JPS60100661A - Vapor deposition method by sputtering - Google Patents

Vapor deposition method by sputtering

Info

Publication number
JPS60100661A
JPS60100661A JP20851983A JP20851983A JPS60100661A JP S60100661 A JPS60100661 A JP S60100661A JP 20851983 A JP20851983 A JP 20851983A JP 20851983 A JP20851983 A JP 20851983A JP S60100661 A JPS60100661 A JP S60100661A
Authority
JP
Japan
Prior art keywords
ion beam
substrate
sputtering
ion source
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20851983A
Other languages
Japanese (ja)
Inventor
Tsuneo Mitsuyu
常男 三露
Makoto Kitahata
真 北畠
Osamu Yamazaki
山崎 攻
Kiyotaka Wasa
清孝 和佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20851983A priority Critical patent/JPS60100661A/en
Publication of JPS60100661A publication Critical patent/JPS60100661A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0047Activation or excitation of reactive gases outside the coating chamber
    • C23C14/0052Bombardment of substrates by reactive ion beams

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form stably a thin compd. film having excellent film quality on a substrate in the stage of forming the thin film of various compd. by a vapor deposition method by ion beam sputtering on the substrate surface by irradiating simultaneously an ion beam contg. the reactive gas from an auxiliary ion source to the substrate surface. CONSTITUTION:A thin film of TiN is formed by a vapor deposition method by ion beam sputtering on the surface of the substrate 6 in a vacuum vessel 1. Ar is supplied as a sputtering gas to a main ion source 3 through a supply pipe 31 and a Ti target 5 is irradiated with a main ion beam 32 or electrically neutralized neutral particle beam 32. The Ti atoms of the target 5 evaporate by sputtering and are made incident in the form of sputtering particles 52 to the substrate 6. Gaseous N2 is supplied simultaneously to an auxiliary ion source 4 through a supply pipe 41 and is accelerated by ionization to irradiate the substrate 6 in the form of an auxiliary ion beam 42. The Ti atoms and N2 ions react on the substrate 6 thus forming the thin film of TiN.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、各種の化合物薄膜の形成に用いられるスパッ
タ蒸着方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a sputter deposition method used for forming various compound thin films.

従来例の構成とその問題点 近年、各種の薄膜を形成する方法として、スパック蒸着
法が普及してきた。スパック蒸着法は、高速のイオンを
ターゲットと呼ばれる原料固体の表面に照射してスパッ
タ蒸発させ、基板上に薄膜を形成する方法である。この
場合、イオンを発生させる手段としては、10−2To
rr程度の低真空中に置いたターゲラ1−と陽(jの間
に高電圧を印加し、クロー放電を起こさせる方法が一般
的である。
Conventional Structure and Problems In recent years, spack evaporation has become popular as a method for forming various thin films. The spuck evaporation method is a method for forming a thin film on a substrate by irradiating high-speed ions onto the surface of a raw material solid called a target to perform sputter evaporation. In this case, the means for generating ions is 10-2To
A common method is to apply a high voltage between the targera 1- and positive (j) placed in a low vacuum of about rr to cause claw discharge.

これに対し、独立したイオン源から発生させたイオンビ
ームを高真空中に置かれたターゲットに照射する方法が
最近注目されておυ、これをイオンビーム・スパック蒸
着法と呼んでいる。この場合、ターゲットと基板が高真
空中に置かれているため、不純物の混入が少ないこと、
スパッタ蒸発した粒子がガス分子に散乱されることなく
基板に到達するため膜の結晶性が向上すること等の優れ
た特許が得られる。
On the other hand, a method in which a target placed in a high vacuum is irradiated with an ion beam generated from an independent ion source has recently attracted attention, and this method is called ion beam spackle deposition. In this case, the target and substrate are placed in a high vacuum, so there is less contamination by impurities.
Excellent patents can be obtained, such as that the crystallinity of the film is improved because the particles sputtered and evaporated reach the substrate without being scattered by gas molecules.

