JPH01205085A - Method for cleaning metal - Google Patents

Method for cleaning metal

Info

Publication number
JPH01205085A
JPH01205085A JP3009788A JP3009788A JPH01205085A JP H01205085 A JPH01205085 A JP H01205085A JP 3009788 A JP3009788 A JP 3009788A JP 3009788 A JP3009788 A JP 3009788A JP H01205085 A JPH01205085 A JP H01205085A
Authority
JP
Japan
Prior art keywords
substrate
vacuum furnace
inert gas
coating
molecules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3009788A
Other languages
Japanese (ja)
Inventor
Katsuyoshi Sumiya
角谷 勝嘉
Kenichi Tamura
賢一 田村
Shunichi Harada
俊一 原田
Yasukatsu Nakajima
中嶋 康勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP3009788A priority Critical patent/JPH01205085A/en
Publication of JPH01205085A publication Critical patent/JPH01205085A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

PURPOSE:To clean a metallic substrate surface without roughening said surface and to improve the adhesive of coating by dissociating the adsorbed gaseous molecules on the metallic substrate surface by inert gas ions, then reducing the oxide and nitride on the substrate by hydrogen ions. CONSTITUTION:The inside of a vacuum furnace 3 is evacuated and thereafter, the vacuum furnace 3 is heated to evaporate and degas the cutting fluid, etc., sticking on the surface of the substrate 2. A gaseous mixture composed of an inert gas such as Ar and H2 is thereafter supplied from a 1st feed path 1a. The Ar is ionized by the glow discharge using the substrate 2 as an electrode to dissociate the adsorbed gaseous molecules of O2, H2, etc. from the surface of the substrate 2. These molecules are discharged. Hydrogen is then ionized to reduce the oxide part and nitride part on the substrate 2 surface. The reduced oxygen and nitrogen react with the hydrogen ions and suspend in the form of H2O and NH3 which are then discharged. The surface of the substrate 2 is thereby cleaned and the activation thereof is accelerated and, therefore, the coating layer having good adhesiveness is formed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、イオンボンバードなる手法において金属表面
を荒すことなく金属表面の清浄を可能にした金属の清浄
化方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a metal cleaning method that makes it possible to clean a metal surface without roughening the metal surface using a technique called ion bombardment.

(従来の技術) 従来より金属材料にコーティングを施す場合、その前工
程として該金属材料の表面処理、即ち表面の清浄が一般
に行われている。該清浄の目的は金属材料(基体)の表
面に酸素分子や窒素分子あるいは水蒸気等の吸着ガス分
子およびその化合物等が存在すると、コーティングの密
着性が劣るためにそれらを除去することであって、今日
、種々な清浄方法(例えば酸、アルカリ溶液によるもの
や超音波によるもの)が行われている。
(Prior Art) Conventionally, when applying a coating to a metal material, surface treatment of the metal material, that is, surface cleaning has generally been performed as a pre-process. The purpose of this cleaning is to remove oxygen molecules, nitrogen molecules, water vapor, and other adsorbed gas molecules and their compounds, because if they exist on the surface of the metal material (substrate), the adhesion of the coating will be poor. Various cleaning methods are in use today, such as with acid, alkaline solutions and with ultrasound.

そして、その清浄方法の一手段としてイオンボンバード
なるものがある。該イオンボンバードはイオンスパッタ
法とも呼ばれ、第6図にその概略図を示すように真空炉
a内に基体すおよび電極Cを配設し、該炉内に不活性ガ
スd(一般にArが使用される)を送給すると共に、前
記基体すと電極Cの間に電圧を掛けることによってグロ
ー放電させ、前記不活性ガスdをイオン化させる。該イ
オン化された不活性ガスの原子は帯電している甚板すの
表面に衝突し、該表面に吸着している分子(02やN2
あるいはN20)をはじき飛ばしく解離し)基体表面を
清浄するものである。また、このイオンボンバードは表
面の汚れの種類にかかわらず清浄可能なものである。こ
うしたイオンスパッタ法による金属の表面清浄化法とし
て1例えば特開昭60−9888号公報に示されるもの
等がある。
Ion bombardment is one of the cleaning methods. This ion bombardment is also called ion sputtering method, and as shown in the schematic diagram in FIG. At the same time, a voltage is applied between the substrate and the electrode C to cause a glow discharge and ionize the inert gas d. The atoms of the ionized inert gas collide with the surface of the charged plate, and the molecules (02 and N2) adsorbed on the surface are
Alternatively, it dissociates by repelling N20) and cleans the substrate surface. Moreover, this ion bombardment can clean any kind of dirt on the surface. An example of a metal surface cleaning method using ion sputtering is disclosed in Japanese Patent Application Laid-Open No. 60-9888.

