JP2656669B2 - Thermal air flow meter that also functions as a temperature measurement meter - Google Patents

Thermal air flow meter that also functions as a temperature measurement meter

Info

Publication number
JP2656669B2
JP2656669B2 JP3041666A JP4166691A JP2656669B2 JP 2656669 B2 JP2656669 B2 JP 2656669B2 JP 3041666 A JP3041666 A JP 3041666A JP 4166691 A JP4166691 A JP 4166691A JP 2656669 B2 JP2656669 B2 JP 2656669B2
Authority
JP
Japan
Prior art keywords
temperature
resistor
air flow
circuit
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3041666A
Other languages
Japanese (ja)
Other versions
JPH04278423A (en
Inventor
恵二 半沢
政善 鈴木
浩志 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Automotive Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Automotive Engineering Co Ltd
Priority to JP3041666A priority Critical patent/JP2656669B2/en
Publication of JPH04278423A publication Critical patent/JPH04278423A/en
Application granted granted Critical
Publication of JP2656669B2 publication Critical patent/JP2656669B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、空気温度測定計を兼ね
熱式空気流量計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal air flow meter which also serves as an air temperature meter.

【0002】[0002]

【従来の技術】エンジンの吸入空気流量等の測定に使用
される熱式空気流量計は、空気流中に温度依存性を有す
発熱抵抗体(代表的なものに熱線抵抗があり、以下、
熱線抵抗を一例に説明する)を配置し、この熱線抵抗と
空気間の熱伝達現象を応用している。
2. Description of the Related Art A thermal air flow meter used for measuring an intake air flow rate of an engine is a heating resistor having a temperature dependency in an air flow (a typical example thereof is a hot wire resistance.
Heat resistance is described as an example) , and the heat transfer phenomenon between the heat resistance and air is applied.

【0003】すなわち、空気流中の熱線抵抗に一定電流
を流して発熱させた場合、通過する空気流量が多いほど
奪われる熱が多いため、熱線抵抗の温度上昇は小さくな
る。従って、抵抗温度係数が正である熱線抵抗の加熱温
度Th(抵抗Rh)を一定に保つように熱線抵抗に流れ
る加熱電流を制御すると、その制御電流が空気流量に対
応した値となる。
That is, when a constant current is applied to the hot wire resistance in an air flow to generate heat, the greater the flow rate of air passing through, the more heat is removed, and the temperature rise of the hot wire resistance becomes small. Therefore, if the heating current flowing through the hot wire resistor is controlled so as to keep the heating temperature Th (resistance Rh) of the hot wire resistance having a positive temperature coefficient of resistance constant, the control current becomes a value corresponding to the air flow rate.

【0004】熱線の加熱温度は空気の温度により影響を
受けるため、温度補償が必要である。そこで、空気の温
度を温度補償用の感温抵抗で感知して、熱線抵抗の温度
と空気温度の差が一定になるように加熱温度(熱線抵抗
の抵抗値)を制御する。この時の加熱電流Ihを検出し
て空気流量信号(電圧)に変換後に増幅回路で増幅し、
外部へ空気流量信号として出力する。
[0004] Since the heating temperature of the heating wire is affected by the temperature of the air, temperature compensation is required. Therefore, the temperature of air is sensed by a temperature-sensitive resistance for temperature compensation, and the heating temperature (resistance value of the hot-wire resistance) is controlled so that the difference between the temperature of the hot-wire resistance and the air temperature becomes constant. The heating current Ih at this time is detected and converted into an air flow rate signal (voltage), and then amplified by an amplifier circuit.
Output to the outside as an air flow signal.

【0005】ところでエンジン制御などを行う場合に
は、例えば、吸入空気の重量流量を計算するために、吸
入空気流量を測定するほかに吸入空気の温度を測定する
必要がある。
When controlling the engine, for example, in order to calculate the weight flow rate of the intake air, it is necessary to measure the temperature of the intake air in addition to measuring the intake air flow rate.

【0006】 最近では、吸入空気の温度を測定する手
段として、専用の温度センサを用いることなく、熱式
気流量計の温度補償用の感温抵抗を用いたものが提案さ
れている(例えば特開平1−100423公報に記載
のもの)。これは、温度補償用の感温抵抗の値が吸入空
気温度によって変化することを利用して、例えば、温度
補償用の感温抵抗の両端電圧、或いは感温抵抗と直列に
接続された抵抗(通常は固定抵抗)に生じる電圧を検出
して吸入空気温度を演算している。
Recently, as a means for measuring the temperature of the intake air, a device using a temperature-sensitive resistor for temperature compensation of a thermal air flow meter without using a dedicated temperature sensor has been proposed. and are (for example, those described in JP-a 1-100423 JP). This utilizes the fact that the value of the temperature compensation resistor for temperature compensation changes according to the temperature of the intake air, and for example, the voltage across the temperature compensation resistor for temperature compensation, or a resistor ( Normally, the voltage generated at the fixed resistor is detected to calculate the intake air temperature.

【0007】[0007]

【発明が解決しようとする課題】上記のように熱式空気
流量計が温度測定計を兼ねる場合には、製品コストの低
減を図り得る。
As described above, when the thermal air flow meter also serves as a temperature measuring instrument, the cost of the product can be reduced.

【0008】しかし、感温抵抗の両端電圧や感温抵抗と
直列に接続された抵抗に誘起される電圧は、感温抵抗と
直列に接続された抵抗にばらつきがあるためその影響を
受ける。ここでいうばらつきは、製造過程で生じるばら
つきのほかに使用時に抵抗値が温度により変動してしま
う現象も含む。
[0008] However, the voltage across the temperature-sensitive resistor and the voltage induced in the resistor connected in series with the temperature-sensitive resistor are affected by the variation in the resistance connected in series with the temperature-sensitive resistor. The variation referred to here includes, in addition to the variation generated in the manufacturing process, a phenomenon in which the resistance value fluctuates depending on the temperature during use.

【0009】このうち、前者のばらつきは、増幅器の出
力調整などで調整可能であるが、後者のばらつきは調整
によって補正することが難しい。
Among them, the former variation can be adjusted by adjusting the output of the amplifier, but the latter variation is difficult to correct by adjustment.

【0010】また、自動車の場合には温度測定の信号検
出部と演算をおこなうエンジン制御装置(一般にマイク
ロコンピュータで構成される)とは数メートルの電線に
よって接続されているが、温度検出に用いる感温抵抗や
固定抵抗から取り出す電圧変化は、微小レベルである。
従って、上記のように信号検出部と演算装置との伝送距
離が比較的離れていると、演算に使用する入力信号が電
磁波等による影響を受け、ノイズの多い信号となり、測
定精度に悪影響を及ぼす。
In the case of an automobile, a signal detecting section for measuring temperature and an engine control device (generally constituted by a microcomputer) for performing calculations are connected by wires of several meters. The voltage change taken out from the temperature resistor or the fixed resistor is a minute level.
Therefore, if the transmission distance between the signal detection unit and the arithmetic unit is relatively large as described above, the input signal used for the arithmetic operation is affected by electromagnetic waves and the like, becomes a noisy signal, and adversely affects the measurement accuracy. .