ところがこのイオンビーム・スパッタ蒸着法で化合物、
特に金属元素と気体元素の化合物の薄膜を形成する場合
には種々の問題が生じる。すなわち、このような場合に
はターゲットを金属元素で構成し、これと反応する気体
元素を雰囲気よシ供給し、基板上で反応を起させる方法
が一般的であるが、反応を充分に起させるためには、か
カりのガス圧を与えることが必要であシ、そうすると前
述のイオンビーム・スパッタ蒸着法の特長が失なわれて
膜質が低下したシ、またイオンビームが散乱してスパッ
タ蒸発が不安定になるなどの問題が生じる。なお、低ガ
ス圧でもイオンビームの強度を弱めてスパッタ蒸発速度
を極端に下げれば充分な反応を起させることが可能であ
るが、この場合には当然膜の形成速度が著しく低下し、
実用的でない。
However, with this ion beam sputter deposition method, compounds,
In particular, various problems arise when forming a thin film of a compound of a metal element and a gaseous element. In other words, in such cases, the common method is to configure the target with a metal element, supply a gaseous element that reacts with the target into the atmosphere, and cause the reaction to occur on the substrate. In order to achieve this, it is necessary to apply a strong gas pressure, which would cause the above-mentioned features of the ion beam sputter deposition method to be lost and the film quality to deteriorate, and also cause the ion beam to scatter and cause sputter evaporation. Problems such as instability may occur. Note that even at low gas pressures, it is possible to cause a sufficient reaction by weakening the ion beam intensity and extremely reducing the sputter evaporation rate, but in this case, of course, the film formation rate will drop significantly.
Not practical.

発明の目的 本発明はこのような従来の問題に鑑み、イオンビーム・
スパッタ蒸着法によって良好な膜質を有する化合物薄膜
を安定にかつ高速度で形成する方法を提供することを目
的としている。
Purpose of the Invention In view of such conventional problems, the present invention provides an ion beam
The object of the present invention is to provide a method for stably and rapidly forming a compound thin film having good film quality by sputter deposition.

発明の構成 本発明は、主イオン源から発生するイオンビーム、ま犬
はこれを電気的に中和した中性粒子ビームを金属物質か
らなるターゲットに照射して前記金属物質をスパッタ蒸
発させ、蒸発した粒子を基板面に入射させると共に、副
イオン源から発生する反応性ガスを含んだイオンビーム
を前記基板面に照射することによシ、金属物質と反応性
ガスとの反応生成物からなる薄膜を形成するという方法
により、低ガス圧下でも充分な反応を生ぜしめ、よって
良好な膜質を有する化合物薄膜を高速度で形成すること
を可能にするものである。
Structure of the Invention The present invention provides an ion beam generated from a main ion source and a neutral particle beam that is electrically neutralized to a target made of a metal material to sputter and evaporate the metal material. By making the particles incident on the substrate surface and irradiating the substrate surface with an ion beam containing a reactive gas generated from a sub-ion source, a thin film consisting of a reaction product of a metal substance and a reactive gas is formed. This method of forming a compound allows a sufficient reaction to occur even under low gas pressure, thereby making it possible to form a compound thin film with good film quality at high speed.

実施例の説明 図は、本発明を実施する場合に用いられるイオンビーム
・スパッタ蒸着装置の一例を示す概略図である。ここで
は、本発明の一実施例として窒化チタニウム(Ti N
 )の薄膜を形成する場合について述べる。第1図にお
いて、1は真空容器、2は真空ポンプ、3は主イオン源
、31は主イオン源へのガス供給管、4は副イオン源、
41は副イオン源へのガス供給管、5はチタニウムから
なるターゲット、6は基板、61は基板ホルダである。
The explanatory diagram of the embodiment is a schematic diagram showing an example of an ion beam sputter deposition apparatus used in carrying out the present invention. Here, titanium nitride (TiN
) will be described below. In FIG. 1, 1 is a vacuum container, 2 is a vacuum pump, 3 is a main ion source, 31 is a gas supply pipe to the main ion source, 4 is a sub ion source,
41 is a gas supply pipe to the sub-ion source, 5 is a target made of titanium, 6 is a substrate, and 61 is a substrate holder.

