JPS5952271A - Temperature controller for heat roller - Google Patents

Temperature controller for heat roller

Info

Publication number
JPS5952271A
JPS5952271A JP16451082A JP16451082A JPS5952271A JP S5952271 A JPS5952271 A JP S5952271A JP 16451082 A JP16451082 A JP 16451082A JP 16451082 A JP16451082 A JP 16451082A JP S5952271 A JPS5952271 A JP S5952271A
Authority
JP
Japan
Prior art keywords
circuit
temperature
heat roller
output
infrared sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16451082A
Other languages
Japanese (ja)
Inventor
Kaoru Hashimoto
薫 橋本
Norizo Nagata
永田 憲蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP16451082A priority Critical patent/JPS5952271A/en
Priority to US06/472,171 priority patent/US4556779A/en
Publication of JPS5952271A publication Critical patent/JPS5952271A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/20Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat
    • G03G15/2003Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat
    • G03G15/2014Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat
    • G03G15/2039Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat with means for controlling the fixing temperature

Abstract

PURPOSE:To stabilize surface temperature, by using a unit of a pyroelectric infrared sensor, chopper, and heat-sensitive element for reference temperature measurement, and attaching a filter in the entrance hole of a unit case. CONSTITUTION:Only infrared rays are transmitted from the case entrance hole 13 through a filter 14 and caused to enter the photodetection part 6 of the sensor 5. The output of the sensor 5 is separated and selected by a filter 31. A reset signal is inputted from a pulse generating circuit 34 to a peak holding circuit 32. The other output of the pulse generating circuit 34 is inputted to a pulse motor 8. The output of a composing circuit 33 is compared with that of a set temperature signal generating circuit 37 by a comparing circuit 36 and a phase control circuit 38 receives its comparison signal to turns on a heater 22 when the output of the composing circuit 33 is less than set temperature partial pressure or turn off it when equal or greater. Thus, the evil influence of the outside air is eliminated and the surface temperature of the heat roller is controlled to an invariably constant value.

Description

【発明の詳細な説明】 技術分野 本発明は、電子写真複写機においてトナーを複写紙上に
加熱定着するためのヒートローラの温度制御装置に関す
る。
TECHNICAL FIELD The present invention relates to a temperature control device for a heat roller for heating and fixing toner on copy paper in an electrophotographic copying machine.

従来技術 電子写真複写機において、ヒートローラヲ用いた定着器
で十分な定着能力を保つためには、ヒートローラの表面
温度(定着温度)を一定値に保つ制御を行う必要がある
。即ち、定着温度が低いと定着不良を生じ、高いとヒー
トローラにトナーのオフセット等の不具合を生じるから
である。
In a conventional electrophotographic copying machine, in order to maintain sufficient fixing ability with a fixing device using a heat roller, it is necessary to perform control to maintain the surface temperature (fixing temperature) of the heat roller at a constant value. That is, if the fixing temperature is low, it will cause fixing failure, and if it is high, it will cause problems such as toner offset on the heat roller.

従来、このような温度制御は、ヒートローラの表面にサ
ーミスタ等の感熱素子を直接接触せしめて(接触形)、
あるいは微小間隔を保って(非接触形)設置し、この感
熱素子による温度検出値に基づいてヒートローラのヒー
タをオン・オフ制御するのが一般的であった。
Conventionally, this type of temperature control has been carried out by directly contacting a heat-sensitive element such as a thermistor with the surface of the heat roller (contact type).
Alternatively, it has been common practice to install the heat rollers at a very small distance (non-contact type) and control the heater of the heat roller on and off based on the temperature detected by the heat-sensitive element.

しかしながら、このような感熱素子を用いた制御方法に
おいて、接触形にあっては、ヒートローラの表面温度を
瞬時的に検出できるために制御温度のリップルを小さく
でき、同時にヒートローラの温度立上り時のオーバーシ
ュートを小さく押さえることができる長所を有するも、
ヒートローラの表面に付着するトナーや紙粉、オイル等
により検出部が汚染され、温度検出効率が低下するとと
もに応答性が低下したり、ヒートローラの表面を損傷す
る等の短所を有している。
However, in the control method using such a heat-sensitive element, in the contact type, the surface temperature of the heat roller can be detected instantaneously, so the ripple in the control temperature can be reduced, and at the same time, the ripple when the temperature of the heat roller rises can be reduced. Although it has the advantage of keeping overshoot small,
The detection unit is contaminated by toner, paper dust, oil, etc. that adhere to the surface of the heat roller, resulting in lower temperature detection efficiency and response, and has disadvantages such as damage to the surface of the heat roller. .