(発明が解決しようとする課題) しかし上述の如き従来のイオンボンバードによる清浄方
法にあっては、基体表面に付着した吸着ガス分子を取除
くことは可能であっても、基体表面の酸化および窒化さ
れた部分はその酸素および窒素の結合力が高いために不
活性ガスの原子では。
(Problem to be Solved by the Invention) However, in the conventional cleaning method using ion bombardment as described above, although it is possible to remove adsorbed gas molecules attached to the substrate surface, it is possible to remove oxidation and nitridation of the substrate surface. The part that was formed is an inert gas atom due to its high bonding strength of oxygen and nitrogen.

解離させることが難しく、その効果を上げるために長時
間に渡って清浄させると、酸化および窒化されていない
基体表面において基体原子(FeやCr)が解離されて
該表面に荒れが発生し、コーティングの密着力が低下す
ることもある。
It is difficult to dissociate, and if cleaning is carried out for a long time to increase the effectiveness, substrate atoms (Fe and Cr) will be dissociated on the substrate surface that has not been oxidized and nitrided, and the surface will become rough, causing the coating to deteriorate. The adhesion strength may be reduced.

上記の点を考慮し1本発明は基体の表面を荒らすことな
く該表面の清浄、特に基体表面の酸化および窒化された
部分をも清浄し、ひいてはコーティングの密着力を向上
させることを目的とするものである。
In consideration of the above points, the present invention aims to clean the surface of the substrate without roughening the surface, and in particular to clean the oxidized and nitrided portions of the substrate surface, thereby improving the adhesion of the coating. It is something.

(課題を解決するための手段) 上記の点に鑑み本発明は金属基体を不活性ガスおよび水
素が導入可能な真空炉内に載置し、該金属基体を電極と
して上記不活性ガスをイオン化し、その不活性ガスイオ
ンで上記金属基体表面上の吸着ガス分子を解離させ、そ
の後、上記金属基体を電極として上記水素をイオン化し
、その水素イオンで上記金属基体表面上の酸化物または
窒化物のうち少なくともどちらか一方を還元させること
を特徴とする金属の清浄化方法に係るものである。
(Means for Solving the Problems) In view of the above points, the present invention places a metal substrate in a vacuum furnace into which an inert gas and hydrogen can be introduced, and uses the metal substrate as an electrode to ionize the inert gas. , the adsorbed gas molecules on the surface of the metal substrate are dissociated with the inert gas ions, and then the hydrogen is ionized using the metal substrate as an electrode, and the hydrogen ions are used to ionize the oxide or nitride on the surface of the metal substrate. The present invention relates to a metal cleaning method characterized by reducing at least one of the metals.

(作用) 上記端成による本発明の作用は、不活性ガスイオンで金
属基体表面上の吸着ガス分子を解離させた後、水素イオ
ンで前記金属基体表面上の酸化物および窒化物を還元す
ることにより基体表面を清浄し、コーティングの密着力
が向上されるものである。
(Function) The function of the present invention based on the above-mentioned structure is to dissociate the adsorbed gas molecules on the surface of the metal substrate with inert gas ions, and then reduce the oxides and nitrides on the surface of the metal substrate with hydrogen ions. This cleans the substrate surface and improves the adhesion of the coating.

(実施例) 次に本発明における一実施例を図面に沿って説明する。(Example) Next, one embodiment of the present invention will be described with reference to the drawings.

先ず、本発明に使用される装置に関し第1図を用いて説
明する。該装置1は基体2の表面を清浄すると共にTi
N (窒化チタン)をコーティングするための装置であ
って、真空炉3内に具備された基体2、シャッタ4、チ
タンインゴット5、電子ビームガン6と前記真空炉3に
接続された真空排気装置7を主要部として成っている。
First, the apparatus used in the present invention will be explained with reference to FIG. The device 1 cleans the surface of the substrate 2 and also cleans the surface of the substrate 2.
This is a device for coating N (titanium nitride), which includes a substrate 2, a shutter 4, a titanium ingot 5, an electron beam gun 6, and a vacuum evacuation device 7 connected to the vacuum furnace 3, which are provided in a vacuum furnace 3. It consists of the main part.

