71 mV。
By the way, when we investigated the dark current of a Ge-P I N photodiode, we found that when the temperature of the photodiode is constant, the dark current is almost constant when the reverse bias voltage is 0.5 V or more, and when the reverse bias voltage is 1.0 to 10 V. .0 mV
It was found that in the range of , the dark current is minute and the change in sensitivity is almost negligible. Therefore, in FIG. 4, the reverse bias voltage VD is set at 0.0 to 3.0 μW until the incident light power is about 400 μW.
0 mW, and the incident light power at which the linearity deteriorates as the photodetection current of the photodiode (1) approaches saturation is 600 μ.
For example, set the reverse bias voltage VD to 540 from before and after exceeding W.
11 mV at μW, 20 mV at 630 μW,
71 mV at 1 mW.

2mWのとき155mVというように深くかける。Apply a deep voltage such as 155 mV at 2 mW.

このため逆バイアス電圧に起因する暗電流は可能な限り
軽減されている。
Therefore, the dark current caused by the reverse bias voltage is reduced as much as possible.

上述から明らかな如く本実施例には次の効果がある。As is clear from the above, this embodiment has the following effects.

(a) 入射光パワーの低い領域では逆バイアス電圧を
零又は微小に保っているので、暗電流による測定精度の
低下及び直線性の低下が実質的になくなり、最小測定レ
ベルを改善することが出来る。
(a) Since the reverse bias voltage is kept at zero or very small in the region where the incident light power is low, the reduction in measurement accuracy and linearity due to dark current is virtually eliminated, and the minimum measurement level can be improved. .

即ち、微小光パワーの測定が可能になり、ダイナミック
レンジが拡大する。
That is, it becomes possible to measure very small optical power, and the dynamic range is expanded.

(b) 入射光パワーの高い領域即ち逆バイアス電圧を
加えない場合に光検出電流が飽和するような領域では入
射光パワーの増大に応じて逆バイアス電圧が高くなるよ
うに、ホトダイオードf、11に逆バイアス電圧が印加
されるので、最大測定レベルを高めること及び入射光パ
ワーと光検出電圧との直線性を改善することが出来る。
(b) In a region where the incident light power is high, that is, in a region where the photodetection current would be saturated if no reverse bias voltage is applied, the photodiodes f and 11 are set so that the reverse bias voltage increases as the incident light power increases. Since a reverse bias voltage is applied, it is possible to increase the maximum measurement level and improve the linearity between the incident optical power and the photodetection voltage.

従って、極めて微小な光パワーから数mW以上にわたる
広い範囲の光パワーの測定を行うことが出来る。
Therefore, it is possible to measure optical power in a wide range from extremely small optical power to several mW or more.

(C) 逆バイアス用演算増幅器(6)の出力電圧V1
を整流ダイオード(8)の順方向特性を利用して制御す
るように構成されているので、暗電流を可能な限り軽減
するような逆バイアス用電圧を容易に発生させることが
出来る。
(C) Output voltage V1 of reverse bias operational amplifier (6)
Since it is configured to control using the forward characteristics of the rectifier diode (8), it is possible to easily generate a reverse bias voltage that reduces dark current as much as possible.

変形例 本発明は上述の実施例に限定されるものでなく、例えば
次のような種々の変形例を含むものである。
Modifications The present invention is not limited to the above-described embodiments, but includes various modifications, such as the following.

(4)第5図に示す如く演算増幅器(6)の非反転入力
端子なホトダイオードil+のアノードに直結しても、
第4図と同様の効果が得られる。
(4) As shown in Fig. 5, even if it is directly connected to the anode of the photodiode il+, which is the non-inverting input terminal of the operational amplifier (6),
The same effect as in FIG. 4 can be obtained.

Φ)第4図、第5図においてホトダイオード(1)のア
ノードとカソードを図と逆に接続してもよい。
Φ) In FIGS. 4 and 5, the anode and cathode of the photodiode (1) may be connected in the opposite way to the diagram.

但し、この場合には電圧Vo 、 Vlも逆極性となる
ので、ダイオード(8)も逆に接続する。
However, in this case, since the voltages Vo and Vl also have opposite polarities, the diode (8) is also connected in reverse.