これに対して、非接触形にあっては、これとは逆に、検
出部の汚染、ヒートローラ表面の損傷がないという長所
を有するも、感熱素子とヒートローラ表面との間に気層
が介在するため、熱応答性が悪く、外気の影響を受けや
すく正確な温度検出が困難であり、制御温度のリップル
が大きく、定着むら、定着不良が発生し、また感熱素子
の取付けに高精度を要求されるという短所を有している
On the other hand, the non-contact type has the advantage that there is no contamination of the detection part and no damage to the heat roller surface, but there is a gas layer between the heat sensitive element and the heat roller surface. Because of the interference, thermal response is poor, it is easily affected by outside air, and accurate temperature detection is difficult. Ripples in the control temperature are large, resulting in uneven fixing and defective fixing. It has the disadvantage of being demanding.

即ち、現状では、接触形、非接触形それぞれ長所、短所
を有する訳であるが、両者の長所を兼ね備え、短所を除
去した温度検出方式、具体的には非接触形であって外気
の影響のない温度検出方式が要求されているのである。
In other words, at present, both contact and non-contact types have their advantages and disadvantages, but there is a temperature detection method that combines the advantages of both and eliminates the disadvantages. Specifically, it is a non-contact type that is not affected by the outside air. Therefore, there is a need for a temperature detection method that does not exist before.

そこで、ヒートローラの表面温度の検出手段として、検
出素子が非接触形であって、外気の影響にて温度検出レ
ベルの変動がないという利点を有する赤外線センサユニ
ットを使用することが考えられる。しかし、このもので
も、急激な熱流にて正常な温度検出が妨げられるし、赤
外線センサの受光部がトナー飛散や定着オイル蒸気にて
汚染されると、感度が低下して正常な温度検出が不可能
となるのであり、この点での対応が必要とされる。
Therefore, it is conceivable to use an infrared sensor unit as a means for detecting the surface temperature of the heat roller, which has the advantage that the detection element is of a non-contact type and the temperature detection level does not fluctuate due to the influence of outside air. However, even with this, the rapid heat flow prevents normal temperature detection, and if the light-receiving part of the infrared sensor becomes contaminated with toner scattering or fixing oil vapor, the sensitivity decreases and normal temperature detection becomes impossible. This is possible, and measures need to be taken in this regard.

目  的 本発明は前記要求に鑑みてなされたもので、その目的は
、非接触形であって、外気の影響例えば外気温度の高低
、変動、突発的な空気の流れによる温度検出レベルの変
動のない検出手段を用いるとともに、急激な熱流による
正常な温度検出の妨害及びセンサの受光部に対する異物
の付着を防止し、ヒートローラの表面温度を常時一定値
に制御することのできる温度制御装置を提供することに
ある。
Purpose The present invention has been made in view of the above-mentioned requirements.The purpose of the present invention is to provide a non-contact type that is free from the effects of outside air, such as fluctuations in temperature detection level due to changes in outside air temperature and sudden air flows. Provided is a temperature control device that can control the surface temperature of a heat roller to a constant value at all times by using a detection means that does not require a detection means, prevents interference with normal temperature detection due to sudden heat flow, and prevents foreign matter from adhering to the light receiving part of the sensor. It's about doing.

要旨 以上の目的を達成するため、本発明に係るヒートローラ
の温度制御装置は、ヒートローラの表面温度の検出手段
として、焦電形赤外線センサとチョッパ機構と基準温度
測定用感熱素子とからなる赤外線センサユニットを使用
し、かつこのセンサユニットのケースに形成した赤外線
入射孔に赤外線透過フィルタを取付けたものである。
SUMMARY In order to achieve the above objects, the heat roller temperature control device according to the present invention uses an infrared ray sensor, which includes a pyroelectric infrared sensor, a chopper mechanism, and a reference temperature measurement thermosensitive element, as means for detecting the surface temperature of the heat roller. This uses a sensor unit and an infrared transmission filter is attached to the infrared incidence hole formed in the case of the sensor unit.