【0011】 本発明は以上の点に鑑みてなされたもの
で、その目的とするところは、熱式空気流量計を用いて
空気温度測定を行う場合、その温度測定に用いる抵抗
(感温抵抗と直列接続された抵抗素子)の抵抗値が温度
により変動しても、その変動の影響をほとんど受けず温
度測定精度を高めることにある。
The present invention has been made in view of the above points, and an object of the present invention is to measure a resistance (temperature-sensitive resistance and a temperature-sensitive resistance) used when measuring air temperature using a thermal air flow meter. An object of the present invention is to improve the temperature measurement accuracy even if the resistance value of a series-connected resistance element fluctuates due to temperature, without being affected by the fluctuation.

【0012】さらに、もう一つの発明として、上記目的
に加えて外部電磁波などのノイズの影響を受けにくくし
た温度測定計を提供することにある。
Still another object of the present invention is to provide a thermometer which is hardly affected by noises such as external electromagnetic waves in addition to the above objects.

【0013】[0013]

【課題を解決するための手段】本発明は上記目的を達成
するために、基本的には次のような課題解決手段を提案
する。
In order to achieve the above object, the present invention basically proposes the following means for solving the problems.

【0014】すなわち、空気流路に設置された空気流量
測定用の発熱抵抗体及びその温度補償用の感温抵抗
と、前記発熱抵抗体に直列接続された発熱抵抗体電流検
出抵抗に生じる電圧と前記感温抵抗に直列接続された
抵抗に生じる電圧とを入力して前記発熱抵抗体の加熱温
度が空気温度に対し所定の温度差を保つよう前記発熱抵
抗体の通電量を制御する差動増幅回路とを備え、前記
熱抵抗体の通電量から空気流量を求める熱式空気流量計
において、前記差動増幅回路の出力電圧Vaと前記感温
抵抗に直列接続された抵抗に生じる電圧Vbとを割算
してそのVa,Vbの比を求める割算回路(換言すれ
ば、前記差動増幅器の増幅率の変化を検知する手段)を
設け、この割算回路の出力(差動増幅器の増幅率の変
化)を空気温度測定信号として出力させる回路構成とし
た。
That is, the air flow rate set in the air flow path
For measurementHeating resistorAnd its temperature-sensitive resistor for temperature compensationbody
And the saidHeating resistorConnected in seriesHeating resistorCurrent detection
Voltage generated at the output resistance and the temperature-sensitive resistancebodyConnected in series
Input the voltage generated in the resistor andHeating resistorHeating temperature
The temperature to maintain a predetermined temperature difference with respect to the air temperature.Fever
antibodyA differential amplifier circuit for controlling the amount of current flow,Departure
Thermal resistorThe air flow rate from the amount of electricityThermalAir flow meter
The output voltage Va of the differential amplifier circuit and the temperature sensitivity
resistancebodyDivided by the voltage Vb generated in the resistor connected in series
To obtain the ratio of Va and Vb.
Means for detecting a change in the amplification factor of the differential amplifier)
The output of this division circuit (change in the amplification factor of the differential amplifier)
) Is output as an air temperature measurement signal.
Was.

【0015】また、上記基本的な課題解決手段(第1の
課題解決手段)を前提として、次のような課題解決手段
を提案する。
Further, based on the above basic problem solving means (first problem solving means), the following problem solving means is proposed.

【0016】一つは、空気温度測定に用いる前記割算回
路及びこの割算回路の出力を増幅する増幅回路を空気流
量測定用の増幅回路と共に1つのモノリシックICによ
り構成する(これを第2の課題解決手段とする)。
One is that the dividing circuit used for measuring the air temperature and the amplifying circuit for amplifying the output of the dividing circuit are constituted by one monolithic IC together with the amplifying circuit for measuring the air flow rate (this is a second monolithic IC). This will be referred to as problem solving means).

【0017】もう一つは、空気温度測定に用いる前記割
算回路の出力をその出力に応じた周波数のパルス信号に
変換した後に各種制御装置(例えばエンジン制御装置)
に伝送するよう設定する(これを第3の課題解決手段と
する)。
The other is that after converting the output of the division circuit used for measuring the air temperature into a pulse signal having a frequency corresponding to the output, various control devices (for example, an engine control device)
(This is referred to as a third problem solving means).

【0018】[0018]

【作用】第1の課題解決手段の作用…発熱抵抗体への加
熱電流(印加電圧)制御用の差動増幅器には、発熱抵抗
と直列接続された発熱抵抗体電流検出抵抗に生じる電
圧と、温度補償用の感温抵抗と直列接続された抵抗に
生じる電圧とが入力される。
[Action] The first heating current (applied voltage) to the working ... heating resistor SUMMARY differential amplifier for controlling heating resistor
A voltage generated in the heating resistor current detection resistor connected in series with the body and a voltage generated in the resistor connected in series with the temperature compensation resistor for temperature compensation are input.

【0019】 これにより、差動増幅器からは発熱抵抗
の加熱温度が空気温度に対し所定の温度差を保つよう
発熱抵抗体印加電圧Vaが出力され、それに対応する
加熱電流(温度補償を伴う加熱電流)が発熱抵抗体に流
れる。
As a result, the heating resistor is generated from the differential amplifier.
A heating resistor applied voltage Va is output such that the heating temperature of the body maintains a predetermined temperature difference with respect to the air temperature, and a corresponding heating current (heating current with temperature compensation) flows through the heating resistor .

【0020】 この発熱抵抗体に対する通電量は、例え
発熱抵抗体電流検出抵抗に生じる電圧から検出され
る。この検出電圧は空気流量測定信号として用いられ、
例えばエンジン制御の燃料量演算式の変数として使用さ
れたり、或いは各種測定分野において空気流量値として
ディジタル演算された後にメータ表示されたりする。
The power supply amount for the heat generating resistor is detected from the voltage produced for example heating resistor current sensing resistor. This detection voltage is used as an air flow measurement signal,
For example, it is used as a variable of a fuel amount calculation formula for engine control, or is digitally calculated as an air flow value in various measurement fields and then displayed on a meter.

【0021】 なお、感温抵抗は、空気温度の変化に
比例して抵抗値が変化すると、前記差動増幅器の増幅率
を調節するように作用する。これにより、差動増幅器か
らは発熱抵抗体の加熱温度が空気温度と一定の温度差を
保持するような差動増幅器の出力電圧Vaが生じて温度
補償機能が働く。
[0021] Incidentally, the temperature sensitive resistors, when the resistance value in proportion to the change of the air temperature changes, that act to regulate the amplification factor of the differential amplifier. As a result, the output voltage Va of the differential amplifier is generated from the differential amplifier such that the heating temperature of the heating resistor maintains a constant temperature difference from the air temperature, and the temperature compensation function operates.

【0022】 ゆえに、発熱抵抗体制御回路(差動増幅
器)の増幅率の変化を検知する手段〔例えばVaとVb
との比(Va/Vb)を求める割算回路〕を付加するこ
とにより空気温度を測定することができる。
Therefore, means for detecting a change in the amplification factor of the heating resistor control circuit (differential amplifier) [for example, Va and Vb
And a dividing circuit for calculating the ratio (Va / Vb) to the air temperature can be measured.