真空炉3は一般的な陰極スパッタリングなるメツキ方法
に使用される周知の炉であって、その上壁にはArガス
およびN2の混合気体が送給される第1送給路1aが、
また側壁にはN2が送給される第2送給路1bが各々接
続されている。一方。
The vacuum furnace 3 is a well-known furnace used in a general plating method called cathode sputtering, and the upper wall thereof has a first feed path 1a through which a mixed gas of Ar gas and N2 is fed.
Further, second feed paths 1b through which N2 is fed are connected to the side walls. on the other hand.

該真空炉3の底部には後述する真空排気装置7が装備さ
れて真空炉3内の気体は排出自在とされている。
The bottom of the vacuum furnace 3 is equipped with a vacuum evacuation device 7, which will be described later, so that the gas inside the vacuum furnace 3 can be freely exhausted.

基体2は前記真空炉3の内壁に固着された基体ホルダ2
aに取付けられた鋼板であって、前記基体ホルダ2aが
1i源8に接続されていることにより、イオンボンバー
ド時およびコーティング加工時には負に帯電されるもの
となる。
The substrate 2 is a substrate holder 2 fixed to the inner wall of the vacuum furnace 3.
Since the substrate holder 2a is connected to the 1i source 8, it becomes negatively charged during ion bombardment and coating processing.

シャッタ4はイオンボンバード時に解離された吸着ガス
分子が直接チタンインボッ1−5へ飛散することがない
よう両者を遮断しているものであって、その開閉は自在
となっている。
The shutter 4 blocks the adsorbed gas molecules dissociated during ion bombardment from directly scattering to the titanium ingots 1-5, and can be opened and closed freely.

チタンインゴット5は前記真空炉3内の底部附近に設置
された水冷ルツボ5a内に載置されると共に、電子ビー
ムガン6から発せられる電子ビームによって溶融、蒸発
されて窒素と化合し、その後、基体2の表面にコーティ
ングされる部材である。
The titanium ingot 5 is placed in a water-cooled crucible 5a installed near the bottom of the vacuum furnace 3, and is melted and evaporated by the electron beam emitted from the electron beam gun 6 to combine with nitrogen. It is a member that is coated on the surface of.

次に本発明の清浄化方法の原理を第2図および第3図(
模式図)に沿って説明する。
Next, the principle of the cleaning method of the present invention is illustrated in Figures 2 and 3 (
(Schematic diagram)

先ず、基体表面に吸着している吸着ガス分子を解離させ
る際には第2図に示すように従来と同様にArガスをグ
ロー放電によってイオン化し、該Arガスイオンが基体
2の表面へ衝突することにより前記吸着ガス分子(Oz
=NzおよびN20)を基体表面から解離させる。この
時のグロー放電を発生させるための電圧はArの有効な
電離確率を得るべく設定(約400V)してある。その
後、第3図に示すようにN2を上記と同様にグロー放電
によってイオン化させ、その水素イオンにより基体表面
の酸化部分あるいは窒化部分を還元して純粋な基体材料
(FeやCr等)に戻して清浄する。この時の°グロー
放電を発生させるための電圧はN2の有効な電離確率を
得るべきものとなっており(約60V)、前述したAr
のイオン化時とは異なっている。
First, when dissociating adsorbed gas molecules adsorbed on the substrate surface, Ar gas is ionized by glow discharge as in the conventional method, and the Ar gas ions collide with the surface of the substrate 2, as shown in FIG. By this, the adsorbed gas molecules (Oz
=Nz and N20) are dissociated from the substrate surface. The voltage for generating glow discharge at this time is set (approximately 400 V) to obtain an effective ionization probability of Ar. Thereafter, as shown in Figure 3, N2 is ionized by glow discharge in the same manner as above, and the hydrogen ions reduce the oxidized or nitrided parts on the substrate surface to return it to pure substrate material (Fe, Cr, etc.). Clean. At this time, the voltage to generate the glow discharge is such that an effective probability of ionization of N2 can be obtained (approximately 60 V), and the voltage used to generate the glow discharge is the same as the one mentioned above (approximately 60 V).
It is different from the time of ionization.

次に、前述した装置1を用いて基体表面の清浄およびコ
ーティング工程を第4図のヒートサイクルに沿って説明
する。
Next, the process of cleaning and coating the substrate surface using the above-mentioned apparatus 1 will be explained along the heat cycle shown in FIG. 4.