(Q ダイオード(8)の代りに、別の非直線素子を接
続してもよい。またダイオード(8)と抵抗又は別の非
直線素子との組み合せによってホトダイオード(1)の
特性に適合する逆バイアス電圧を発生させるようにして
もよい。また、低光パワー領域から高光パワー領域の全
部で光検出電流の増大に追従して逆バイアス用電圧を増
大させる場合には、ダイオード(8)を省いてもよい。
(Q Instead of the diode (8), another non-linear element may be connected. Also, by combining the diode (8) and a resistor or another non-linear element, a reverse bias that matches the characteristics of the photodiode (1) The diode (8) may be omitted if the reverse bias voltage is increased in accordance with the increase in the photodetection current in the entire range from the low optical power region to the high optical power region. Good too.

0 ホトダイオードillの光検出電流工0が太き(な
って演算増幅器(6)の飽和が悪影響を及ぼす場合には
第6図のように一対のトランジスタQl、 Q2、一対
のダイオードD1、D2、一対の抵抗R11、R12か
ら成るコンプリメンクリ−エミッタホロワの出力回路を
付加してもよい。
0 The photodetection current of the photodiode ill is thick (and if the saturation of the operational amplifier (6) has an adverse effect, a pair of transistors Ql, Q2, a pair of diodes D1, D2, a pair of diodes D1, D2, A complementary emitter follower output circuit consisting of resistors R11 and R12 may be added.

■ Geホトダイオード以外のSiホトダイオード、I
nPホトダイオード等を使用する場合にも適用可能であ
る。
■ Si photodiodes other than Ge photodiodes, I
It is also applicable when using an nP photodiode or the like.

(ト)逆バイアス用電圧発生回路(5)を第7図に示す
如く、トランジスタQ3 と、そのペース駆動回路(9
)とから成る電圧レギュレータで構成し、この入力端子
を正電源V+に接続し、この出力端子なホトダイオード
(1)のカソードに接続し、演算増幅器(4)の出力端
子にベース駆動回路を接続してもよい。この場合には、
光検出電圧■0の増大によってトランジスタQ3の出力
電圧v1が増大するように制御する。ホトダイオード(
1)の両端に加わる逆バイアス電圧VDは、VD : 
Vl −VRであり2、VlはVRに基づいて制御され
るので、逆バイアス電圧VDを一定に保つことが出来る
。即ち、抵抗RLによる電圧降下を逆バイアス用電圧発
生回路(5)で補償するような動作となる。この回路は
抵抗RLに20〜200Ωのような比較的小さい抵抗を
用いて比較的大きな光パワー(例えば1mW〜200m
W)を測定する場合に有効な回路である。この第7図で
はホトダイオード(1)に低入射光領域でも暗電流が流
れるが、高入射光領域よりも多く流れることはない。
(g) The reverse bias voltage generating circuit (5) is composed of a transistor Q3 and its pace drive circuit (9) as shown in FIG.
), whose input terminal is connected to the positive power supply V+, whose output terminal is connected to the cathode of the photodiode (1), and whose base drive circuit is connected to the output terminal of the operational amplifier (4). It's okay. In this case,
The output voltage v1 of the transistor Q3 is controlled so as to increase as the photodetection voltage (2)0 increases. Photodiode (
1) The reverse bias voltage VD applied to both ends is VD:
Vl - VR2, and since Vl is controlled based on VR, the reverse bias voltage VD can be kept constant. That is, the operation is such that the voltage drop caused by the resistor RL is compensated for by the reverse bias voltage generating circuit (5). This circuit uses a relatively small resistance such as 20 to 200Ω for the resistor RL, and a relatively large optical power (for example, 1mW to 200mW).
This circuit is effective when measuring W). In FIG. 7, dark current flows through the photodiode (1) even in the low incident light region, but it does not flow more than in the high incident light region.