【0023】 このような空気温度測定によれば、図1
の実施例の項で図1の温度測定兼吸気流量計に基づき述
べた数3式のように温度補償用の感温抵抗2と直列に
接続される抵抗R8とR7とが分子,分母に配されるの
で、抵抗R8とR7の温度変化に伴う抵抗値変動分が互
いに相殺され、感温抵抗2の抵抗値Rcの変化を抵抗
R8,R7の温度変動の影響を受けることなくとらえる
ことができる。なお、数3式のVtは加熱電流制御用
発熱抵抗体通電量制御用)の差動増幅器の増幅率で、
Va/Vbで表される。VT(Va/Vb)が温度測定
信号として出力される。
According to such an air temperature measurement, FIG.
Resistor is connected to the temperature sensing resistor 2 in series for temperature compensation R8 and the R7 molecules as Equation 3 described based on the temperature measurement and the intake air flow meter of Figure 1 in the Examples section, the denominator since arranged, offset resistance variation with temperature change of the resistors R8 and R7 each other, to capture without being affected by a change in the temperature sensing resistor 2 of the resistance value Rc resistor R8, R7 temperature variation Can be. Vt in Equation 3 is the amplification factor of the differential amplifier for controlling the heating current (for controlling the amount of current flowing through the heating resistor ).
It is represented by Va / Vb. VT (Va / Vb) is output as a temperature measurement signal.

【0024】温度測定信号Vtは、上記した空気流量測
定信号と共に例えばエンジン制御の燃料量演算の変数と
して用いられたり、或いは各種計測分野においてディジ
タル演算されて具体的数値として表示される。
The temperature measurement signal Vt is used together with the air flow rate measurement signal as, for example, a variable for calculating a fuel amount for engine control, or is digitally calculated in various measurement fields and displayed as a specific numerical value.

【0025】第2の課題解決手段の作用…空気温度測定
に用いる割算回路及びこの割算回路の出力を増幅する増
幅回路を1つのモノリシックICで構成すれば、割算回
路からの出力が接近した位置で増幅された後にエンジン
制御ユニットやその他種々の温度演算装置等に伝送され
る。したがって、温度測定信号の伝送経路でノイズの影
響を大幅に減らすことができる。
Function of the second means for solving the problem: If the dividing circuit used for measuring the air temperature and the amplifying circuit for amplifying the output of this dividing circuit are constituted by one monolithic IC, the output from the dividing circuit becomes closer. After being amplified at the specified position, it is transmitted to an engine control unit and various other temperature calculation devices. Therefore, the influence of noise on the transmission path of the temperature measurement signal can be significantly reduced.

【0026】第3の課題解決手段の作用…前記温度測定
に用いる割算回路の出力は、その出力に応じた周波数の
パルス信号に変換した後にエンジン制御ユニットやその
他種々の温度演算装置等に伝送されるため、信号伝送過
程で外部からの電磁波などの影響を受けない。
Operation of the third problem-solving means: The output of the division circuit used for the temperature measurement is converted into a pulse signal having a frequency corresponding to the output, and then transmitted to an engine control unit and various other temperature calculation devices. Therefore, it is not affected by external electromagnetic waves in the signal transmission process.

【0027】[0027]

【実施例】本発明の実施例を図面により説明する。BRIEF DESCRIPTION OF THE DRAWINGS FIG.

【0028】図1は本発明の第1実施例に係る回路を示
す説明図、図2は第1実施例に用いる割算回路、図3は
第3実施例に用いる増幅回路である。
FIG. 1 is an explanatory diagram showing a circuit according to a first embodiment of the present invention, FIG. 2 is a division circuit used in the first embodiment, and FIG. 3 is an amplifier circuit used in the third embodiment.

【0029】 図1において、100は発熱抵抗体1
(以下、熱線抵抗と称する)に流れる電流を制御する回
路である。熱線電流制御回路100は、熱線抵抗1,抵
抗R1,感温抵抗体(以下、感温抵抗と称する)2,抵
抗R8,抵抗7のブリッジ回路よりなる検出部と、差動
増幅器Z1などで構成される。
In FIG. 1, reference numeral 100 denotes a heating resistor 1
(Hereinafter, referred to as a hot wire resistance) . The hot-wire current control circuit 100 includes a detection unit including a bridge circuit of a hot-wire resistor 1, a resistor R1, a temperature-sensitive resistor (hereinafter, referred to as a temperature-sensitive resistor) 2, a resistor R8, and a resistor 7, a differential amplifier Z1, and the like. Is done.

【0030】上記ブリッジ回路のうち熱線1と抵抗R1
とが直列に接続され、その中間点が差動増幅器Z1の非
反転入力端子に接続され、抵抗R1の他端がアースされ
る。
The heating wire 1 and the resistor R1 in the bridge circuit
Are connected in series, the intermediate point is connected to the non-inverting input terminal of the differential amplifier Z1, and the other end of the resistor R1 is grounded.

【0031】また、感温抵抗2と固定抵抗R8,R7が
直列に接続され、抵抗R8とR7の中間点が差動増幅器
Z1の反転入力端子に接続され、抵抗R7の他端がアー
スされている。差動増幅器Z1の出力端子3は、熱線抵
抗1と感温抵抗2に接続してある。
The temperature-sensitive resistor 2 and the fixed resistors R8 and R7 are connected in series, an intermediate point between the resistors R8 and R7 is connected to the inverting input terminal of the differential amplifier Z1, and the other end of the resistor R7 is grounded. I have. The output terminal 3 of the differential amplifier Z1 is connected to the hot wire resistor 1 and the temperature sensitive resistor 2.

【0032】更に、差動増幅器Z1の反転入力端子4
と、差動増幅器Z1の出力端子3は、割算回路A1の入
力端子にそれぞれ接続され、割算回路A1の出力端子5
は増幅器A2の入力端子に接続され、増幅器A2の出力
端子6が空気温度検出部の出力端子となって、図示され
ていない制御ユニット(ここではエンジン制御ユニット
でマイクロコンピュータよりなる)と接続されている。
割算回路A1,増幅器A2は温度測定のために使用され
る。
Further, the inverting input terminal 4 of the differential amplifier Z1
And the output terminal 3 of the differential amplifier Z1 are connected to the input terminals of the division circuit A1, respectively.
Is connected to the input terminal of the amplifier A2, the output terminal 6 of the amplifier A2 serves as the output terminal of the air temperature detector, and is connected to a control unit (not shown, which is an engine control unit, which is a microcomputer). I have.
The division circuit A1 and the amplifier A2 are used for temperature measurement.

【0033】また、図1においては図示されていない
が、抵抗R1に生じる端子電圧V2は空気流量測定信号
としてエンジン制御ユニットに増幅器を介して入力され
る。
Although not shown in FIG. 1, the terminal voltage V2 generated at the resistor R1 is input to the engine control unit as an air flow rate measurement signal via an amplifier.

