JPS636820B2 - - Google Patents

Info

Publication number
JPS636820B2
JPS636820B2 JP14352380A JP14352380A JPS636820B2 JP S636820 B2 JPS636820 B2 JP S636820B2 JP 14352380 A JP14352380 A JP 14352380A JP 14352380 A JP14352380 A JP 14352380A JP S636820 B2 JPS636820 B2 JP S636820B2
Authority
JP
Japan
Prior art keywords
light
circuit
current
dark current
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14352380A
Other languages
Japanese (ja)
Other versions
JPS5766324A (en
Inventor
Hiroaki Fukuda
Yukihisa Oda
Shigeharu Kita
Takeo Hara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP14352380A priority Critical patent/JPS5766324A/en
Publication of JPS5766324A publication Critical patent/JPS5766324A/en
Publication of JPS636820B2 publication Critical patent/JPS636820B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/10Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
    • G01J1/16Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void using electric radiation detectors
    • G01J1/1626Arrangements with two photodetectors, the signals of which are compared

Description

【発明の詳細な説明】 本発明は光に応答して動作する受光回路に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a light receiving circuit that operates in response to light.

従来、種々の受光回路が提案されているが、受
光素子の暗電流の影響が免れ得ず、温度が高くな
つた場合、暗電流値も増大し回路に誤動作を引き
起こさせ、また、常温においては暗電流のため微
少光を検出できないという欠陥があつた。
Conventionally, various light receiving circuits have been proposed, but they cannot avoid the influence of the dark current of the light receiving element, and when the temperature rises, the dark current value also increases, causing circuit malfunction. The defect was that it could not detect very small amounts of light due to dark current.

本発明は、暗電流の影響が出力にあらわれない
ようにした受光回路を提供するものであつて、上
述したような従来の欠点を除去する。すなわち、
本発明は、光を受光しない受光素子を暗電流キヤ
ンセル用素子として備え、この非受光素子の回路
と光を実際に受光する受光素子の回路との間でカ
レントミラー回路を構成して実現される。
The present invention provides a light receiving circuit in which the influence of dark current does not appear on the output, and eliminates the above-mentioned conventional drawbacks. That is,
The present invention is realized by providing a light-receiving element that does not receive light as a dark current canceling element, and configuring a current mirror circuit between the circuit of the non-light-receiving element and the circuit of the light-receiving element that actually receives light. .

以下図面に従つて本発明の実施例を説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図はオン・オフ出力を得るための受光回路
例である。
FIG. 1 is an example of a light receiving circuit for obtaining on/off output.

トランジスタTrZ1,TrZ2,TrZ3及び抵抗Rzは
定電圧回路を構成し、例えば、電源端子Vccに
8V以上の任意の電圧が与えられても、トランジ
スタTrZ3のエミツタに常時約6.5Vの定電圧VZ
出力が得られるようにしている。発光ダイオード
LEDは、遮蔽物等の動作に応じて適宜後述する
受光素子に光を照射するための光源となるもので
ある。
Transistors Tr Z1 , Tr Z2 , Tr Z3 and resistor Rz constitute a constant voltage circuit, for example,
Even if any voltage of 8V or higher is applied, a constant voltage V Z of about 6.5V is always output at the emitter of the transistor Tr Z3 . light emitting diode
The LED serves as a light source for appropriately irradiating light to a light-receiving element, which will be described later, depending on the operation of a shield or the like.