先ず、第1図に示すように装置1の基体ホルダ2aへ基
体2を、水冷ルツボ5aにチタンインボッl−5を各々
配置し、真空排気装置7によって真空炉3内の空気を排
気して内圧を5 X I 0−5torrにする(第4
図排気工程)。その後、真空炉3を加熱しく520℃で
2時間)、基体2の表面に付着している切削油等を蒸発
、脱ガスする(第4図脱ガス工程)。続いてイオンボン
バード工程に入るが、その前に真空炉3内をグロー放電
を得易い真空度(本例では1 torr)に設定すると
共に、第1送給路1aよりArとN2(体積比率1%)
の混合気体を送給する。その後、前述した原理に述べた
ように400Vの加電圧によるグロー放電によってAr
をイオン化し該Arガスイオンで吸着ガス分子(Oz、
Nz等)を基体表面から解離させる(5oO℃で5分間
)。該解離された吸着ガス分子は真空炉内を浮遊してい
るため、真空排気装置7を作動させて排気する(その時
、内圧はIXl 0−3torr)。また、本例では吸
着ガス分子の解離をより確実にするべく該工程を温度繰
り返すものである。
First, as shown in FIG. 1, the substrate 2 is placed in the substrate holder 2a of the apparatus 1, and the titanium ingot 1-5 is placed in the water-cooled crucible 5a, and the air inside the vacuum furnace 3 is evacuated by the vacuum evacuation device 7 to reduce the internal pressure. 5 X I Set to 0-5 torr (4th
Fig. Exhaust process). Thereafter, the vacuum furnace 3 is heated to 520° C. for 2 hours) to evaporate and degas the cutting oil and the like adhering to the surface of the substrate 2 (FIG. 4 degassing step). Next, the ion bombardment process begins, but before that, the inside of the vacuum furnace 3 is set to a degree of vacuum (1 torr in this example) that makes it easy to obtain a glow discharge, and Ar and N2 (volume ratio 1 %)
A mixture of gases is supplied. Then, as described in the principle above, Ar
is ionized and the Ar gas ions absorb adsorbed gas molecules (Oz,
Nz, etc.) are dissociated from the substrate surface (5 minutes at 500°C). Since the dissociated adsorbed gas molecules are floating in the vacuum furnace, the vacuum evacuation device 7 is operated to exhaust them (at that time, the internal pressure is IXl 0-3 torr). Furthermore, in this example, this step is repeated at different temperatures in order to more reliably dissociate the adsorbed gas molecules.

次に、真空炉内の圧力を再び1 torrに戻し、加電
圧60Vで水素をイオン化させ、該水素イオンによって
基体表面の酸化部分および窒化部分を還元する。この時
に還元された酸素および窒素は水素イオンと反応して水
蒸気(N20) 、アンモニア(NH3)となって真空
炉内を浮遊し、再び基体材料と結合することはないもの
である。そして前記と同様に真空排気装置7を作動させ
前記水蒸気やアンモニアを排気し、これで基体表面は清
浄され、活性化が促されたものとなる。
Next, the pressure in the vacuum furnace is returned to 1 torr, hydrogen is ionized with an applied voltage of 60 V, and the oxidized portions and nitrided portions on the surface of the substrate are reduced by the hydrogen ions. The oxygen and nitrogen reduced at this time react with hydrogen ions to become water vapor (N20) and ammonia (NH3), which float in the vacuum furnace and do not combine with the base material again. Then, in the same manner as described above, the vacuum evacuation device 7 is operated to exhaust the water vapor and ammonia, thereby cleaning the surface of the substrate and promoting activation.

次に、該清浄された基体表面に窒化チタンをコーティン
グする際は、先ず真空炉3の内圧を9×10”” to
rrとして温度を500℃に保ったまま第2送給路1b
より窒素(N2)を送給すると共に、電子ビームガン6
より発生される電子ビームによりチタンインゴット5を
溶融、蒸発させて窒素と化学反応させ窒化チタン(Ti
N)とし、帯電した基体側へ飛散させて基体表面をコー
ティングする(第4図TiNコーティング工程)。そし
て最後に真空度を下げて常圧とすると共に、冷却して基
体を取出し、作業を終了する(第4図冷却工程)。
Next, when coating the cleaned substrate surface with titanium nitride, first the internal pressure of the vacuum furnace 3 is reduced to 9×10"" to
rr while maintaining the temperature at 500°C.
While supplying more nitrogen (N2), the electron beam gun 6
The titanium ingot 5 is melted and evaporated by the electron beam generated by the titanium ingot 5, and is chemically reacted with nitrogen to form titanium nitride (Ti).
TiN) is scattered onto the charged substrate side to coat the substrate surface (Fig. 4, TiN coating step). Finally, the degree of vacuum is lowered to normal pressure, and the substrate is cooled and taken out to complete the work (cooling step in Figure 4).