【0034】次に本実施例の動作を説明する。Next, the operation of this embodiment will be described.

【0035】 熱線抵抗1は正の温度係数を有する発熱
抵抗体で、吸入空気流量に応じて熱伝達現象により温度
が変化し、このため抵抗値が吸入空気流量に応じて変化
する。
The hot wire resistance 1 is a heat generating resistor having a positive temperature coefficient, and the temperature changes due to a heat transfer phenomenon according to the intake air flow rate. Therefore, the resistance value changes according to the intake air flow rate. .

【0036】吸入空気流量が増加した場合、熱線抵抗1
から奪われる熱量が増加し、数1式に示す回路の平衡条
件がくずれる。ここで、熱線の抵抗値をRh,感温抵抗
の抵抗値Rc、固定抵抗R1,R7,R8の抵抗値をそ
のままR1,R7,R8とする。
When the intake air flow rate increases, the heat ray resistance 1
The amount of heat deprived of the circuit increases, and the equilibrium condition of the circuit shown in Expression 1 is broken. Here, the resistance value of the heating wire is Rh, the resistance value Rc of the temperature-sensitive resistor, and the resistance values of the fixed resistors R1, R7, R8 are R1, R7, R8 as they are.

【0037】[0037]

【数1】Rh・R7=(Rc+R8)・R1 数1式の平衡条件を満足するように、差動増幅器Z1か
ら電圧Vaを出力し、この電圧Vaが熱線抵抗1を含む
ブリッジ回路に印加され、熱線抵抗1に奪われた熱量を
補うだけの加熱電流Ihが供給され、熱線の抵抗値Rh
が一定となるように制御する。熱線抵抗1の加熱電流を
Ih,空気流量をQ,熱線温度をTh,空気温度をTa
とすると、熱線抵抗1の抵抗値Rhと空気流量Q間に
は、数2式の関係がある。
## EQU1 ## A voltage Va is output from the differential amplifier Z1 so as to satisfy the equilibrium condition of the equation (1), and the voltage Va is applied to the bridge circuit including the hot wire resistance 1 so as to satisfy the equilibrium condition of the equation (1). , A heating current Ih sufficient to compensate for the amount of heat taken by the hot wire resistance 1 is supplied, and the resistance value of the hot wire Rh
Is controlled to be constant. The heating current of the hot wire resistance 1 is Ih, the air flow rate is Q, the hot wire temperature is Th, and the air temperature is Ta.
Then, there is a relationship represented by Equation 2 between the resistance value Rh of the hot wire resistance 1 and the air flow rate Q.

【0038】[0038]

【数2】 (Equation 2)

【0039】ここで、A・B・nは定数である。この加
熱電流Ihを抵抗R1によって電圧信号(空気流量測定
信号)V2に変換して出力している。
Here, A, B and n are constants. This heating current Ih is converted into a voltage signal (air flow rate measurement signal) V2 by the resistor R1 and output.

【0040】感温抵抗2は熱線1と同様に空気通路内に
配置され、正の温度係数を有し、吸入空気温度に応じて
抵抗値が変化する。
The temperature-sensitive resistor 2 is disposed in the air passage similarly to the hot wire 1, has a positive temperature coefficient, and changes its resistance value according to the intake air temperature.

【0041】この感温抵抗2の値が吸入空気温度に応じ
て変化することにより、数1式および数2式の平衡式に
よって、出力電圧V2が温度補償を受け、熱線抵抗1に
は空気温度に対し一定の温度差を保つように加熱電流I
hが流れる。
When the value of the temperature-sensitive resistor 2 changes in accordance with the intake air temperature, the output voltage V2 is subjected to temperature compensation by the equilibrium equations of the equations (1) and (2). Heating current I so as to maintain a constant temperature difference
h flows.

【0042】さらに本実施例では、以上説明した吸入空
気流量測定のほかに、差動増幅器Z1の入力電圧Vb
(固定抵抗R7に生じる電圧)と、差動増幅器Z1の出
力電圧Vaが空気温度測定系の割算回路A1に入力さ
れ、割算回路A1によってVa,Vbの比(Va/V
b)をとることによって、つまり増幅率をもとめること
によって吸入空気温度に比例した信号が得られる。
Further, in this embodiment, in addition to the above-described measurement of the intake air flow rate, the input voltage Vb of the differential amplifier Z1 is
(The voltage generated in the fixed resistor R7) and the output voltage Va of the differential amplifier Z1 are input to the division circuit A1 of the air temperature measurement system, and the division circuit A1 calculates the ratio of Va and Vb (Va / V
By taking b), that is, by determining the amplification factor, a signal proportional to the intake air temperature is obtained.

【0043】差動増幅器Z1の入力電圧Vbは空気流量
の出力電圧V2と同じであり、また増幅器Z1の出力電
圧Vaは、数3式のようになる。
The input voltage Vb of the differential amplifier Z1 is the same as the output voltage V2 of the air flow, and the output voltage Va of the amplifier Z1 is expressed by the following equation (3).

【0044】[0044]

【数3】 (Equation 3)

【0045】つまり差動増幅器Z1の入力電圧Vbに対
するZ1の出力電圧Vaの比つまり増幅率をVtとする
と、数4式のように表わせる。
That is, assuming that the ratio of the output voltage Va of Z1 to the input voltage Vb of the differential amplifier Z1, that is, the amplification factor is Vt, it can be expressed by equation (4).

【0046】[0046]

【数4】 (Equation 4)

【0047】感温抵抗2の値Rcが空気温度によって変
化することにより、割算回路A1の出力電圧Vtが変化
し、これを増幅器A2によって増幅し、空気温度変化に
対応した出力電圧信号Vtoを得ることができる。出力
電圧信号Vtoは、温度測定信号としてエンジン制御ユ
ニットに送られる。
When the value Rc of the temperature-sensitive resistor 2 changes according to the air temperature, the output voltage Vt of the division circuit A1 changes. The output voltage Vt is amplified by the amplifier A2, and the output voltage signal Vto corresponding to the air temperature change is generated. Obtainable. The output voltage signal Vto is sent to the engine control unit as a temperature measurement signal.

【0048】本実施例に用いる割算回路A1は、例えば
図2のような回路構成によって実現できる。
The dividing circuit A1 used in this embodiment can be realized by a circuit configuration as shown in FIG. 2, for example.

【0049】図2において、Vaの入力端子3にFET
7のドレインと抵抗R101が接続され、抵抗R101
の他端は抵抗R102とFET7のゲートに接続され、
FET7のソースは差動増幅器Z7の反転入力端子と抵
抗R103に接続され、抵抗R103の他端が差動増幅
器Z7の出力端子5に接続され、差動増幅器Z7の非反
転入力端子がアースされている。
In FIG. 2, an FET is connected to the input terminal 3 of Va.
7 and the resistor R101 are connected.
Is connected to the resistor R102 and the gate of the FET7,
The source of the FET 7 is connected to the inverting input terminal of the differential amplifier Z7 and the resistor R103, the other end of the resistor R103 is connected to the output terminal 5 of the differential amplifier Z7, and the non-inverting input terminal of the differential amplifier Z7 is grounded. I have.