薄膜形成にあたっては、まず真空容器1を真空ポンプ2
により例えばlX10 Torr以下の高真空まで真空
引きした後、スパッタ用のガスを導入管31よシ主イオ
ン源3に導入する。スパッタ用ガスとしては例えばアル
ゴンを用いる。導入されたガスの分子は主イオン源3内
でイオン化され、かつ加速された後、主イオンビーム3
2となってターゲット5を照射する。なおこの主イオン
ビーム32は、主イオン源3を出た後、電気的に中和さ
れて中性粒子ビームとなってターゲットを照射するよう
にしてもよく、その方がビームの拡がシが少なくなって
好都合である場合もある。主イオンビームの照射によシ
、ターゲット5を構成するチタニウム原子はスパッタ蒸
発し、ヌパッタ粒子ビーム62となって基板6に入射す
る。これと同時に、反応性ガスとして窒素を導入管41
よシ副イオン源4に導入し、イオン化、加速した後、副
イオンビーム42として基板6に入射させる。
To form a thin film, first, vacuum container 1 is pumped with vacuum pump 2.
After evacuation to a high vacuum of, for example, 1.times.10 Torr or less, sputtering gas is introduced into the main ion source 3 through the introduction tube 31. For example, argon is used as the sputtering gas. The introduced gas molecules are ionized and accelerated in the main ion source 3, and then the main ion beam 3
2 and irradiates the target 5. Note that this main ion beam 32 may be electrically neutralized after leaving the main ion source 3 to become a neutral particle beam and irradiate the target, which will reduce the spread of the beam. In some cases, it is advantageous to have less. By irradiation with the main ion beam, the titanium atoms constituting the target 5 are sputter-evaporated and become a nupatter particle beam 62 which is incident on the substrate 6 . At the same time, nitrogen is introduced into the pipe 41 as a reactive gas.
After being introduced into the secondary ion source 4, ionized and accelerated, it is made incident on the substrate 6 as a secondary ion beam 42.

この結果、基板に到達したチタニウム原子と窒素イオン
が反応し、窒化チタニウムとして基板上に堆積し、薄膜
を形成することになる。この場合、窒素が加速されたイ
オンとして供給されるだめ反応性が高く、供給された窒
素ガスが有効に薄膜形成に寄与する。すなわち、ガス供
給量がわずかであっても充分な反応が生じ、良質の窒化
チタニウム膜を高速度で形成することができる。本実施
例の場合、窒素供給量が約1cc/=で直径5偏の基板
全面に完全に窒化した良質の膜を約1μm/hの速度で
形成することができた。なおこのとき、窒素ガスの流入
による真空容器内圧力の上昇は、5 X 1 (T5T
orr程度であシ、イオンビームが散乱される等の障害
は全く生じなかった。
As a result, the titanium atoms that have reached the substrate react with nitrogen ions, and are deposited on the substrate as titanium nitride, forming a thin film. In this case, since nitrogen is supplied as accelerated ions, the reactivity is high, and the supplied nitrogen gas effectively contributes to the formation of a thin film. That is, even if the amount of gas supplied is small, a sufficient reaction occurs and a high quality titanium nitride film can be formed at high speed. In the case of this example, when the nitrogen supply amount was about 1 cc/=, a high-quality, completely nitrided film could be formed at a rate of about 1 μm/h over the entire surface of the substrate with a diameter of 5 mm. At this time, the increase in the pressure inside the vacuum container due to the inflow of nitrogen gas is 5 X 1 (T5T
orr, and no problems such as scattering of the ion beam occurred.