く実験〉 次に本発明によって得られたTiNコーティングと従来
のArのみによる清浄後にTiNコーティングしたもの
との密着性テストの比較実験結果について述べる(第5
図)。尚、本実験に用いる本発明によって得られた試験
片は、従来のものと比較するために一定加電圧によって
清浄したものとする。従って、前述した実施例に示した
ように適宜加電圧を変換させた場合には、本実験で得ら
れた結果より更に優れたものとなっている(参考のため
に第5図の破線で示す)6 本密着性テストとしては一般的なスクラッチ試験を採用
し、頂角が90’のダイヤモンド圧子でコーティング表
面を以下の表に示す条件で引掻き。
Next, we will discuss the results of a comparative experiment of adhesion test between the TiN coating obtained by the present invention and the conventional TiN coating after cleaning with Ar alone.
figure). Note that the test piece obtained according to the present invention used in this experiment was cleaned by applying a constant applied voltage for comparison with a conventional test piece. Therefore, when the applied voltage is changed appropriately as shown in the example described above, the results are even better than those obtained in this experiment (for reference, the results are shown by the broken line in Figure 5). )6 For this adhesion test, a general scratch test was adopted, and the coating surface was scratched under the conditions shown in the table below using a diamond indenter with an apex angle of 90'.

コーティング層が剥離した荷重を臨界荷重として測定し
たものである。
The load at which the coating layer peeled off was measured as the critical load.

表 第5図の如く、本発明による清浄後のコーティングにあ
っては、如何なるボンバード出力にあっても、従来の清
浄のものに比べて密着力(臨界荷重)が25%程度向上
されたものとなっている。
As shown in Table 5, with the coating after cleaning according to the present invention, the adhesion force (critical load) is improved by about 25% compared to the conventional cleaning coating, regardless of the bombardment output. It has become.

尚、本例にあってはイオンボンバード時に第1送給路よ
りArとH2の混合気体を送給したが、本発明はこれに
限らず、真空炉にAr送給路とH2送給路を設は適宜、
送給気体を切換え可能な構成とすることも可能である。
In this example, a mixed gas of Ar and H2 was fed from the first feeding path during ion bombardment, but the present invention is not limited to this, and the vacuum furnace may be provided with an Ar feeding path and a H2 feeding path. The settings are as appropriate.
It is also possible to have a configuration in which the gas to be supplied can be switched.

(発明の効果) 上述の如く本発明によれば、不活性ガスイオンで金属基
体表面上の吸着ガス分子を解離させた後、水素イオンで
前記金属基体表面上の酸化物および窒化物を還元するこ
とにより基体表面の活性化が促され、該基体表面にコー
ティングされるコーティング層は、その密着力が向上さ
れるという効果を有する。
(Effects of the Invention) As described above, according to the present invention, after the adsorbed gas molecules on the surface of a metal substrate are dissociated with inert gas ions, the oxides and nitrides on the surface of the metal substrate are reduced with hydrogen ions. This promotes activation of the substrate surface and has the effect that the adhesion of the coating layer coated on the substrate surface is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第5図は本発明の実施例を示し、第1図は本
発明に用いられる装置の縦断面図、第2図および第3図
は清浄化方法の原理を示す模式図、第4図は本発明にお
ける工程を示すヒートサイクルを示す図、第5図は密着
性テストの結果を示す図であり、第6図は従来のイオン
ボンバードを示す模式図である。 1・・・・・・装置、2・・・・・・基体、3・・・・
・・真空炉。
1 to 5 show embodiments of the present invention, FIG. 1 is a longitudinal sectional view of the apparatus used in the present invention, FIGS. 2 and 3 are schematic diagrams showing the principle of the cleaning method, and FIG. FIG. 4 is a diagram showing a heat cycle showing the steps in the present invention, FIG. 5 is a diagram showing the results of an adhesion test, and FIG. 6 is a schematic diagram showing a conventional ion bombardment. 1...device, 2...substrate, 3...
...Vacuum furnace.