実施例 以下、本発明に係るヒートローラの温度制御装置の一実
施例について添付図面を参照して説明する。
Embodiment Hereinafter, an embodiment of a heat roller temperature control device according to the present invention will be described with reference to the accompanying drawings.

第1図、第2図は本発明に使用される赤外線センサユニ
ットの構成を示す。この赤外線センサユニットは、従来
知られている焦電効果、即ち、結晶の一部を加熱したと
きに結晶表面に電荷が表われる現象を利用して温度検出
を行うもので、一定強度の連続した赤外線の入射に対し
て出力はいったん立上った後直ちに零となり、赤外線が
遮断されると全く逆の反応が生じ、反対符号の出力信号
が得られる。即ち、このような出力信号のピーク値が入
射赤外線エネルギー量に対応するのである。
FIGS. 1 and 2 show the configuration of an infrared sensor unit used in the present invention. This infrared sensor unit detects temperature by utilizing the conventionally known pyroelectric effect, a phenomenon in which electric charges appear on the crystal surface when a part of the crystal is heated. In response to the incidence of infrared rays, the output rises and then immediately goes to zero, and when the infrared rays are blocked, a completely opposite reaction occurs and an output signal of the opposite sign is obtained. That is, the peak value of such an output signal corresponds to the amount of incident infrared energy.

なお、焦電形赤外線センサは一定強度の連続した赤外線
の入射に対してその出力は零となるため、実際の使用に
際しては、チョッパ機構を取付けて入射赤外線を断続さ
せる必要がある。さらに、このときの出力はチョッパ温
度と被測定物体との相対温度となるので、絶対温度を得
るためには、チョッパ温度を測定して前記赤外線センサ
の出力を補正する必要がある。
Incidentally, since the output of the pyroelectric infrared sensor becomes zero when infrared rays of a constant intensity are continuously incident, in actual use, it is necessary to attach a chopper mechanism to intermittent the incident infrared rays. Furthermore, since the output at this time is the relative temperature between the chopper temperature and the object to be measured, in order to obtain the absolute temperature, it is necessary to measure the chopper temperature and correct the output of the infrared sensor.

具体的には、赤外線センサユニット(1)は、中間板(
2)に固定したプリント基板(3)上に焦電形赤外線セ
ンサ(5)とチョッパ温度測定のための基準温度測定素
子(7)を取付け、入射赤外線を断続するためにパルス
モータ(8)の回転軸(9)にチョッパ円盤(1■を取
付けたもので、チョッパ円盤(1■には半円形の開口(
11)が形成されている。焦電形赤外線センサ(5)は
雑音(入射赤外線のゆらぎ、パルスモータ(8)からの
雑音等)に対して弱いため、ユニット全体は金属製ケー
ス02で覆われており、このケース(121にはセンサ
(5)のアース端子が接続されている。また、ステップ
モータ(8)の入力、センサ(5)の入出力、基準温度
測定素子(7)の入出力はそれぞれ、プリント基板(3
)に固定された端子(4)にて外部と接続されている。
Specifically, the infrared sensor unit (1) includes an intermediate plate (
A pyroelectric infrared sensor (5) and a reference temperature measuring element (7) for chopper temperature measurement are installed on the printed circuit board (3) fixed to 2), and a pulse motor (8) is installed to intermittent the incident infrared radiation. The chopper disk (1■) is attached to the rotating shaft (9), and the chopper disk (1■) has a semicircular opening (
11) is formed. Since the pyroelectric infrared sensor (5) is susceptible to noise (fluctuations in incident infrared rays, noise from the pulse motor (8), etc.), the entire unit is covered with a metal case 02, and this case (121) is connected to the ground terminal of the sensor (5).In addition, the input of the step motor (8), the input/output of the sensor (5), and the input/output of the reference temperature measuring element (7) are connected to the printed circuit board (3).
) is connected to the outside through a terminal (4) fixed to the terminal (4).

さらに、ケース(12)に形成した赤外線入射孔(13
)の内側には赤外線透過フィルタ(141が設置されて
いる。
Furthermore, the infrared entrance hole (13) formed in the case (12)
) An infrared transmission filter (141) is installed inside the infrared transmission filter (141).