以上の結果に対し、従来例すなわち副イオン源を用いな
い場合には、窒素ガスの供給量およびその他の条件を前
述と同一とすると、得られた膜は窒化が極めて不充分で
あ)、チタニウムと窒素の成金比(原子比)は約9=1
であった。また、窒素供給量を増して1occ/=とじ
ても、膜中の上記成分比は約6=4までしか向上せず、
窒化は完全でなかった。(完全に窒化した場合は1:1
となる。)さらに窒素供給量を増加すると、真空容器内
圧力の上昇のため、主イオンビームが散乱され、安定な
スパッタ蒸発が行なえなくなった。なお、窒素ガス供給
量が1ocr、/=でも主イオンビームの強度を弱めて
、ヌパッタ蒸発量を著しく減少させると、はぼ完全に窒
化した膜が得られたが、この場合には膜の形成速度が約
0.2μm/h と著しく低下した。
In contrast to the above results, in the conventional case (i.e., when no sub-ion source is used), assuming the nitrogen gas supply amount and other conditions are the same as above, the obtained film is extremely insufficiently nitrided), titanium, and titanium. The metal formation ratio (atomic ratio) of nitrogen and nitrogen is approximately 9=1
Met. Furthermore, even if the nitrogen supply amount is increased to 1 occ/=, the above component ratio in the film will only improve to about 6=4,
Nitriding was not complete. (1:1 if completely nitrided
becomes. ) When the nitrogen supply amount was further increased, the main ion beam was scattered due to the increase in the pressure inside the vacuum chamber, making it impossible to perform stable sputter evaporation. In addition, even if the nitrogen gas supply amount was 1ocr/=, if the intensity of the main ion beam was weakened and the amount of nupatta evaporation was significantly reduced, a nearly completely nitrided film was obtained, but in this case, the film formation The speed decreased significantly to approximately 0.2 μm/h.

以上のように、本発明の方法によれば、従来例に比べ・
少ない反応性ガス供給量で完全に反応した良質の化合物
薄膜を得ることができ、膜形成速度が速く、装置の動作
を不安定にすることもないという優ハた効果を得ること
ができる。
As described above, according to the method of the present invention, compared to the conventional example,
A completely reacted, high-quality compound thin film can be obtained with a small amount of reactive gas supplied, and excellent effects such as a fast film formation rate and no unstable operation of the apparatus can be obtained.

なお、以上の実施例では窒化チタニウム薄膜を形成する
場合について説明しだが、他の利料についても広く本発
明の方法を適用することができ、各種金属およびその合
金の窒化物、酸化物、炭化物などを形成することができ
る。炭化物の場合には反応性力スと1〜で、メタン(C
H3)、あるいはアセチ1/ン(02H2)などを用い
ればよい。これらの場合も前記実施例と同様の優れた効
果を得ることができる。
Although the above embodiment describes the case of forming a titanium nitride thin film, the method of the present invention can be widely applied to other materials, including nitrides, oxides, and carbides of various metals and their alloys. etc. can be formed. In the case of carbides, methane (C
H3) or acetylene (02H2) may be used. In these cases as well, excellent effects similar to those of the above embodiments can be obtained.

発明の効果 以上のように本発明は、イオンビーム・ス/<ツク蒸危
方法において、反応性ガスのイオンビームを基板面に照
射することによシ、良好な膜質を有する化合物薄膜を安
定にかつ高速度で形成することを可能にするという優れ
た効果を有するものである。
Effects of the Invention As described above, the present invention is capable of stably forming a compound thin film with good film quality by irradiating the substrate surface with an ion beam of a reactive gas in the ion beam evaporation method. Moreover, it has the excellent effect of enabling formation at high speed.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例において用いられるイオンビーム
・スパッタ蒸着装置の構造を示す概略図である。 1・・・・・・真空容器、2・・・・・・真空ポンプ、
3・・・・・・主イオン源、31・・・・・・主イオン
源へのガス供給管、4・・・・・・副イオン源、41・
・・・・・副イオン源へのガス供給管、5・・・・・・
チタニウム・ターゲット、6・・・°′。 基板、61・・・・・・基板ホルダ、32・・・・・・
主イオンビーム、42・・・・・・副イオンビーム、5
2・・・・・・スパック粒子ビーム。
The figure is a schematic diagram showing the structure of an ion beam sputter deposition apparatus used in an embodiment of the present invention. 1... Vacuum container, 2... Vacuum pump,
3... Main ion source, 31... Gas supply pipe to the main ion source, 4... Sub ion source, 41.
...Gas supply pipe to sub-ion source, 5...
Titanium target, 6...°'. Substrate, 61... Substrate holder, 32...
Main ion beam, 42...Sub-ion beam, 5
2...Spack particle beam.