【0050】また、Vbの入力端子4にはFET8のド
レインと抵抗R104が接続され、抵抗R104の他端
は抵抗R105とFET8のゲートに接続され、FET
8のソースは差動増幅器Z8の反転入力端子に接続さ
れ、定電圧VSが抵抗R106を介して差動増幅器Z8
の反転入力端子に接続され、差動増幅器Z8の非反転入
力端子がアースされ、差動増幅器Z8の出力端子が抵抗
R102と抵抗R105に接続されている。
The input terminal 4 of Vb is connected to the drain of the FET 8 and the resistor R104, and the other end of the resistor R104 is connected to the resistor R105 and the gate of the FET 8,
8 is connected to the inverting input terminal of the differential amplifier Z8, and the constant voltage VS is supplied to the differential amplifier Z8 via the resistor R106.
, The non-inverting input terminal of the differential amplifier Z8 is grounded, and the output terminal of the differential amplifier Z8 is connected to the resistor R102 and the resistor R105.

【0051】次にこの割算回路A1の動作を説明する。
入力端子3にかかる電圧をVa、入力端子4にかかる電
圧をVb、抵抗R101〜R106の抵抗値をそれぞれ
R101〜R106,抵抗R106を流れる電流を
1,定電圧VSは1Vとした場合、まず差動増幅器Z
8の出力は、その入力端子間がイマジナルショートが成
り立つように動いて、FET8のゲート電圧を調節す
る。
Next, the operation of the division circuit A1 will be described.
When the voltage applied to the input terminal 3 is Va, the voltage applied to the input terminal 4 is Vb, the resistance values of the resistors R101 to R106 are R101 to R106, the current flowing through the resistor R106 is I 1 , and the constant voltage VS is 1V, first, Differential amplifier Z
The output 8 operates so as to establish an imaginary short between its input terminals, and adjusts the gate voltage of the FET 8.

【0052】この状態で、FET8のソースとドレイン
間の抵抗値をRt8とすると、差動増幅器の入力が0V
という条件から、抵抗R106を流れる電流I1は数5
式になる。
In this state, if the resistance between the source and the drain of the FET 8 is Rt8, the input of the differential amplifier becomes 0V.
From the condition, the current I 1 flowing through the resistor R106 is expressed by the following equation (5).
Expression.

【0053】[0053]

【数5】I1=VS/R106=1/R106 また、FET8のソースとドレイン間の抵抗値Rt8は
数6式のように表わせる。
I 1 = VS / R106 = 1 / R106 Further, the resistance value Rt8 between the source and the drain of the FET 8 can be expressed by the following equation (6).

【0054】[0054]

【数6】Rt8=−Vb/I1=−Vb・R106 このとき、FET7もRt8とほぼ同じ抵抗値Rt7に
なっているとすると、入力電圧Vaに対して差動増幅器
Z7の出力は数7式のように表わせる。
Rt8 = −Vb / I 1 = −Vb · R106 At this time, assuming that the resistance of the FET 7 is also substantially the same as the resistance Rt8 of the Rt8, the output of the differential amplifier Z7 with respect to the input voltage Va is expressed by the following equation (7). It can be expressed like an equation.

【0055】[0055]

【数7】 (Equation 7)

【0056】ソースとドレイン間の抵抗値Rt7とRt
8がほぼ等しく、抵抗R103と抵抗R106の抵抗値
が等しいとき、数6式および数7式より出力電圧Vtは
数8式のようになる。
The resistance values Rt7 and Rt between the source and the drain
8 are substantially equal and the resistance values of the resistor R103 and the resistor R106 are equal, the output voltage Vt is expressed by the following equation (8) from the equations (6) and (7).

【0057】[0057]

【数8】Vt=Va/Vb つまり、出力端子5には入力電圧VaをVbで割った値
に比例する電圧信号Vtが得られる。
Vt = Va / Vb In other words, a voltage signal Vt proportional to a value obtained by dividing the input voltage Va by Vb is obtained at the output terminal 5.

【0058】次に本実施例に用いる増幅器A2は、例え
ば図3のような回路構成により実現できる。
Next, the amplifier A2 used in this embodiment can be realized, for example, by a circuit configuration as shown in FIG.

【0059】図3におけるVtの入力端子5は差動増幅
器Z9の非反転入力端子に接続され、定電圧VEが抵抗
R107に接続され、抵抗R107の他端がR108に
接続されてアースされており、抵抗R107と抵抗R1
08の接点が抵抗R109に接続されて増幅器Z9の反
転入力端子に接続され、反転入力端子が抵抗R110を
介して増幅器Z9の出力端子6に接続されている。
The input terminal 5 of Vt in FIG. 3 is connected to the non-inverting input terminal of the differential amplifier Z9, the constant voltage VE is connected to the resistor R107, and the other end of the resistor R107 is connected to R108 and grounded. , Resistor R107 and resistor R1
The contact 08 is connected to the resistor R109 and connected to the inverting input terminal of the amplifier Z9, and the inverting input terminal is connected to the output terminal 6 of the amplifier Z9 via the resistor R110.

【0060】入力端子5に入力された電圧Vtは、抵抗
R107と抵抗R108を調整することによって基準点
となる電圧を調整し、抵抗R109と抵抗R110を調
整することによって、所定の電圧幅に変換できる。
The voltage Vt input to the input terminal 5 is converted to a predetermined voltage width by adjusting the voltage serving as a reference point by adjusting the resistors R107 and R108, and adjusting the resistors R109 and R110. it can.

【0061】本実施例によれば、空気流量測定のほか
に、割算回路A1を使うことによって2点間の電圧比か
ら温度測定を行うことができ、しかも、数4式のように
温度補償用の感温抵抗2と直列に接続される抵抗R8と
R7とが分子,分母に配されるので、抵抗R8とR7の
温度変化に伴う抵抗値変動分が互いに相殺され、感温抵
抗2の抵抗値Rcの変化を抵抗R8,R7の温度変動の
影響を受けることなくとらえることができる。その結
果、簡単な回路構成で高精度な空気温度測定回路を実現
でき、またBi−CMOS技術を使うことによって、1つのモ
ノリシックICで実現できる。
According to this embodiment, in addition to the measurement of the air flow rate, the temperature can be measured from the voltage ratio between two points by using the division circuit A1. The resistors R8 and R7 connected in series with the temperature-sensitive resistor 2 are arranged in the numerator and the denominator, so that the resistance value fluctuations due to the temperature changes of the resistors R8 and R7 cancel each other out, and The change in the resistance value Rc can be detected without being affected by the temperature fluctuation of the resistors R8 and R7. As a result, a high-precision air temperature measurement circuit can be realized with a simple circuit configuration, and can be realized with one monolithic IC by using Bi-CMOS technology.