このフィルタ(141は前記センサ(5)が温度を検出
するのに必要な赤外線のみを透過する一方、他の熱波を
遮閉するもので、急激な熱流が入射孔(13)からケー
ス(1りに流入してチョッパ温度を高め、前記測定素子
(7)にて測定される基準温度の異常、ひいては以下に
説明する上ヒートローラ(4)の表面温度の誤検出を防
止する。しかも、フィルタ(挿はトナー飛散や定着オイ
ル蒸気が入射孔+131からケース(12)内に侵入す
るのを遮断する機能をも有し、これにてセンサ(5)の
受光部(6)が汚染される不具合をも防止する。
This filter (141) transmits only the infrared rays necessary for the sensor (5) to detect the temperature, while blocking other heat waves, so that a rapid heat flow from the entrance hole (13) to the case (1 This prevents abnormalities in the reference temperature measured by the measuring element (7) and erroneous detection of the surface temperature of the upper heat roller (4) as described below.Moreover, the filter (The insert also has the function of blocking toner scattering and fixing oil vapor from entering the case (12) from the entrance hole +131, which may contaminate the light receiving part (6) of the sensor (5).) It also prevents

なお、前記フィルタ(141と同様の効果を得るために
は、入射孔(1(至)を極力小さくする(視度を絞る)
、ユニット(1)を定着器周辺より遠ざけるといった方
策も考えられるが、機能的に成果がある。
In addition, in order to obtain the same effect as the filter (141), the entrance aperture (1) should be made as small as possible (the diopter should be narrowed down).
Another possible measure is to move the unit (1) away from the vicinity of the fixing device, but this is functionally effective.

以上の構成において、赤外線はケース(12)の入射孔
(131よりフィルタ(141を介して入射し、チョツ
ノぐ円盤(10) (7) 開口(11)を経て、セン
サ(5)の受光部(6)に入射(7) する。
In the above configuration, infrared rays enter the incident hole (131) of the case (12) via the filter (141), pass through the chopping disk (10) (7), and the opening (11), and then enter the light receiving part ( 6) is incident on (7).

以上の構成からなる赤外線センサユニット(1)は、具
体的には、第3図に示すように、定着器外カバー (1
51に赤外線入射孔(16)を設け、その外側に断熱材
(1ηを介して取付ける。なお、この定着器は上ヒート
ローラ■と下ヒートローラ(21)とからなり、上ヒー
トローラ■はヒータ力を内蔵して矢印(a)方向に回転
駆動可能である。下ヒートローラ(2υは上ヒートロー
ラ■に圧接し、矢印(b)方向に従動回転可能である。
Specifically, as shown in FIG.
51 is provided with an infrared incident hole (16), and attached to the outside through a heat insulating material (1η).This fixing device consists of an upper heat roller (■) and a lower heat roller (21), and the upper heat roller (■) is a heater. It has a built-in force and can be rotated in the direction of arrow (a).The lower heat roller (2υ) is in pressure contact with the upper heat roller (2), and can be driven to rotate in the direction of arrow (b).

このように、赤外線センサユニット(1)を外カバー 
+151の外側に取付けたのは、赤外線センサユニニッ
ト(1)の環境温度の制限、焦電形赤外線センサ(5)
自体の温度の時間的変化の制限等の条件を満すためであ
る。また、断熱材(17)を介在させたのは、赤外線セ
ンサユニット(1)が上ヒートローラ■の影響で制限温
度以上に上昇するのを防止するためである。
In this way, cover the infrared sensor unit (1) with the outer cover.
Installed on the outside of +151 are the environmental temperature limit of the infrared sensor unit (1) and the pyroelectric infrared sensor (5).
This is to satisfy conditions such as restrictions on temporal changes in its own temperature. Further, the reason why the heat insulating material (17) is provided is to prevent the temperature of the infrared sensor unit (1) from rising above the limit temperature due to the influence of the upper heat roller (2).

一方、赤外線センサユニット(1)の温度上昇を防止す
るには、第4図に示すように、スペーサ(I8)を(8
) 介して外カバー(1ωに取付けてもよく、あるいは第5
図に示すように、外カバー(19とは別個に保持ブラケ
ットf19)を設け、これに取付けてもよい。
On the other hand, in order to prevent the temperature of the infrared sensor unit (1) from rising, as shown in FIG.
) through the outer cover (may be attached to 1ω, or 5th
As shown in the figure, an outer cover (a holding bracket f19 separate from 19) may be provided and attached to this.

次に、前記赤外線センサユニット(1)を用いた温度制
御回路を第6図を参照して説明する。
Next, a temperature control circuit using the infrared sensor unit (1) will be explained with reference to FIG.