ホトトランジスタPT1は暗電流キヤンセル用ト
ランジスタとして備えられたもので、表面をアル
ミで覆う等して光が入光しないようにし、暗電流
のみを出力するようにしている。もう一方のホト
トランジスタPT2は実際に光を受光するものであ
るが、ホトトランジスタPT1とPT2の面積、拡散
の深さ等は同一条件で作られ、それぞれの暗電流
は等しくなるようにされている。コレクタ・ベー
スを接続したトランジスタTr1はホトトランジス
タPT1を直列接続し電流吸込み回路を構成する。
また、この電流吸込み回路において、ホトトラン
ジスタPT1と並列に接続された抵抗RI1、トラン
ジスタTrI1,TrI2,TrI3は比較基準電流を得るも
ので、その電流I1は I1=VZ−VBE×4/RI1 ……… ただし、VBEはトランジスタTrI1,TrI2,TrI3
Tr1のベース・エミツタ電圧 で表わされる。今、IPT1をホトトランジスタPT1
の出力電流すなわち暗電流とすると、トランジス
タTr1のエミツタ電流IDはID=I1+IPT1であるから
式により ID=VZ−4VBE/RI1+IPT1 ……… となる。
The phototransistor PT 1 is provided as a dark current canceling transistor, and its surface is covered with aluminum to prevent light from entering, so that only dark current is output. The other phototransistor PT 2 actually receives light, but the area, diffusion depth, etc. of phototransistors PT 1 and PT 2 are made under the same conditions, so that their dark currents are equal. has been done. The collector-base connected transistor Tr 1 has a phototransistor PT 1 connected in series to form a current sink circuit.
In addition, in this current sink circuit, the resistor R I1 and the transistors Tr I1 , Tr I2 , and Tr I3 connected in parallel with the phototransistor PT 1 obtain a comparison reference current, and the current I 1 is I 1 = V Z −V BE ×4/R I1 ...... However, V BE is the transistor Tr I1 , Tr I2 , Tr I3 ,
It is expressed as the base-emitter voltage of Tr 1 . Now I PT1 phototransistor PT1
Assuming that the output current is the dark current, the emitter current I D of the transistor Tr 1 is I D = I 1 + I PT1 , so according to the formula, I D = V Z −4V BE /R I1 + I PT1 .

トランジスタTr2はトランジスタTr1と同じベ
ース・エミツタ電圧で動作するもので、図示の回
路例において、少なくともこれらトランジスタ
Tr1,Tr2が同一チツプの集積回路内に含まれる
ものであり、かつ、それぞれトランジスタTr1
Tr2のベース・エミツタの面積が同一とすると、
トランジスタTr2の吸込み可能電流(エミツタ電
流)I3は、トランジスタTr1のエミツタ電流ID
同じく I3=ID ……… となる。これは、すなわち、カレントミラー回路
を構成する。実際に光を受光するホトトランジス
タPT2は、このカレントミラー回路のトランジス
タTr2に直列接続される。
Transistor Tr 2 operates with the same base-emitter voltage as transistor Tr 1 , and in the illustrated circuit example, at least these transistors
Tr 1 and Tr 2 are included in the integrated circuit of the same chip, and the transistors Tr 1 and Tr 2 are respectively
Assuming that the base and emitter areas of Tr 2 are the same,
The sinkable current (emitter current) I 3 of the transistor Tr 2 is the same as the emitter current ID of the transistor Tr 1 , I 3 =I D . This, in other words, constitutes a current mirror circuit. A phototransistor PT 2 that actually receives light is connected in series to the transistor Tr 2 of this current mirror circuit.

光がホトトランジスタPT2に入射すると、入射
光に比例した出力電流IPT2がホトトランジスタ
PT2に流れ、アンプ用トランジスタTr3のベース
電流Ibは Ib=IPT2−I3 ……… で及び式より Ib=IPT2−VZ−4VBE/RI1−IPT1 =(IPT2−IPT1)−VZ−4VBE/RI1 … となる。前述したように、IPT1はホトトランジス
タPT1の暗電流であり、IPT2は光を受光し得るよ
うにしたホトトランジスタPT2を流れるものであ
つて、 IPT2=(光が入射したことにより生じる光電流
IPT2′)+(暗電流IPT2″) しかも、ホトトランジスタPT1,PT2の暗電流
IPT1,IPT2″はIPT1=IPT2″となるようにしており、
結局、式は Ib=IPT2′−VZ−4VBE/RI1 ………′ で表わされる。この式に明らかなように、Ibはホ
トトランジスタPT2の、光が入射したことによる
光電流IPT2′に関するもののみとなり、暗電流の
影響のない出力とすることができる。
When light enters the phototransistor PT2 , an output current IPT2 proportional to the incident light flows through the phototransistor.
The base current I b of the amplifier transistor Tr 3 flowing through PT 2 is I b = I PT2 − I 3 ...... From the formula, I b = I PT2 − V Z −4V BE /R I1 − I PT1 = ( I PT2 −I PT1 )−V Z −4V BE /R I1 …. As mentioned above, I PT1 is the dark current of the phototransistor PT 1 , and I PT2 is the dark current flowing through the phototransistor PT 2 that can receive light. photocurrent produced
I PT2 ′) + (dark current I PT2 ″) Moreover, the dark current of phototransistors PT 1 and PT 2
I PT1 , I PT2 ″ are set so that I PT1 = I PT2 ″,
In the end, the equation is expressed as I b = I PT2 ′−V Z −4V BE /R I1 ………′. As is clear from this equation, I b is only related to the photocurrent I PT2 ' caused by the incident light of the phototransistor PT 2 , and the output can be obtained without being affected by dark current.