【0062】また、空気流量測定用の回路構成を全く変
更することなく、1つのモジュールで空気温度の測定と
空気流量の測定ができるという効果がある。更に割算回
路(アナログ回路)A1により演算をおこない、この空
気温度測定信号をエンジン制御ユニットに出力するた
め、制御ユニット内で演算をおこなわせる方式に比べ、
電磁波などによるノイズの影響を小さく抑えることがで
きるという効果がある。
Further, there is an effect that the measurement of the air temperature and the measurement of the air flow rate can be performed by one module without changing the circuit configuration for measuring the air flow rate at all. Further, a calculation is performed by a division circuit (analog circuit) A1, and this air temperature measurement signal is output to the engine control unit.
There is an effect that the influence of noise due to electromagnetic waves or the like can be reduced.

【0063】図4は本発明の第2実施例を示す回路構成
図である。
FIG. 4 is a circuit diagram showing a second embodiment of the present invention.

【0064】図4に示した熱線電流制御回路100は第
1実施例と異なる構成としてある。
The hot-wire current control circuit 100 shown in FIG. 4 has a configuration different from that of the first embodiment.

【0065】熱線抵抗1は抵抗R1を介してアースされ
ている。熱線抵抗1の両端間に抵抗R2と抵抗R3とが
互いに直列に接続され、抵抗R2と抵抗R3との接続点
が、差動増幅器Z2の反転入力端子に接続され、差動増
幅器Z2の出力端子は、熱線1と抵抗R2に接続されて
いる。
The hot wire resistor 1 is grounded via the resistor R1. A resistor R2 and a resistor R3 are connected in series between both ends of the hot wire resistor 1, a connection point between the resistors R2 and R3 is connected to an inverting input terminal of the differential amplifier Z2, and an output terminal of the differential amplifier Z2. Is connected to the heating wire 1 and the resistor R2.

【0066】抵抗R3と抵抗R1との接続点が、差動増
幅器Z3の非反転入力端子に接続され、差動増幅器Z3
の反転入力端子は抵抗R7を介してアースされ、差動増
幅器Z3の反転入力端子と出力端子間に、抵抗R8と空
気温度を検出する感温抵抗2が直列に接続され、差動増
幅器Z3の出力端子は差動増幅器Z2の非反転入力端子
に接続されている。
The connection point between the resistors R3 and R1 is connected to the non-inverting input terminal of the differential amplifier Z3.
The inverting input terminal of the differential amplifier Z3 is grounded via a resistor R7, a resistor R8 and a temperature-sensitive resistor 2 for detecting air temperature are connected in series between the inverting input terminal and the output terminal of the differential amplifier Z3. The output terminal is connected to the non-inverting input terminal of the differential amplifier Z2.

【0067】そして、差動増幅器Z3の非反転入力端子
が、空気流量計の出力端子となっている。
The non-inverting input terminal of the differential amplifier Z3 is the output terminal of the air flow meter.

【0068】本実施例の動作を説明すると、図4におい
て熱線抵抗1の抵抗値をRh,感温抵抗2の抵抗値をR
c,抵抗R1,R2,R3,R7及びR8の抵抗値を、
そのままR1,R2,R3,R7及びR8とすると、こ
の場合数9式が成立するように熱線抵抗1が制御され
る。
The operation of this embodiment will be described. In FIG. 4, the resistance value of the hot-wire resistance 1 is Rh, and the resistance value of the temperature-sensitive resistance 2 is R.
c, the resistance values of the resistors R1, R2, R3, R7 and R8
Assuming R1, R2, R3, R7 and R8 as they are, in this case, the hot wire resistance 1 is controlled so that Equation 9 is satisfied.

【0069】[0069]

【数9】 (Equation 9)

【0070】一方、図1と同様に数2式の関係が成り立
つ。つまり、熱線1の電流Ihを抵抗R1で検出して得
られるアナログ電圧信号V2が、空気流量測定信号とな
る。
On the other hand, as in FIG. 1, the relationship of equation 2 holds. That is, the analog voltage signal V2 obtained by detecting the current Ih of the heating wire 1 with the resistor R1 is the air flow measurement signal.

【0071】このような回路構成の空気流量計において
も、差動増幅器Z3の反転入力端子の電圧をVbとし、
差動増幅器Z3の出力端子の電圧をVaとした場合、図
1と同様に両電圧を割算器A1で割算し比をとることに
よって、出力電圧Vtを得、これを増幅器A2で増幅
し、空気温度に対応した出力電圧Vtoを得ることがで
きる。
Also in the air flow meter having such a circuit configuration, the voltage of the inverting input terminal of the differential amplifier Z3 is set to Vb,
Assuming that the voltage at the output terminal of the differential amplifier Z3 is Va, the output voltage Vt is obtained by dividing the two voltages by the divider A1 and taking the ratio in the same manner as in FIG. 1, and this is amplified by the amplifier A2. And an output voltage Vto corresponding to the air temperature can be obtained.

【0072】また、図1の場合と全く同様の効果を得る
ことができる。
Further, the same effect as in the case of FIG. 1 can be obtained.

【0073】図5に本発明の第3実施例を示す。図1に
示した回路と全く同様に熱線制御回路100の電圧Va
と電圧Vbを割算器A1によって比をとり増幅器A2に
よって増幅する。この増幅後の信号Vtoを電圧−周波
数変換回路A3によって周波数信号に変換され出力され
る。
FIG. 5 shows a third embodiment of the present invention. The voltage Va of the hot-wire control circuit 100 is exactly the same as the circuit shown in FIG.
And the voltage Vb are ratioed by the divider A1 and amplified by the amplifier A2. The amplified signal Vto is converted into a frequency signal by the voltage-frequency conversion circuit A3 and output.

【0074】電圧−周波数変換回路3は例えば図6のよ
うな回路構成によって実現できる。図6において、電圧
−周波数変換回路A3は、増幅器A2の出力端子6に接
続されて構成され、出力端子6とアース間に抵抗R115
と抵抗R116とが互いに直列に接続され、抵抗R11
5と抵抗R116との接続点が差動増幅器Z4の非反転
入力端子に接続され、差動増幅器Z4の反転入力端子と
出力端子6間に抵抗R117が接続されている。
The voltage-frequency conversion circuit 3 can be realized, for example, by a circuit configuration as shown in FIG. In FIG. 6, a voltage-frequency conversion circuit A3 is connected to an output terminal 6 of an amplifier A2, and a resistor R115 is connected between the output terminal 6 and the ground.
And the resistor R116 are connected in series with each other, and the resistor R11
The connection point of the differential amplifier 5 and the resistor R116 is connected to the non-inverting input terminal of the differential amplifier Z4, and the resistor R117 is connected between the inverting input terminal and the output terminal 6 of the differential amplifier Z4.

【0075】また、差動増幅器Z4の出力端子と反転入
力端子間にコンデンサC1が接続され、差動増幅器Z4
の反転入力端子と反転器Z6の出力端子間に、抵抗R1
18が接続されている。
A capacitor C1 is connected between the output terminal and the inverting input terminal of the differential amplifier Z4.
Between the inverting input terminal of the inverter and the output terminal of the inverter Z6.
18 are connected.