(至)は増幅回路で、焦電形赤外線センサ(5)の出力
を増幅する。(31)はフィルタ回路で、増幅回路((
至)の出力を分離選択する。国はピーク値保持回路、国
は合成回路で、ピーク値保持回路(321にはパルス発
生回路(34)からのリセット信号が入力される。一方
、このパルス発生回路(財)のいまひとつの出力はパル
スモータ駆動信号としてチョッパ機構のパルスモータ(
8)に入力される。また、前記合成回路(至)にはピー
ク値保持回路[有]の出力とともに、前記基準温度測定
素子(7)の出力が増幅回路(至)を介して入力される
(to) is an amplifier circuit that amplifies the output of the pyroelectric infrared sensor (5). (31) is a filter circuit, and an amplifier circuit ((
Separately select the output of The country is a peak value holding circuit, and the country is a combining circuit, and the reset signal from the pulse generation circuit (34) is input to the peak value holding circuit (321).On the other hand, another output of this pulse generation circuit (goods) is A chopper mechanism pulse motor (
8). Further, the output of the reference temperature measuring element (7) is input to the synthesis circuit (to) together with the output of the peak value holding circuit (with) via an amplifier circuit (to).

(至)は比較回路で、前記合成回路@の出力と設定温度
信号発生回路啼の出力とが入力され、両者を比較する。
(to) is a comparison circuit to which the output of the synthesis circuit @ and the output of the set temperature signal generation circuit are input, and the two are compared.

設定温度信号発生回路(至)は前記上ヒートローラ■の
表面温度を所定の設定温度、具体的には165℃に制御
するための抵抗分圧信号を発生する。(支)は位相制御
回路で、比較回路(財)からの比較信号を受け、前記合
成回路儲の出力(vo)が設定温度分圧よりも小さいと
きにヒータ■をオンし、等しいか大きいときにオフする
The set temperature signal generation circuit (to) generates a resistive voltage division signal for controlling the surface temperature of the upper heat roller (2) to a predetermined set temperature, specifically, 165°C. (support) is a phase control circuit which receives a comparison signal from a comparison circuit (incorporated) and turns on the heater ■ when the output (vo) of the composite circuit is smaller than the set temperature partial pressure, and when it is equal to or greater than the set temperature partial pressure. to turn off.

以上の制御回路において、まず、パルス発生回路(圓の
パルスモータ駆動信号(第7図(a)参照)により、パ
ルスモータ(8)が周期(2t 1)で回転し、上ヒー
トローラ■表面から放射され、焦電形赤外線センサ(5
)に入射する赤外線がチョッパ円盤(10)の回転によ
り断続される。それに伴って焦電形赤外線センサ(5)
が応答し、その出力は増幅回路(イ)で増幅され、フィ
ルタ回路C1υを通過した結果、第8図(b)で示され
る波形となる。
In the above control circuit, first, the pulse motor (8) rotates at a period (2t 1) according to the pulse motor drive signal of the pulse generating circuit (Ren's pulse motor drive signal (see Fig. 7 (a)), and pyroelectric infrared sensor (5
) is interrupted by the rotation of the chopper disk (10). Along with this, a pyroelectric infrared sensor (5)
responds, and its output is amplified by the amplifier circuit (a) and passed through the filter circuit C1υ, resulting in the waveform shown in FIG. 8(b).

なお、焦電形赤外線センサ(5)の出力はチョッパ周波
数(チョッパ円盤(1ωの回転数)に依存し、チョッパ
周波数(Hz)が高くなるにつれて感度が低下する。本
実施例ではチョッパ周波数(Hz)を1〜3(H2)と
しているーが、これに限定しない。
Note that the output of the pyroelectric infrared sensor (5) depends on the chopper frequency (chopper disk (rotation speed of 1ω)), and as the chopper frequency (Hz) increases, the sensitivity decreases.In this embodiment, the chopper frequency (Hz) ) is 1 to 3 (H2), but is not limited to this.

また、パルスモータ駆動信号の立上りに対して焦型彫赤
外線センサ(5)の出力の立」−りは、(【d)だけ遅
れるが(第7図(bl参照)、これはチョッパ円盤(l
O)の回転の機械的な遅れによる。
In addition, the rise of the output of the focus-shaped infrared sensor (5) is delayed by (d) with respect to the rise of the pulse motor drive signal (see Fig. 7 (bl)), but this is caused by the chopper disk (l
Due to the mechanical delay in the rotation of O).