ちなみに、第1図の受光回路例において、ホト
トランジスタPT2への入射光が小さくて IPT2′≦VZ−4VBE/RI1 のとき、′式でIbの値がマイナスすなわちIb
0となり、出力用トランジスタTr4はオフで、出
力電圧Voutは電源電圧Vccとなる。ホトトラン
ジスタPT2への入射光が大きくなり、 IPT2′>VZ−4VBE/RI1 となると、Ib>0でトランジスタTr4はオンし、
出力電圧Voutとしてほぼアース(GND)レベル
の電圧を得る。出力電圧Voutの反転境界値は
′及び式に従い、抵抗RI1を変化し比較基準電
流I1を任意に設定することにより行なえる。
By the way, in the example of the light receiving circuit shown in Fig. 1, when the incident light on the phototransistor PT 2 is small and I PT2 ′≦V Z −4V BE /R I1 , the value of I b in the equation ′ is negative, that is, I b =
0, the output transistor Tr 4 is off, and the output voltage Vout becomes the power supply voltage Vcc. When the incident light on the phototransistor PT 2 increases and I PT2 ′>V Z −4V BE /R I1 , the transistor Tr 4 turns on with I b > 0,
Obtain a voltage approximately at ground (GND) level as the output voltage Vout. The inversion boundary value of the output voltage Vout can be determined by varying the resistor R I1 and arbitrarily setting the comparison reference current I 1 according to the equation '.

上記受光回路を回転計に応用した例を引用し本
回路の有用性を説明する。
The usefulness of this circuit will be explained by citing an example in which the above light receiving circuit is applied to a tachometer.

第2図は回転計の原理図、第3図a,b,cは
回転計として使用したときの第1図受光回路の要
部信号波形を示すタイムチヤートである。第2図
に示されるように、スリツトS,S,…を有する
回転板Rを挾んで発光ダイオードLEDとホトト
ランジスタPT2を対向させると、ホトトランジス
タPT2に入射される光量PV、ホトトランジスタ
PT2の出力電流IPT2及び出力電圧Voutはそれぞれ
第3図a,b,cのようになり、出力電圧Vout
のパルス数をカウントすれば回転板Rの回転数を
検出することができる。
FIG. 2 is a diagram of the principle of the tachometer, and FIGS. 3a, b, and c are time charts showing the signal waveforms of the main parts of the light receiving circuit of FIG. 1 when used as a tachometer. As shown in FIG. 2, when a light emitting diode LED and a phototransistor PT 2 are placed opposite to each other with a rotary plate R having slits S, S, . . .
The output current I PT2 and output voltage Vout of PT 2 are as shown in Figure 3 a, b, c, respectively, and the output voltage Vout
The number of rotations of the rotating plate R can be detected by counting the number of pulses.

このような回転計において、装置近辺が高温に
なると、ホトトランジスタPT2の暗電流成分が増
大する。例えば、100℃のときの暗電流は25℃の
ときの約2000倍に達する例もある。従来の受光回
路(いわゆる暗電流キヤンセル回路を含まない受
光回路)では、高温になると最低値Ib(Min)が
出力用トランジスタTr4の反転動作電流値Ib(b)
より大きくなり、出力電圧VoutもほぼGNDレベ
ルのままとなつてしまうことがある。しかし、前
述した第1図のような受光回路を用いると暗電流
の影響はキヤンセルされ、高温時でも正常にその
作動を行なうことができる。
In such a tachometer, when the temperature near the device becomes high, the dark current component of the phototransistor PT2 increases. For example, in some cases, the dark current at 100°C is approximately 2000 times higher than at 25°C. In a conventional light receiving circuit (a light receiving circuit that does not include a so-called dark current cancel circuit), when the temperature reaches a high temperature, the minimum value I b (Min) becomes the inversion operating current value I b (b) of the output transistor Tr 4 .
This may cause the output voltage Vout to remain almost at the GND level. However, when a light receiving circuit as shown in FIG. 1 is used, the influence of dark current is canceled and normal operation can be performed even at high temperatures.