従って、第3図の固定バイアス方式に比較し、高い精度
、広いダイナミックレンジを得ることが出来る。第7図
と同様な逆バイアス用電圧を得るために、第8図に示す
如く構成してもよい。この逆バイアス用電圧発生回路(
5)はV+電源と■−電源との間に接続したF E T
 QOIと抵抗(11)とから成る。FET(lαの制
御ゲートは負荷抵抗RLの一端に接続されているので、
負荷両端電圧VLに対応した導通状態になり、ソースに
電圧VLに対応した逆バイアス用電圧Vlを得ることが
出来る。この結果、ホトダイオード(1)の両端にはV
l −VLで決まる略一定の逆バイアス電圧が印加され
る。このように入射光パワーの変動にも拘らず、ホトダ
イオード(1)に一定の逆バイアス電圧を印加する方式
は、第9図に示す回路によっても達成し得る。この回路
では演算増幅器(4)の出力端子とホトダイオードfi
+のカソードとの間に一定の電圧源Eが接続されている
ので、ホトダイオード(1)の両端の電圧VDは、Vo
 = E +V。
Therefore, compared to the fixed bias method shown in FIG. 3, higher precision and a wider dynamic range can be obtained. In order to obtain a reverse bias voltage similar to that shown in FIG. 7, a configuration as shown in FIG. 8 may be used. This reverse bias voltage generation circuit (
5) is the FET connected between the V+ power supply and the ■- power supply.
It consists of a QOI and a resistor (11). Since the control gate of the FET (lα) is connected to one end of the load resistor RL,
The conduction state corresponds to the voltage VL across the load, and a reverse bias voltage Vl corresponding to the voltage VL can be obtained at the source. As a result, V is applied to both ends of the photodiode (1).
A substantially constant reverse bias voltage determined by l -VL is applied. The method of applying a constant reverse bias voltage to the photodiode (1) despite the fluctuation of the incident light power as described above can also be achieved by the circuit shown in FIG. In this circuit, the output terminal of the operational amplifier (4) and the photodiode fi
Since a constant voltage source E is connected between the positive cathode and the positive cathode, the voltage VD across the photodiode (1) is Vo
= E + V.

−VLとなり、Vo = vL になるように演算増幅
器(4)の利得Gを1に設定すれば、逆バイアス電圧V
Dは常に一定電圧Eになる。
-VL, and if the gain G of the operational amplifier (4) is set to 1 so that Vo = vL, the reverse bias voltage V
D is always a constant voltage E.