さらに、焦電形赤外線センサ(5)の出力信号(S□)
はピーク値保持回路t321により、第7図(C)に示
すように、(S□)となり、前記パルス発生回路(圓の
リセット信号に基づいて次の出力信号(S2)の立上り
直前にリセットされる。同様に出力信号(S2)。
Furthermore, the output signal (S□) of the pyroelectric infrared sensor (5)
is set to (S□) by the peak value holding circuit t321, as shown in FIG. Similarly, the output signal (S2).

(S  )は(52′)、(SA)にリセットされ、以
下間様にピーク値が保持されていく。また、ピーク値保
持回路(32)に入力されるリセット信号はパルスモー
タ駆動信号を積分回路により時間((d)だけ遅らせて
前記パルス発生回路G4)から発せられる(第7図(d
)参照)。
(S) is reset to (52') and (SA), and the peak value is maintained at intervals thereafter. In addition, the reset signal input to the peak value holding circuit (32) is generated by delaying the pulse motor drive signal by the time ((d)) using the integrating circuit and issuing it from the pulse generating circuit G4 (see FIG. 7(d).
)reference).

次に、基準温度測定素子(7)の出力を増幅回路鄭)を
介した増幅された信号(第7図(e)参照)と、前記ピ
ーク値保持回路(321からの信号(第7図(C)参照
)とを合成回路(濶にて加算すると、被測定物体である
上ヒートローラ(イ)の表面温度が第7図(f)に示す
波形で検出される。ここでの出力(■o、■o−■s十
vD)と設定温度信号発生回路(9)の設定温度分圧(
VB)とを比較回路(36)で比較し、■o<VBであ
ればヒータじ)をオンし、Vo≧VBであればオフする
Next, the output of the reference temperature measuring element (7) is converted into an amplified signal (see FIG. 7(e)) via the amplifier circuit (see FIG. 7(e)) and a signal from the peak value holding circuit (321) (see FIG. 7(e)). When the surface temperature of the upper heat roller (a), which is the object to be measured, is added with the waveform shown in FIG. 7(f), the output (■ o, ■o−■s ten vD) and the set temperature partial pressure of the set temperature signal generation circuit (9) (
VB) is compared with the comparison circuit (36), and if o<VB, the heater is turned on, and if Vo≧VB, it is turned off.

これによって、上ヒートローラ(2o)の表面温度が設
定温度、具体的には165℃の一定値に維持されること
となる。
As a result, the surface temperature of the upper heat roller (2o) is maintained at the set temperature, specifically, at a constant value of 165°C.

なお、前記合成回路臼)にて基準温度測定素子(7)の
出力と焦電形赤外線センサ(5)の出力を合成するとき
には、両者の温度変化に対する出力レベルを等しくしな
ければならない。そのために、両者の出力レベルを予め
使用環境と同条件の下で一定のレベル、例えば100℃
での出力が1.OOVとなるように増幅回路+30) 
、 (351の利得を調整して、使用する。
Note that when the output of the reference temperature measuring element (7) and the output of the pyroelectric infrared sensor (5) are combined in the above-mentioned combining circuit (combining circuit), the output levels of both must be equalized with respect to temperature changes. For this purpose, the output level of both should be set at a certain level in advance under the same conditions as the usage environment, for example, 100℃.
The output at 1. Amplifier circuit +30 to make it OOV)
, (Adjust the gain of 351 and use.

また、一般に、赤外線センサの出力が線形性を持たない
ような場合は、リニアライズする必要がある。たゾし、
本発明で使用される焦電形赤外線センサの出力は絶対温
度Tの4乗に比例するが、この種のヒートローラの温度
制御範囲でははゾ線形に近似する。
Furthermore, in general, if the output of an infrared sensor does not have linearity, it is necessary to linearize it. Tazoshi,
The output of the pyroelectric infrared sensor used in the present invention is proportional to the fourth power of the absolute temperature T, but in the temperature control range of this type of heat roller, the output is approximated to a zolinear.

さらに、前記実施例では基準温度測定素子(7)として
ダイオードの温度特性を利用したが、本発明ではこれに
限定するものではない。
Furthermore, although the temperature characteristics of the diode were used as the reference temperature measuring element (7) in the above embodiments, the present invention is not limited to this.