第4図は入射光に比例したアナログ出力を得る
ための受光回路例である。なお、第1図と同一機
能を有するものについては第1図と同一符号を付
して示している。回路的には第1図のものと比較
して、比較基準電流I1を得るための回路がなく、
また最終出力段がアンプ用トランジスタTr3にな
つている点等で相違するが、その他は第1図の構
成とほぼ同様である。
FIG. 4 shows an example of a light receiving circuit for obtaining an analog output proportional to incident light. Components having the same functions as those in FIG. 1 are designated by the same reference numerals as in FIG. 1. In terms of circuitry, compared to the one in Figure 1, there is no circuit to obtain the comparison reference current I1 ,
The configuration is almost the same as that of FIG. 1 except that the final output stage is an amplifier transistor Tr 3 .

第4図の受光回路例では ID=IPT1 ……… I3=ID ……… であつて、トランジスタTr3のベース電流Ibは Ib=IPT2−I3 ……… で表わされるので、,式より、 Ib=IPT2−ID =IPT2−IPT1 ……… となる。ここでIPT2は IPT2=IPT2′(光が入射したことにより生じる
光電流)+IPT2″(暗電流) であつて、しかもIPT1=IPT2″であるので式は Ib=IPT2′+IPT2″−IPT1 =IPT2′ ……… となる。そして、トランジスタTr3の電流増幅率
とβとすると、コレクタ電流Ioは Io=βIb=βIPT2′ であり、従つて出力電圧Voutとしては負荷抵抗
RLによつて Vout=Vcc−βIPT2′×RL が得られる。
In the example of the light receiving circuit shown in Fig. 4, I D = I PT1 ...... I 3 = I D ......, and the base current I b of transistor Tr 3 is expressed as I b = I PT2 − I 3 ...... Therefore, from the formula, I b = I PT2 − I D = I PT2 − I PT1 ………. Here, I PT2 is I PT2 = I PT2 ′ (photocurrent generated by incident light) + I PT2 ″ (dark current), and since I PT1 = I PT2 ″, the formula is I b = I PT2 ′+I PT2 ″−I PT1 = I PT2 ′ ...... Then, assuming the current amplification factor of transistor Tr 3 and β, the collector current Io is Io = βI b = βI PT2 ′, and therefore the output voltage Vout is the load resistance
By R L , Vout=Vcc−βI PT2 ′×R L is obtained.

このように本回路例において、暗電流が無視で
き、高温時の動作に何ら支障のないようにでき
る。また、常温時においても暗電流の影響がな
く、従来の受光回路のように暗電流にかくれてい
て検出できなかつた微少光の検出も、本回路例で
は可能になる。
In this way, in this circuit example, dark current can be ignored, and operation at high temperatures can be performed without any problem. Furthermore, there is no effect of dark current even at room temperature, and this circuit example can detect minute amounts of light that could not be detected because they were hidden by dark current in conventional light receiving circuits.

以上の実施例では、受光素子としてホトトラン
ジスタを用いたが、ホトダイオード等の他の素子
でも同様に実施することができる。また、応用例
として回転計に採用する場合について述べたが、
光を検出したい場合には全ての例に応用できるの
は論をまたない。
In the above embodiments, a phototransistor was used as the light receiving element, but other elements such as a photodiode may be used in the same manner. In addition, as an application example, we described the case where it is used in a tachometer.
It goes without saying that this method can be applied to all cases when it is desired to detect light.