Claims (1)

【特許請求の範囲】[Claims] (1)金属基体を不活性ガスおよび水素が導入可能な真
空炉内に載置し、該金属基体を電極として上記不活性ガ
スをイオン化し、その不活性ガスイオンで上記金属基体
表面上の吸着ガス分子を解離させ、その後、上記金属基
体を電極として上記水素をイオン化し、その水素イオン
で上記金属基体表面上の酸化物または窒化物のうち少な
くともどちらか一方を還元させることを特徴とする金属
の清浄化方法。
(1) Place the metal substrate in a vacuum furnace into which an inert gas and hydrogen can be introduced, use the metal substrate as an electrode to ionize the inert gas, and use the inert gas ions to adsorb onto the surface of the metal substrate. A metal characterized by dissociating gas molecules, then ionizing the hydrogen using the metal substrate as an electrode, and reducing at least one of oxides and nitrides on the surface of the metal substrate with the hydrogen ions. cleaning method.
JP3009788A 1988-02-12 1988-02-12 Method for cleaning metal Pending JPH01205085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3009788A JPH01205085A (en) 1988-02-12 1988-02-12 Method for cleaning metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3009788A JPH01205085A (en) 1988-02-12 1988-02-12 Method for cleaning metal

Publications (1)

Publication Number Publication Date
JPH01205085A true JPH01205085A (en) 1989-08-17

Family

ID=12294275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3009788A Pending JPH01205085A (en) 1988-02-12 1988-02-12 Method for cleaning metal

Country Status (1)

Country Link
JP (1) JPH01205085A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995018880A1 (en) * 1994-01-11 1995-07-13 Tadahiro Ohmi Method and apparatus for solid surface treatment, and apparatus for forming passivation film, and process apparatus
WO1997019204A1 (en) * 1995-11-07 1997-05-29 Seiko Epson Corporation Method and apparatus for surface treatment
KR20040036977A (en) * 2002-10-25 2004-05-04 한국수력원자력 주식회사 electrochemical decontamination system for the removal of surface contamination in radioactive metal waste and method thereof
JP2004323977A (en) * 2003-04-28 2004-11-18 Air Products & Chemicals Inc Method for removing metal oxide from substrate surface to be treated
EP1491643A3 (en) * 2003-06-25 2005-11-23 United Technologies Corporation Heat treatment for workpieces

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995018880A1 (en) * 1994-01-11 1995-07-13 Tadahiro Ohmi Method and apparatus for solid surface treatment, and apparatus for forming passivation film, and process apparatus
WO1997019204A1 (en) * 1995-11-07 1997-05-29 Seiko Epson Corporation Method and apparatus for surface treatment
KR20040036977A (en) * 2002-10-25 2004-05-04 한국수력원자력 주식회사 electrochemical decontamination system for the removal of surface contamination in radioactive metal waste and method thereof
JP2004323977A (en) * 2003-04-28 2004-11-18 Air Products & Chemicals Inc Method for removing metal oxide from substrate surface to be treated
EP1491643A3 (en) * 2003-06-25 2005-11-23 United Technologies Corporation Heat treatment for workpieces

Similar Documents

Publication Publication Date Title
US7364798B2 (en) Internal member for plasma-treating vessel and method of producing the same
KR0132375B1 (en) Thin film forming method
EP0536664B1 (en) A method for forming a thin film
EP0158271B1 (en) Process for ion nitriding aluminum or aluminum alloys
JP3228644B2 (en) Material for vacuum processing apparatus and method for producing the same
EP0878823A3 (en) Plasma-enhanced chemical vapor deposition apparatus and method M
JPH05106020A (en) Shield preparation for reducing fine particle in physical vapor deposition room
US4909862A (en) Process for ion nitriding aluminum material
JPH01205085A (en) Method for cleaning metal
JPS62158859A (en) Pretreatment
JP2002053944A (en) Method for nitriding substrate containing aluminum metal
US6558806B2 (en) Heat-resistant structural body, halogen-based corrosive gas-resistant material and halogen-based corrosive gas-resistant structural body
JPH02156066A (en) Method for cleaning base material
JPH07216543A (en) Forming method of thin film
JPH0524959A (en) Manufacture of ceramic circuit board
JP3471507B2 (en) Metal surface treatment
JPS59153880A (en) Method for carrying out continuous vapor deposition on beltlike metallic body
JPH0723531B2 (en) Surface treatment method for aluminum material
JPS60100661A (en) Vapor deposition method by sputtering
JP2002047553A (en) Method and system for nitriding substrate containing aluminum metal
JPH08259900A (en) Adhesion of metallic material
JPS63307254A (en) Apparatus for forming thin oxide film
TW466634B (en) Method for rapidly preventing particle contamination in pre-clean chamber
JPH04111982A (en) Diffusion joining method
JPH05247634A (en) Sputtering device