効果 以上の説明で明らかなように、本発明は、ヒートローラ
の表面温度の検出手段として、焦電形赤外線センサとチ
ョッパ機構と基準温度測定用感熱素子とからなる赤外線
センサユニットを使用したため、非接触形の長所である
検出部の汚染、ヒートローラ表面の損傷がないのはもと
より、その短所である外気の悪影響を除去してヒートロ
ーラの表面温度を常時一定値に制御することができる。
Effects As is clear from the above explanation, the present invention uses an infrared sensor unit consisting of a pyroelectric infrared sensor, a chopper mechanism, and a reference temperature measurement heat-sensitive element as means for detecting the surface temperature of the heat roller. The advantage of the contact type is that there is no contamination of the detection section and no damage to the surface of the heat roller, and the disadvantage of the contact type is that it eliminates the adverse effects of outside air and can always control the surface temperature of the heat roller to a constant value.

さらに、前記センサユニットのケースに形成した赤外線
入射孔に赤外線透過フィルタを取付けたため、急激な熱
流のケース内流入及びセンサの受光部に対する異物の付
置を除去でき、前記センサの特性をより正確に維持する
ことが可能である。
Furthermore, since an infrared transmission filter is attached to the infrared incidence hole formed in the case of the sensor unit, it is possible to eliminate the sudden flow of heat into the case and the attachment of foreign matter to the light receiving part of the sensor, thereby maintaining the characteristics of the sensor more accurately. It is possible to do so.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る温度制御装置を説明するためのもの
で、第1図、第2図は赤外線センサユニットの内部を示
す正面図と側面図、第3図は前記赤外線センサユニット
の取付状態の説明図、第4図、第5図はその変形例の説
明図、第6図は温度制御回路のブロック図、第7図は信
号波形図である。 (1)・・・赤外線センサユニッ) 、 (51・・・
焦電形赤外線センサ、(6)・・・受光部、(7)・・
・基準温度測定素子、(8)・・・パルスモータ、fl
α・・・チョッパ円盤、(12・・・ケース、(131
・・・入射孔、 (14)・・・フィルタ、(■・・・
上ヒートローラ、(21)・・・下ヒートローラ、■・
・・ヒータ、Cl21・・・ピーク値保持回路、国・・
・合成回路、(財)・・・パルス発生回路、(3j5・
・・比較回路、(至)・・・設定温度信号発生回路、(
支)・・・位相制御回路。 特許出願人  ミノルタカメラ株式会社代 理 人  
弁理士青山葆ほか2名
The drawings are for explaining the temperature control device according to the present invention, and FIGS. 1 and 2 are front and side views showing the inside of the infrared sensor unit, and FIG. 3 is a diagram showing the installed state of the infrared sensor unit. 4 and 5 are explanatory diagrams of modifications thereof, FIG. 6 is a block diagram of the temperature control circuit, and FIG. 7 is a signal waveform diagram. (1)...Infrared sensor unit), (51...
Pyroelectric infrared sensor, (6)... Light receiving part, (7)...
・Reference temperature measuring element, (8)...Pulse motor, fl
α...Chopper disk, (12...Case, (131
...Incidence hole, (14)...Filter, (■...
Upper heat roller, (21)...Lower heat roller,■・
...Heater, Cl21...Peak value holding circuit, country...
・Synthesis circuit, (foundation)...Pulse generation circuit, (3j5・
... Comparison circuit, (to) ... Set temperature signal generation circuit, (
Support)...Phase control circuit. Patent applicant Minolta Camera Co., Ltd. Agent
Patent attorney Hao Aoyama and 2 others

Claims (1)