■〕 光検出用ホトダイオード(1)と実質的に特性が
同一の制御用ホトダイオードを設け、このホトダイオー
ドに光検出用ホトダイオードfi+と同一の光を与え、
この制御用ホトダイオードの電流に基づいて逆バイアス
用電圧■1を発生させてもよい。
■] A control photodiode having substantially the same characteristics as the photodetection photodiode (1) is provided, and the same light as the photodetection photodiode fi+ is applied to this photodiode,
The reverse bias voltage (1) may be generated based on the current of this control photodiode.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光検出回路を示す回路図、第2図はホト
ダイオードに負荷を接続した場合の等価回路図、第3図
は従来の逆バイアス印加方式の光検出回路を示す回路図
、第4図は本発明の実施例に係わる光検出回路を示す回
路図、第5図、第6図、第7図、第8図及び第9図は変
形例の光検出回路を示す回路図である。 lit・・・ホトダイオード、(4)・・・演算増幅器
、(5)・・・逆バイアス用電圧発生回路、(6)・・
・逆バイアス用演算増幅器、(8)・・・ダイオード、
RL・・・負荷抵抗。 代理人 高野則次 第4図 第5図
Figure 1 is a circuit diagram showing a conventional photodetection circuit, Figure 2 is an equivalent circuit diagram when a load is connected to a photodiode, Figure 3 is a circuit diagram showing a conventional reverse bias application type photodetection circuit, and Figure 2 is an equivalent circuit diagram when a load is connected to a photodiode. FIG. 4 is a circuit diagram showing a photodetection circuit according to an embodiment of the present invention, and FIGS. 5, 6, 7, 8, and 9 are circuit diagrams showing modified photodetection circuits. . lit... photodiode, (4)... operational amplifier, (5)... reverse bias voltage generation circuit, (6)...
・Reverse bias operational amplifier, (8)...diode,
RL...Load resistance. Agent Noriyuki Takano Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 111 入射光のパワーに対応した電流を発生するホト
ダイオードと、 前記ホトダイオードの一端と接地レベル又は一定電圧レ
ベルを与える共通電位付与手段との間に接続された電流
検出用抵抗と、 前記ホトダイオードと前記電流検出用抵抗との間に接続
された増幅器と、 前記入射光のパワーの小さい領域で零又は微小の逆バイ
アス用出力電圧を発生し前記入射光のパワーの大きい領
域で大きな逆バイアス用出力電圧を発生するように形成
され且つその出力端子が前記ホトダイオードの他端に接
続されている逆バイアス用電圧発生回路と から成る光検出回路。 (2)前記逆バイアス用電圧発生回路は前記増幅器の出
力電圧に対応した逆バイアス用電圧を発生する回路であ
る特許請求の範囲第1項記載の光検出回路。 13)前記逆バイアス用電圧発生回路は前記電流検出用
抵抗の電圧に応答して逆バイアス用電圧を発生する回路
である特許請求の範囲第1項記載の光検出回路。 (4)前記逆バイアス用電圧発生回路は、逆バイアス電
圧を印加しない状態で前記ホトダイオードの光検出電流
が飽和する領域では前記入射光のパワーに対応した逆バ
イアス用電圧を発生し、前記飽和する領域よりも低い電
流領域では零又はほぼ一定の微小逆バイアス用電圧を発
生する回路である特許請求の範囲第1項記載の光検出回
路。 (5)前記逆バイアス用電圧発生回路は、前記ホトダイ
オードの両端の逆バイアス電圧が前記入射光のパワーの
変化に拘らずほぼ一定に保たれるような電圧を発生する
回路である特許請求の範囲第1項記載の光検出回路。
[Claims] 111: a photodiode that generates a current corresponding to the power of incident light; a current detection resistor connected between one end of the photodiode and a common potential applying means that provides a ground level or a constant voltage level; , an amplifier connected between the photodiode and the current detection resistor, which generates a zero or very small reverse bias output voltage in a region where the power of the incident light is small and a large output voltage in a region where the power of the incident light is large; and a reverse bias voltage generating circuit formed to generate a reverse bias output voltage, the output terminal of which is connected to the other end of the photodiode. (2) The photodetection circuit according to claim 1, wherein the reverse bias voltage generation circuit is a circuit that generates a reverse bias voltage corresponding to the output voltage of the amplifier. 13) The photodetection circuit according to claim 1, wherein the reverse bias voltage generation circuit is a circuit that generates a reverse bias voltage in response to the voltage of the current detection resistor. (4) The reverse bias voltage generation circuit generates a reverse bias voltage corresponding to the power of the incident light in a region where the photodetection current of the photodiode is saturated when no reverse bias voltage is applied, and the circuit generates a reverse bias voltage corresponding to the power of the incident light. 2. The photodetector circuit according to claim 1, which is a circuit that generates a minute reverse bias voltage that is zero or substantially constant in a current region lower than the current region. (5) The reverse bias voltage generating circuit is a circuit that generates a voltage such that the reverse bias voltage across the photodiode is kept substantially constant regardless of changes in the power of the incident light. The photodetection circuit according to item 1.
JP58129050A 1983-07-15 1983-07-15 Optical detecting circuit Granted JPS6020655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58129050A JPS6020655A (en) 1983-07-15 1983-07-15 Optical detecting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58129050A JPS6020655A (en) 1983-07-15 1983-07-15 Optical detecting circuit

Publications (2)

Publication Number Publication Date
JPS6020655A true JPS6020655A (en) 1985-02-01
JPH0257740B2 JPH0257740B2 (en) 1990-12-05

Family

ID=14999843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58129050A Granted JPS6020655A (en) 1983-07-15 1983-07-15 Optical detecting circuit

Country Status (1)