このように本発明において、光を受光しない受
光素子を暗電流キヤンセル用素子として備え、こ
の非受光素子の回路と実際に光を受光する受光素
子の回路との間でカレントミラー回路を構成する
ものであつて、簡単な構成で暗電流の影響を除去
し、高温時でも何ら支障なく動作でき、また常温
時においても暗電流にかくれるような微少光の検
出を可能にする有用な受光回路を提供する。
In this way, in the present invention, a light-receiving element that does not receive light is provided as a dark current canceling element, and a current mirror circuit is configured between the circuit of this non-light-receiving element and the circuit of the light-receiving element that actually receives light. We have created a useful light receiving circuit that eliminates the effects of dark current with a simple configuration, can operate without any problems even at high temperatures, and can detect minute amounts of light that are hidden by dark current even at room temperature. provide.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す受光回路、第
2図は第1図の受光回路の応用例を説明する原理
図、第3図は第2図の応用時における第1図の要
部信号波形を示すタイムチヤート、第4図は本発
明の他の実施例を示す受光回路である。 PT1,PT2……ホトトランジスタ、Tr1,Tr2
……トランジスタ。
FIG. 1 is a light receiving circuit showing an embodiment of the present invention, FIG. 2 is a principle diagram explaining an application example of the light receiving circuit of FIG. 1, and FIG. 3 is an outline of FIG. FIG. 4 is a time chart showing partial signal waveforms, and FIG. 4 is a light receiving circuit showing another embodiment of the present invention. PT 1 , PT 2 ... Phototransistor, Tr 1 , Tr 2
...Transistor.

Claims (1)

【特許請求の範囲】[Claims] 1 光を受光しない受光素子を暗電流キヤンセル
用素子として備え、該非受光素子の回路と光を受
光する受光素子の回路との間でカレントミラー回
路を構成してなることを特徴とする受光回路。
1. A light-receiving circuit comprising a light-receiving element that does not receive light as a dark current canceling element, and a current mirror circuit configured between the circuit of the non-light-receiving element and the circuit of the light-receiving element that receives light.
JP14352380A 1980-10-13 1980-10-13 Light receiving circuit Granted JPS5766324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14352380A JPS5766324A (en) 1980-10-13 1980-10-13 Light receiving circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14352380A JPS5766324A (en) 1980-10-13 1980-10-13 Light receiving circuit

Publications (2)

Publication Number Publication Date
JPS5766324A JPS5766324A (en) 1982-04-22
JPS636820B2 true JPS636820B2 (en) 1988-02-12

Family

ID=15340713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14352380A Granted JPS5766324A (en) 1980-10-13 1980-10-13 Light receiving circuit

Country Status (1)

Country Link
JP (1) JPS5766324A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60117663A (en) * 1983-11-29 1985-06-25 Mitsubishi Electric Corp Functional trimming process
JPH06196746A (en) * 1992-12-25 1994-07-15 Canon Inc Photoelectric converter, driving circuit, semiconductor light emitting device driving circuit, storage device and sequential access memory
FR2713037B1 (en) * 1993-11-23 1995-12-29 Thomson Csf Injection circuit, in thermal imaging.

Also Published As

Publication number Publication date
JPS5766324A (en) 1982-04-22

Similar Documents

Publication Publication Date Title
US5923208A (en) Low voltage temperature-to-voltage converter
JP2749925B2 (en) IC temperature sensor
JPH08129046A (en) Testing circuit of current-voltage conversion amplifier
GB2108791A (en) A signal rectifier circuit with attack time changeable in response to input signal level
JP3408161B2 (en) Temperature detection circuit and photoelectric conversion circuit
US3421009A (en) Temperature compensated photosensor system
JPH04100383A (en) Solid-state image pickup device
US5155353A (en) High dynamic range integrated opto-electronic sensor and MOSFET amplifiers for pulsed light
JPS636820B2 (en)
JPH05288605A (en) Bias circuit of photodiode
JP2609924B2 (en) Optical sensor circuit
JP2645918B2 (en) Amplifier circuit
JPS6133483B2 (en)
JP2507081B2 (en) Optical integrated circuit
JPH0246057Y2 (en)
JP2688895B2 (en) Photoelectric analog smoke detector
JPH0326331B2 (en)
JPS6211034Y2 (en)
JPH026696Y2 (en)
JP3675130B2 (en) Amplifier circuit
JPH0562374B2 (en)
EP0512731A1 (en) Voltage-to-current converter
JPS59598Y2 (en) AC light photometry device
JPH0654230B2 (en) Distance calculation circuit
KR0117097Y1 (en) Sensor circuit