Claims (1)

【特許請求の範囲】[Claims] 主イオン源から発生するイオンビーム、または前記イオ
ンビームを電気的に中和した中性粒子ビームを金属物質
からなるターゲットに照射して前記金属物質をスパッタ
蒸発させ、スパッタ蒸発した前記金属物質の粒子を基板
面に入射させると共に、副イオン源から発生する反応性
ガスを含んだイオンビームを前記基板面に照射するかと
によシ前記金属物質と前記反応性ガスとの反応生成物か
らなる薄膜を形成することを特徴とするスパック蒸着方
法。
An ion beam generated from a main ion source or a neutral particle beam obtained by electrically neutralizing the ion beam is irradiated onto a target made of a metal substance to sputter evaporate the metal substance, and the sputter evaporate particles of the metal substance is incident on the substrate surface, and an ion beam containing a reactive gas generated from a sub-ion source is irradiated onto the substrate surface to form a thin film made of a reaction product of the metal substance and the reactive gas. A sppack deposition method characterized by forming.
JP20851983A 1983-11-07 1983-11-07 Vapor deposition method by sputtering Pending JPS60100661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20851983A JPS60100661A (en) 1983-11-07 1983-11-07 Vapor deposition method by sputtering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20851983A JPS60100661A (en) 1983-11-07 1983-11-07 Vapor deposition method by sputtering

Publications (1)

Publication Number Publication Date
JPS60100661A true JPS60100661A (en) 1985-06-04

Family

ID=16557512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20851983A Pending JPS60100661A (en) 1983-11-07 1983-11-07 Vapor deposition method by sputtering

Country Status (1)

Country Link
JP (1) JPS60100661A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310074A (en) * 1989-06-06 1991-01-17 Sanyo Electric Co Ltd Formation of thin film
JPH05140731A (en) * 1991-11-20 1993-06-08 Japan Steel Works Ltd:The Ion beam mixing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310074A (en) * 1989-06-06 1991-01-17 Sanyo Electric Co Ltd Formation of thin film
JPH05140731A (en) * 1991-11-20 1993-06-08 Japan Steel Works Ltd:The Ion beam mixing method

Similar Documents

Publication Publication Date Title
US4419202A (en) Metal coatings
MX2011005039A (en) Method for pretreating substrates for pvd methods.
US6730365B2 (en) Method of thin film deposition under reactive conditions with RF or pulsed DC plasma at the substrate holder
JPS60100661A (en) Vapor deposition method by sputtering
GB2090291A (en) Sputter ion plating of refractory metal/metal compounds
JP3758248B2 (en) Method for forming compound thin film
JPH04337064A (en) Boron nitride coating member
JP2875892B2 (en) Method of forming cubic boron nitride film
JP2603919B2 (en) Method for producing boron nitride film containing cubic boron nitride crystal grains
JPH01205085A (en) Method for cleaning metal
JPH01104763A (en) Production of thin metal compound film
JPH02156066A (en) Method for cleaning base material
JPS6320445A (en) Ion plating
JPS6342362A (en) Production of surface coated steel material
JPH02298255A (en) Formation of thin nitrided film
JPH01168857A (en) Formation of titanium nitride film
JPH02298254A (en) Formation of titanium nitride film
JPH0372069A (en) Method for continuously vapor-depositing compound on metal strip
JP2600092B2 (en) Surface modification method for metallic materials
JPS63262457A (en) Preparation of boron nitride film
JPH04124256A (en) Formation of tin film by ion plating
JPH01172563A (en) Formation of high-purity film
JPH0428861A (en) Film forming device using hollow cathode electron gun
JPS6353262A (en) Apparatus for forming thin film
JPS62230965A (en) Manufacture of thin film