Country Link
JP (1) JPS6020655A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6181677A (en) * 1984-09-28 1986-04-25 Fujitsu Ltd Light receiving apparatus
EP1128170A1 (en) * 2000-02-25 2001-08-29 Telefonaktiebolaget L M Ericsson (Publ) Photodiode bias circuit
WO2007125977A1 (en) * 2006-04-27 2007-11-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic appliance using the same
US7705283B2 (en) 2005-05-23 2010-04-27 Semiconductor Energy Laboratory Co., Ltd Photoelectric conversion device and manufacturing method thereof
US7791012B2 (en) 2006-09-29 2010-09-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising photoelectric conversion element and high-potential and low-potential electrodes
US8514165B2 (en) 2006-12-28 2013-08-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
EP3715803A4 (en) * 2017-11-24 2021-08-04 Hamamatsu Photonics K.K. Optical detection circuit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0622080U (en) * 1992-07-10 1994-03-22 株式会社千代田製作所 Lamp assembly for spoiler

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56107654A (en) * 1980-01-31 1981-08-26 Nec Corp Light receiving circuit
JPS5854744A (en) * 1981-09-28 1983-03-31 Hitachi Ltd Ray receiving circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56107654A (en) * 1980-01-31 1981-08-26 Nec Corp Light receiving circuit
JPS5854744A (en) * 1981-09-28 1983-03-31 Hitachi Ltd Ray receiving circuit

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6181677A (en) * 1984-09-28 1986-04-25 Fujitsu Ltd Light receiving apparatus
EP1128170A1 (en) * 2000-02-25 2001-08-29 Telefonaktiebolaget L M Ericsson (Publ) Photodiode bias circuit
US7705283B2 (en) 2005-05-23 2010-04-27 Semiconductor Energy Laboratory Co., Ltd Photoelectric conversion device and manufacturing method thereof
US8263926B2 (en) 2005-05-23 2012-09-11 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and manufacturing method thereof
WO2007125977A1 (en) * 2006-04-27 2007-11-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic appliance using the same
US7531784B2 (en) 2006-04-27 2009-05-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic appliance using the same
US7791012B2 (en) 2006-09-29 2010-09-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising photoelectric conversion element and high-potential and low-potential electrodes
US8514165B2 (en) 2006-12-28 2013-08-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
EP3715803A4 (en) * 2017-11-24 2021-08-04 Hamamatsu Photonics K.K. Optical detection circuit
US11118970B2 (en) 2017-11-24 2021-09-14 Hamamatsu Photonics K.K. Optical detection circuit comprising an optical detector to generate voltage between an anode and a cathode due to photoelectromotive force generated in accordance with incident light quantity

Also Published As

Publication number Publication date
JPH0257740B2 (en) 1990-12-05

Similar Documents

Publication Publication Date Title
WO2021179212A1 (en) Temperature sensor, electronic apparatus, and temperature measurement system
JPS6020655A (en) Optical detecting circuit
US4152595A (en) Charge sensing circuit
US6919716B1 (en) Precision avalanche photodiode current monitor
US10495517B2 (en) Method for noncontact, radiation thermometric temperature measurement
JPH0257739B2 (en)
JPS5952973B2 (en) Temperature compensation circuit for photodetection circuit using semiconductor
Eppeldauer et al. Photocurrent measurement of PC and PV HgCdTe detectors
JPS5845523A (en) Photometric circuit
JP2862370B2 (en) Current detection circuit
EP0315259B1 (en) Electronic correction of photodiode radiant sensitivity
RU2089863C1 (en) Method of temperature measurement and device for its realization
JPH03216523A (en) Photometry circuit
JPS6025551Y2 (en) Display circuit in light meter
JPS592513Y2 (en) Spectrophotometer photometry circuit
SU1492226A1 (en) Photodetector
SU1176290A1 (en) Exposure metering device
SU1627861A1 (en) Photo-electric device
CN116545390A (en) Operational amplifier circuit and photoelectric detection system
JPH0690083B2 (en) Bias automatic variable metering circuit
JPS5947356B2 (en) Logarithmic conversion circuit for resistance change sensor
JPS6195219A (en) Temperature compensation apparatus for photometry circuit
JPH0246057Y2 (en)
JPS60111540A (en) Temperature compensating circuit of apd
SU1200813A1 (en) Photodetector device