【0076】そして、反転器Z6の非反転入力端子に電
圧1/2Veが印加され、反転器Z6の反転入力端子は
抵抗R121を介して、比較器Z5の非反転入力端子に
接続され、比較器Z5の非反転入力端子は抵抗R120
を介してアースされている。
Then, a voltage of 1/2 Ve is applied to the non-inverting input terminal of the inverter Z6, and the inverting input terminal of the inverter Z6 is connected to the non-inverting input terminal of the comparator Z5 via the resistor R121. The non-inverting input terminal of Z5 is a resistor R120.
Grounded through.

【0077】更に、比較器Z5の非反転入力端子には、
抵抗R119を介して電圧Veが印加され、反転器Z6
の反転入力端子には比較器Z5の出力端子が接続されて
いる。そして、差動増幅器Z4の出力端子が比較器Z5
の反転入力端子に接続され、比較器Z5の出力端子が電
圧−周波数変換回路A3の出力端子12となっている。
Further, the non-inverting input terminal of the comparator Z5 has
The voltage Ve is applied via the resistor R119, and the inverter Z6
Is connected to the output terminal of the comparator Z5. The output terminal of the differential amplifier Z4 is connected to the comparator Z5.
And the output terminal of the comparator Z5 is the output terminal 12 of the voltage-frequency conversion circuit A3.

【0078】このような構成の実施例について、その動
作を次に説明する。
The operation of the embodiment having such a configuration will be described below.

【0079】電圧−周波数変換回路A3に入力されたア
ナログ電圧信号Vtoに基づいて、数10式で与えられ
る電流がコンデンサC1と差動増幅器Z4とで積分され
る。
Based on the analog voltage signal Vto input to the voltage-frequency conversion circuit A3, the current given by the equation (10) is integrated by the capacitor C1 and the differential amplifier Z4.

【0080】[0080]

【数10】 (Equation 10)

【0081】コンデンサC1と差動増幅器Z4とで得ら
れる積分値が、比較器Z5で検出されて比較器Z5の出
力信号が、反転器Z6の反転入力端子に与えられて、反
転器Z6が制御される。
The integrated value obtained by the capacitor C1 and the differential amplifier Z4 is detected by the comparator Z5, and the output signal of the comparator Z5 is supplied to the inverting input terminal of the inverter Z6. Is done.

【0082】この反転器Z6の出力信号によって、差動
増幅器Z4の積分出力信号の傾斜が制御される。
The slope of the integrated output signal of the differential amplifier Z4 is controlled by the output signal of the inverter Z6.

【0083】このようにして、アナログ電圧信号Vto
がパルス電圧信号ftoに変換される。
Thus, the analog voltage signal Vto
Is converted to a pulse voltage signal fto.

【0084】本実施例によれば、第1実施例と同様の効
果を奏するほかに、さらにエンジン制御ユニットに伝送
される上記温度測定信号をディジタル信号ftoに変換
するので、他機器が発生するノイズによる誤動作を小さ
く抑えることができる。
According to this embodiment, in addition to having the same effects as those of the first embodiment, since the temperature measurement signal transmitted to the engine control unit is further converted into a digital signal fto, noise generated by other devices is generated. Erroneous operation can be suppressed.

【0085】[0085]

【発明の効果】本発明によれば、第1の課題解決手段で
は、熱式空気流量測定計を用いて空気温度測定を可能と
し、しかも空気温度測定に用いる感温抵抗と直列に接続
された抵抗の温度変化によるばらつき(変動)の影響を
極力なくして温度測定を行い得るので、測定誤差の少な
い高精度な温度測定を可能にする。
According to the present invention, in the first means for solving the problems, it is possible to measure the air temperature using a thermal air flow meter, and furthermore, it is connected in series with the temperature-sensitive resistor used for the air temperature measurement. Since the temperature can be measured while minimizing the influence of the variation (fluctuation) due to the temperature change of the resistance, high-precision temperature measurement with few measurement errors is enabled.

【0086】また、第2の課題解決手段では、温度測定
信号処理を1モジュールにより行い出力させるため、さ
らに第3の課題解決手段では温度測定信号をパルス周波
数に変換して出力させるため、信号測定部からエンジン
制御ユニットなどの各種制御ユニットまでの信号伝送過
程で測定信号がノイズの影響を小さく抑えることがで
き、さらに一層測定精度を高めることができる。
In the second means for solving the problem, the temperature measurement signal processing is performed by one module for output, and in the third problem solving means, the temperature measurement signal is converted into a pulse frequency and output. In the signal transmission process from the control unit to various control units such as the engine control unit, the influence of noise on the measurement signal can be reduced, and the measurement accuracy can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例を示す回路図。FIG. 1 is a circuit diagram showing a first embodiment of the present invention.

【図2】第1実施例に用いる割算回路の説明図。FIG. 2 is an explanatory diagram of a division circuit used in the first embodiment.

【図3】第1実施例に用いる増幅器の回路図。FIG. 3 is a circuit diagram of an amplifier used in the first embodiment.

【図4】本発明の第2実施例を示す回路図。FIG. 4 is a circuit diagram showing a second embodiment of the present invention.

【図5】本発明の第3実施例を示す回路図。FIG. 5 is a circuit diagram showing a third embodiment of the present invention.

【図6】第3実施例に用いる電圧−周波数変換器の回路
図。
FIG. 6 is a circuit diagram of a voltage-frequency converter used in a third embodiment.

【符号の説明】[Explanation of symbols]

1…発熱抵抗体(熱線抵抗) 2…温度補償用の感温抵抗 3,4…割算回路の入力端子 6…空気温度測定出力端子 R7,R8…感温抵抗と直列接続の抵抗 Z1…差動増幅器 100…発熱抵抗体(熱線)電流制御回路 A1…割算回路(差動増幅器の増幅率検出手段) A2…増幅器1 ... resistance of the heating resistor (heating resistors) 2 ... input terminal 6 ... air temperature measurement output terminal R7 of the temperature sensitive resistors 3, 4 ... division circuit for temperature compensation, R8 ... temperature sensitive resistors connected in series Z1 ... Differential amplifier 100. Heating resistor (hot wire) current control circuit A1. Divider circuit (Amplification factor detecting means of differential amplifier) A2. Amplifier