【特許請求の範囲】[Claims] 1、 ヒートローラの近傍に設置され、焦電形赤外線セ
ンサ、チョッパ機構、基準温度測定用感熱素子からなる
赤外線センサユニットと、このセンサユニットのケース
に形成した赤外線入射孔に取付けた赤外線透過フィルタ
と、ヒートローラの設定温度信号発生手段と、前記セン
サユニットにて検出されたヒートローラの温度検出値と
前記発生手段からの設定温度信号とを比較する比較手段
と、この比較手段の動作に基づいてヒートローラのヒー
タをオン・オフ制御する制御手段とを備えたことを特徴
とするヒートローラの温度制御装置。
1. An infrared sensor unit installed near the heat roller and consisting of a pyroelectric infrared sensor, a chopper mechanism, and a heat-sensitive element for measuring reference temperature, and an infrared transmission filter attached to an infrared entrance hole formed in the case of this sensor unit. , a heat roller set temperature signal generation means, a comparison means for comparing a temperature detection value of the heat roller detected by the sensor unit and a set temperature signal from the generation means, and based on the operation of the comparison means. 1. A temperature control device for a heat roller, comprising: control means for controlling on/off a heater of the heat roller.
JP16451082A 1982-03-18 1982-09-20 Temperature controller for heat roller Pending JPS5952271A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP16451082A JPS5952271A (en) 1982-09-20 1982-09-20 Temperature controller for heat roller
US06/472,171 US4556779A (en) 1982-03-18 1983-03-03 Temperature control arrangement for heat roller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16451082A JPS5952271A (en) 1982-09-20 1982-09-20 Temperature controller for heat roller

Publications (1)

Publication Number Publication Date
JPS5952271A true JPS5952271A (en) 1984-03-26

Family

ID=15794526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16451082A Pending JPS5952271A (en) 1982-03-18 1982-09-20 Temperature controller for heat roller

Country Status (1)

Country Link
JP (1) JPS5952271A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3636119A1 (en) * 1985-10-29 1987-04-30 Minolta Camera Kk DEVICE FOR CONTROLLING THE TEMPERATURE OF A HEATING ROLLER
JPH01156786A (en) * 1987-12-15 1989-06-20 Matsushita Electric Ind Co Ltd Heat fixing device
DE19643610A1 (en) * 1996-10-22 1998-04-30 Oce Printing Systems Gmbh Heat sensor arrangement for contactless monitoring of fixer roller surface temp. in electrophotographic printer or copier
JP2007286373A (en) * 2006-04-18 2007-11-01 Kyocera Mita Corp Temperature detecting device and fixing device mounted with same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3636119A1 (en) * 1985-10-29 1987-04-30 Minolta Camera Kk DEVICE FOR CONTROLLING THE TEMPERATURE OF A HEATING ROLLER
JPH01156786A (en) * 1987-12-15 1989-06-20 Matsushita Electric Ind Co Ltd Heat fixing device
DE19643610A1 (en) * 1996-10-22 1998-04-30 Oce Printing Systems Gmbh Heat sensor arrangement for contactless monitoring of fixer roller surface temp. in electrophotographic printer or copier
DE19643610C2 (en) * 1996-10-22 1999-06-17 Oce Printing Systems Gmbh Heat sensor arrangement for non-contact monitoring of the surface temperature of a fixing roller of an electrophotographic printing or copying device
JP2007286373A (en) * 2006-04-18 2007-11-01 Kyocera Mita Corp Temperature detecting device and fixing device mounted with same

Similar Documents

Publication Publication Date Title
CA1158887A (en) Surface temperature measuring apparatus for object within furnace
US4556779A (en) Temperature control arrangement for heat roller
JP5535085B2 (en) Thermal camera
US6048092A (en) Noncontacting thermometer
JP4415045B2 (en) Non-contact temperature sensor
JPH11223555A (en) Non-contacting temperature sensor and detection circuit therefor
JPS5952271A (en) Temperature controller for heat roller
JP3208320B2 (en) Non-contact temperature sensor
JP3316961B2 (en) Cooking equipment
JPH0536238Y2 (en)
JPS58203476A (en) Temperature controller of heat roll
JP3491302B2 (en) Cooking equipment
JPH10221163A (en) Fire-detecting apparatus
JPS58160972A (en) Temperature controller of heat roll
US3139529A (en) Infrared detection apparatus with means to expose a constant area of the chopper to the detector
JPS58202471A (en) Temperature control device of heat roll
JPS6330890Y2 (en)
JP3093239B2 (en) Semiconductor wafer heat treatment apparatus and heat treatment method
JP3163093B2 (en) Outdoor infrared radiation measurement method and its radiometer
US3006242A (en) Optical temperature measuring apparatus
Iuchi et al. New radiation thermometer for near room temperature
JP3152705B2 (en) Radiant heat measurement device
JP3040048B2 (en) Radiant heat sensor
JPH10104085A (en) Pyroelectric type infrared detector
JPH0752125B2 (en) Irradiometer