───────────────────────────────────────────────────── フロントページの続き (72)発明者 米田 浩志 茨城県勝田市大字高場字鹿島谷津2477番 地3 日立オートモティブエンジニアリ ング株式会社内 審査官 治田 義孝 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroshi Yoneda 2477 Kashimayatsu, Kata-shi, Ibaraki Pref. Hitachi Automotive Engineering Co., Ltd.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】空気流路に設置された空気流量測定用の
熱抵抗体及びその温度補償用の感温抵抗と、前記発熱
抵抗体に直列接続された発熱抵抗体電流検出抵抗に生じ
る電圧と前記感温抵抗に直列接続された抵抗に生じる
電圧とを入力して前記発熱抵抗体の加熱温度が空気温度
に対し所定の温度差を保つよう前記発熱抵抗体の通電量
を制御する差動増幅回路とを備え、前記発熱抵抗体の通
電量から空気流量を求める熱式空気流量計において、 前記差動増幅回路の出力電圧Vaと前記感温抵抗に直
列接続された抵抗に生じる電圧Vbとを割算してそのV
a,Vbの比を求める割算回路を設け、この割算回路の
出力を空気温度測定信号として出力させる回路構成とし
たことを特徴とする温度測定計を兼ねる熱式空気流量
計。
1. A calling for air flow measurement installed in the air passage
A heat resistor, a temperature-sensitive resistor for temperature compensation thereof , and the heat generation
The voltage generated at the heating resistor current detection resistor connected in series with the resistor and the voltage generated at the resistor connected in series with the temperature-sensitive resistor are input, and the heating temperature of the heating resistor is set to a predetermined value with respect to the air temperature. A differential amplifier circuit for controlling the amount of current supplied to the heating resistor so as to maintain a temperature difference, wherein a thermal air flow meter that obtains an air flow rate from the amount of current supplied to the heating resistor includes an output voltage of the differential amplifier circuit. its V by dividing a voltage Vb generated in the resistor connected in series to the temperature sensing resistor and Va
A thermal air flow meter also serving as a temperature measuring device, comprising a dividing circuit for obtaining a ratio of a and Vb, and having a circuit configuration for outputting an output of the dividing circuit as an air temperature measuring signal.
【請求項2】請求項1において、前記空気温度測定に用
いる前記割算回路及びこの割算回路の出力を増幅する増
幅回路を空気流量測定用の増幅回路と共に1つのモノリ
シックICにより構成したことを特徴とする温度測定計
を兼ねる熱式空気流量計。
2. A monolithic IC according to claim 1, wherein said dividing circuit used for measuring said air temperature and an amplifying circuit for amplifying an output of said dividing circuit are constituted together with an amplifying circuit for measuring air flow rate by one monolithic IC. Thermal air flow meter that also serves as a characteristic temperature meter.
【請求項3】請求項1又は請求項2において、前記割算
回路の出力は、その出力に応じた周波数のパルス信号に
変換して伝送するよう設定したことを特徴とする温度測
定計を兼ねる熱式空気流量計。
3. The temperature measuring device according to claim 1, wherein an output of said dividing circuit is set to be converted into a pulse signal having a frequency corresponding to the output and transmitted. Thermal air flow meter.
【請求項4】空気流路に設置された空気流量測定用の
熱抵抗体及びその温度補償用の感温抵抗と、前記発熱
抵抗体に直列接続された発熱抵抗体電流検出抵抗に生じ
る電圧と前記感温抵抗に直列接続された抵抗に生じる
電圧とを入力して前記発熱抵抗体の加熱温度が空気温度
に対し所定の温度差を保つよう前記発熱抵抗体の通電量
を制御する差動増幅回路とを備え、前記発熱抵抗体の通
電量から空気流量を求める熱式空気流量計において、 前記差動増幅回路の増幅率の変化を検出する手段を設
け、この増幅率の変化から空気温度を測定するよう設定
したことを特徴とする温度測定計を兼ねる熱式空気流量
計。
4. A calling for air flow measurement installed in the air passage
A heat resistor, a temperature-sensitive resistor for temperature compensation thereof , and the heat generation
A voltage generated at a heating resistor current detection resistor connected in series with a resistor and a voltage generated at a resistor connected in series with the temperature-sensitive resistor are input, and a heating temperature of the heating resistor is set to a predetermined value with respect to an air temperature. A differential amplifying circuit for controlling the amount of current flowing through the heating resistor so as to maintain a temperature difference, wherein a thermal air flowmeter that obtains an air flow rate from the amount of current flowing through the heating resistor includes an amplification factor of the differential amplifier circuit. A thermal air flow meter also serving as a thermometer, wherein a means for detecting a change in the temperature is provided, and the air temperature is set based on the change in the amplification factor.
JP3041666A 1991-03-07 1991-03-07 Thermal air flow meter that also functions as a temperature measurement meter Expired - Fee Related JP2656669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3041666A JP2656669B2 (en) 1991-03-07 1991-03-07 Thermal air flow meter that also functions as a temperature measurement meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3041666A JP2656669B2 (en) 1991-03-07 1991-03-07 Thermal air flow meter that also functions as a temperature measurement meter

Publications (2)

Publication Number Publication Date
JPH04278423A JPH04278423A (en) 1992-10-05
JP2656669B2 true JP2656669B2 (en) 1997-09-24

Family

ID=12614713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3041666A Expired - Fee Related JP2656669B2 (en) 1991-03-07 1991-03-07 Thermal air flow meter that also functions as a temperature measurement meter

Country Status (1)

Country Link
JP (1) JP2656669B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3197770B2 (en) * 1993-12-30 2001-08-13 東京エレクトロン株式会社 Semiconductor manufacturing equipment
DE19537466A1 (en) * 1995-10-07 1997-04-10 Bosch Gmbh Robert Temperature control arrangement for measurement resistance for determining medium flow
US10539366B2 (en) 2014-04-30 2020-01-21 Stephen B. Maguire Method and apparatus for vacuum drying granular resin material
US8141270B2 (en) * 2009-08-13 2012-03-27 Maguire Products, Inc. Gas flow rate determination method and apparatus and granular material dryer and method for control thereof
US11364657B2 (en) 2018-04-04 2022-06-21 Novatec, Inc. Reducing moisture in granular resin material using inert gas
US20190308344A1 (en) 2018-04-04 2019-10-10 Novatec, Inc. Method and apparatus for polymer drying using inert gas

Also Published As

Publication number Publication date
JPH04278423A (en) 1992-10-05

Similar Documents

Publication Publication Date Title
KR950005890B1 (en) Apparatus and method for temperature compensation of catheter tip pressure transducer
US6283629B1 (en) Method of calibrating a radiation thermometer
US8874387B2 (en) Air flow measurement device and air flow correction method
EP0715710A1 (en) Differential current thermal mass flow transducer
US4872339A (en) Mass flow meter
JP2656669B2 (en) Thermal air flow meter that also functions as a temperature measurement meter
KR900005880B1 (en) Thermo-water meter
WO2003029759A1 (en) Flow rate measuring instrument
US6032526A (en) Heating resistor type air flow-meter of ratio-metric output type and engine control system using said heating resistor type air flow-meter
SE427502B (en) VERMEGENOMGANGSMETARE
JP2000146651A (en) Thermal air flow meter
JP3410562B2 (en) Temperature / wind speed measurement device
JP2789272B2 (en) Flow meter flow compensation method
JPH06109506A (en) Heating element type air flowmeter
JP3022203B2 (en) Thermal air flow detector
JP2000266773A (en) Hot wire flowmeter and its conversion table forming method
JP3227084B2 (en) Air flow measurement device
JPH0835869A (en) Air flowmeter
JP3019009U (en) Mass flow meter
SU1578507A1 (en) Meter of radiant heat flow
JPH04332867A (en) Hot wire anemometer
SU1686317A1 (en) Device for measuring nonstationary flow
JPS5858428A (en) Three-wire temperature sensor
JP2003090751A (en) Flow sensor type flowmeter and calibration method thereof
JPH07139985A (en) Thermal air flow measuring instrument

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080530

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100530

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100530

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100530

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees