JPS5999758A - Manufacture of complementary mis semiconductor device - Google Patents

Manufacture of complementary mis semiconductor device

Info

Publication number
JPS5999758A
JPS5999758A JP57209054A JP20905482A JPS5999758A JP S5999758 A JPS5999758 A JP S5999758A JP 57209054 A JP57209054 A JP 57209054A JP 20905482 A JP20905482 A JP 20905482A JP S5999758 A JPS5999758 A JP S5999758A
Authority
JP
Japan
Prior art keywords
film
oxide film
type
ion
nitride film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57209054A
Other languages
Japanese (ja)
Inventor
Takao Adachi
足立 隆夫
Takeo Kondo
近藤 健夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57209054A priority Critical patent/JPS5999758A/en
Publication of JPS5999758A publication Critical patent/JPS5999758A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To contrive improvement in the yield rate of production as well as to make uniform the electric characteristics of the titled semiconductor device by a method wherein a photolithographic process for formation of channel stopper is dispensed with. CONSTITUTION:An Si3N4 mask 3' is provided on the thermal oxide film 2 located on an N type Si substrate, and an SiO2 film 4 is deposited. A window is selectively provided on films 3 and 4, a B-ion is implanted, and a P-well 5 is formed by performing a heat treatment at approximately 1,200 deg.C. Then, a B-ion is implanted using the mask 3 located on the well 5, subsequently the SiO2 film 4' and the thermal oxide film 2 are removed by performing an etching, and a P-ion is implanted thereon. Then, a field oxide film 6 is formed by performing a thermal oxidation and, at the same time, P type and N type channel stoppers 7 and 8 are formed by activating the ion-implanted layer. Subsequently, the film 2 and 3' are removed, and a CMOS device is completed as described. According to this constitution, one photolithographic process can be reduced when compared with the conventional method, the manhours and the yield rate of the semiconductor device can be improved, and the positional relations between the well and the channel stopper can also be maintained constant, thereby enabling to make uniform the electric characteristics of the titled device.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は相補型MIS半導体装置の製造方法に関□する
。   □ 〔発−□の技術的背景〕  : 相補型MIS半導体装置においてはフィールド酸化膜を
ダート絶縁膜とする寄生MO8)ランノスタが形成され
る。したがって、こうしたを生MOSトランジスタのし
きい値電圧を所定の値にするだめに、フィールド酸化膜
下に所定の不純物濃□:度を有する不純□物領域(以下
、チャネルストツ・母領域と称する)・全形成する必要
がある。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a complementary MIS semiconductor device. □ [Technical background of □]: In a complementary MIS semiconductor device, a parasitic MO8) runnostar is formed using a field oxide film as a dirt insulating film. Therefore, in order to set the threshold voltage of such a raw MOS transistor to a predetermined value, an impurity region (hereinafter referred to as a channel concentration/mother region) having a predetermined impurity concentration □: is required under the field oxide film.・Needs to be completely formed.

・ととろで、従来、相補型MiS半導体装置は例えば以
下のよう1・な方法によ′9製造されている。
・In the past, complementary MiS semiconductor devices have been manufactured, for example, by the following method.

まず、例えばN型シリコン基板表面に熱酸化膜を形成し
た後、P型つェル領域形成予定部上以外を覆うようにホ
トレノストパターンを形成する。次に、このホトレノス
トzfターン全マスクとしてP型不純物全イオン注入し
た後、ウェル領域形成予定部上の前記熱酸化膜全エツチ
ング除去する。つづいて、前記ホトレジストパターンを
除去した後、酸化雰囲気中で熱処理し、前記イオン注入
層全活性化してP型つェル領域?形成し、更に熱酸化膜
を全面剥離する。つづいて、全面にバッファ酸化膜及び
シリコン窒化膜を順次形成する。つづいて、フィールド
酸化膜形成予定部上に対応する前記シリコン窒化膜を選
択的にエツチング除去してシリコン窒化膜パターンを形
成する。つづいて、前記P型ウェル領域を覆うようにホ
トレジストパターンを形成し、該ホトレノス) A?パ
ターンびウェル領域以外の基板上のシリコン窒化膜パタ
ーンをマスクとしてN型不純物をイオン注入する。つづ
いて、前記ホトレジストパターンを除去した後、ウェル
領域以外の基板を覆9ようにホトレジストパターン全形
成し、該ホトレゾスト・やターン及びウェル領域上のシ
リコン窒化膜・ぐターン全マスクとしてP型不純物全イ
オン注入する。つづいて、前記ホトレジストパターンを
除去した後、前記シリコン窒化膜パターンを耐酸化性マ
スクとして熱酸化を行ない、フィールド酸化膜を形成す
るとともに前記イオン注入層を活性化8ぞて該フィール
ド酸化膜下のP型ウェル領域内にP−型チャネルストッ
パ領域金、ウェル領域以外の基板内にN−型チャネルス
トッパ領域を形成する。つづいて、前記シリコン窒化膜
パターン及びバッファ酸化膜をエツチング除去した後、
通常の工程に従ってダート電極、ケ゛−ト絶縁膜、ソー
ス、ドレイン領域及び配線を形成して相補型MIS半導
体装置全製造する。
First, for example, a thermal oxide film is formed on the surface of an N-type silicon substrate, and then a photorenost pattern is formed so as to cover the area other than the portion where the P-type well region is to be formed. Next, after all ions of P-type impurities are implanted into this entire photorenost ZF turn mask, the entire thermal oxide film on the portion where the well region is to be formed is removed by etching. Subsequently, after removing the photoresist pattern, heat treatment is performed in an oxidizing atmosphere to fully activate the ion implantation layer and form a P-type well region. The thermal oxide film is then removed from the entire surface. Subsequently, a buffer oxide film and a silicon nitride film are sequentially formed over the entire surface. Subsequently, the silicon nitride film corresponding to the area where the field oxide film is to be formed is selectively removed by etching to form a silicon nitride film pattern. Subsequently, a photoresist pattern is formed to cover the P-type well region, and the photoresist pattern is formed to cover the P-type well region. Using the silicon nitride film pattern on the substrate other than the pattern and well region as a mask, N-type impurity ions are implanted. Subsequently, after removing the photoresist pattern, a photoresist pattern is formed on the entire substrate other than the well region in a manner similar to that shown in FIG. Implant ions. Subsequently, after removing the photoresist pattern, thermal oxidation is performed using the silicon nitride film pattern as an oxidation-resistant mask to form a field oxide film and activate the ion implantation layer 8. A P-type channel stopper region is formed in the P-type well region, and an N-type channel stopper region is formed in the substrate other than the well region. Subsequently, after removing the silicon nitride film pattern and buffer oxide film by etching,
The entire complementary MIS semiconductor device is manufactured by forming dirt electrodes, a gate insulating film, source and drain regions, and wiring according to the usual process.

〔背景技術の問題点〕[Problems with background technology]

上述した従来の製造方法においては、P−型チャネルス
トッパ領域及びN−型チャネルストッパ領域を形成する
ために、夫々写真−′A1」法にょシホトレノスト・ぐ
ターン?形成してイオン注入を行なっている。このため
ホトレノストパターンの欠陥の影響全党は易く、歩留9
低下につながるうえ、製造費が高騰する。また、マスク
合わせずれによって各素子によって夫々の領域の位置関
係が一定せず、電気的特性がばらつくという欠点がある
。更に、上述した方法においてはP型ウェル領域全形成
する際の酸化雰囲気中での熱処理によって、P型ウェル
領域表面の与が酸化される。このため、熱酸化膜を全面
剥離すると、P型ウェル領域表面とそれ以外の基板衣面
に高低差が生じ、平坦性がよくないという欠点がある。
In the above-mentioned conventional manufacturing method, in order to form the P-type channel stopper region and the N-type channel stopper region, the photoresist method is used to form the P-type channel stopper region and the N-type channel stopper region, respectively. ion implantation is performed. Therefore, the overall effect of defects in the photorenost pattern is easy, and the yield is 9.
In addition to this, manufacturing costs will rise. Furthermore, due to mask misalignment, the positional relationship between regions of each element is not constant, resulting in variations in electrical characteristics. Further, in the above-described method, the surface of the P-type well region is oxidized by heat treatment in an oxidizing atmosphere when the entire P-type well region is formed. For this reason, when the thermal oxide film is completely removed, there is a difference in height between the surface of the P-type well region and the rest of the substrate surface, resulting in poor flatness.

〔発明の目的〕[Purpose of the invention]

本発明は上記欠点を解消するためになされたものであり
、チャネルストッパ領域を形成するための写真蝕刻工程
を減らすことにより、歩留9の向上及びコストの低減を
図るとともに、各素子の電気的特性全均一し、史に表面
の平坦性を向上し得る相補型MIS半導体装置の製造方
法を提供しようとするものである。
The present invention has been made to eliminate the above-mentioned drawbacks, and by reducing the photolithography process for forming the channel stopper region, it is possible to improve the yield 9 and reduce the cost, as well as to improve the electrical performance of each element. It is an object of the present invention to provide a method for manufacturing a complementary MIS semiconductor device that has uniform characteristics and can improve surface flatness.

〔発明の概要〕[Summary of the invention]

本発明の相補型MIS半導体装置の製造方法は、まず、
第14電型の半導体基板表面に熱酸化膜及び窒化膜全順
次形成し、フィールド酸化膜形成予定部上の前記窒化膜
を選択的にエツチング除去して窒化膜パターンを形成し
た後、全面に該窒化膜パターンに対して選択エツチング
注七有する被膜、例えばCVD −5i02膜あるいは
多結晶シリコン膜全堆積する。仄に、第2導電型のウェ
ル領域形成予定部上の前記被膜を選択的にエツチング除
去して被膜パターンを形成した後1、第2導電型の不純
物をイオン注入し、熱処理して第2導電型のウェル領域
を形成する。つづいて、前記被膜パターンと前6己ウエ
ル領域上の窒化膜パターン全マスクとして第2導電型の
不純物をイオン注入し、少なくとも前記被膜ノぐターン
をエツチング除去した後、前記窒化膜パターンをマスク
として第1導電型の不純drmiをイオン注入し、更に
前記窒化膜パターンを耐酸化性マスクとして熱酸化を行
ない、フィールド酸化膜及びその下に第1及び第2導電
型のチャネルストッ・ぐ領域を形成するものでめるb 上述した方法によれば、チャネルストッノヤ領域を形成
するための写真蝕刻工程は被膜パターンを形成する際の
1回だけでろ9、従来の方法よシも写真蝕刻工程を1回
減らすことができ、歩留りの向上及びコストの低減全図
ることができる。また、製造される相補型MI8半導体
装置において、第2導電型ウエル領域と第1及び第2導
電型のチャネルストッ・ぐ領域との位置関係が常に一定
となるため電気的特性を均一にすることができる。更に
、第2導電型ウエル領域形成・時に表面が窒化膜ノセタ
ーンで覆われているので酸化石れる部分が少なく、最終
的に表面の高低差がなくなり、平坦性がよくなる。
The method for manufacturing a complementary MIS semiconductor device of the present invention first includes:
A thermal oxide film and a nitride film are all sequentially formed on the surface of a 14th electrode type semiconductor substrate, and the nitride film on the area where the field oxide film is to be formed is selectively etched away to form a nitride film pattern. A film, such as a CVD-5i02 film or a polycrystalline silicon film, is fully deposited by selectively etching the nitride film pattern. After selectively etching and removing the film on the part where the well region of the second conductivity type is to be formed to form a film pattern, 1, impurities of the second conductivity type are ion-implanted, and heat treatment is performed to form the second conductivity type. Form the well region of the mold. Subsequently, impurities of the second conductivity type are ion-implanted as a mask for the entire nitride film pattern on the film pattern and the first six well regions, and after etching and removing at least the nozzles of the film, the nitride film pattern is used as a mask. Impurity drmi of the first conductivity type is ion-implanted, and thermal oxidation is performed using the nitride film pattern as an oxidation-resistant mask to form a field oxide film and channel stocking regions of the first and second conductivity types therebelow. According to the method described above, the photo-etching process for forming the channel region is performed only once when forming the coating pattern9, whereas the conventional method also requires the photo-etching process once. It is possible to reduce the number of times, thereby improving yield and reducing costs. In addition, in the complementary MI8 semiconductor device to be manufactured, the positional relationship between the second conductivity type well region and the first and second conductivity type channel storage regions is always constant, so that the electrical characteristics can be made uniform. I can do it. Furthermore, since the surface is covered with the nitride film Nosetan during the formation of the second conductivity type well region, there are few oxidized stones, and finally the surface height difference is eliminated, resulting in improved flatness.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第1図〜第6図全参照して説明
する。
Embodiments of the present invention will be described below with reference to all of FIGS. 1 to 6.

まず、N型シリコン基板1表面に厚さ約1000Xの熱
酸化膜2及び厚さ約2000Xのシリコン窒化膜3を順
次形成する(第1図図示)。
First, a thermal oxide film 2 with a thickness of about 1000× and a silicon nitride film 3 with a thickness of about 2000× are sequentially formed on the surface of an N-type silicon substrate 1 (as shown in FIG. 1).

仄に、フィールド酸化膜形成予定部上の前記シリコン窒
化膜3を選択的にエツチング除去してシリコン窒化膜パ
ターン3′を形成した後、全面にCVD −5i02膜
4を堆積しfc(第2図図示)。
After selectively etching and removing the silicon nitride film 3 on the area where the field oxide film is to be formed to form a silicon nitride film pattern 3', a CVD-5i02 film 4 is deposited on the entire surface. (Illustrated).

次いで、図示しないホトレノストノぞターンをマスクと
してP型つェル領域形成予定部上の前記CVD −Si
O2膜4及びその下の前、記熱酸化膜2を選択的にエツ
チング除去してCVD −5j02膜ツクターン4′ヲ
形1aシた後、@記ホトレノストパターンをマスクとし
てBを刀ロ速エネルギー1. O0keV 、  ドー
ズ量4.0’、、X: 1.1012cm”の条件でイ
オン注入した。つづいて、、前記ホトレノストパターン
全除去した後、□約1200℃で熱酸化処理して深を4
〜8μmのP型つェル憤域5を形成した。
Next, using the photorenost nozzle (not shown) as a mask, the CVD-Si is removed on the portion where the P-type well region is to be formed.
After selectively etching and removing the O2 film 4 and the thermal oxide film 2 below it and forming the CVD-5j02 film 4' shape 1a, B was quickly etched using the photorenost pattern described above as a mask. Energy 1. Ion implantation was carried out under the conditions of O0keV, dose amount 4.0', X: 1.1012cm''.Subsequently, after completely removing the photorenost pattern, thermal oxidation treatment was performed at approximately 1200°C to increase the depth of 4.
A P-type well region 5 of ~8 μm was formed.

この際・、P型ウェル領域5は横力・回へもかなシ長く
拡散して形成される(第3図図示)。
At this time, the P-type well region 5 is formed by being diffused into a long length due to the lateral force and rotation (as shown in FIG. 3).

次イテ、前記CVD−’5to2膜ハターン4’及びP
型ウェル領域5上のシリコン窒化膜パターン3′をマス
クとしてBを加速工坏ルギー40 keV sドース量
8.0 X 10  t:m  の条件でイオン注入層
次いで、前記CVD −5i02膜ノぐターン4′及び
前記シリコン窒化膜・ぐターン3′に覆われていない熱
竺化膜2をエツチング除去した後□、シリコン窒化−・
リーン3・をマスクとしてP+を顧速エネルギ、−40
keV、ドース量2′x1012ffi−2ノ条件でイ
オン注入した(第5図図示)。
Next, the CVD-'5to2 film pattern 4' and P
Using the silicon nitride film pattern 3' on the mold well region 5 as a mask, the ion-implanted layer was then deposited on the CVD-5i02 film under the conditions of an acceleration energy of 40 keV s and a dose of 8.0 x 10 t:m. 4' and the silicon nitride film 2 not covered with the silicon nitride film/gutter 3' are removed by etching.
With Lean 3 as a mask, P+ is the speed energy, -40
Ion implantation was carried out under the conditions of keV and a dose of 2'x1012ffi-2 (as shown in FIG. 5).

次いで、前記シリコン窒化膜パターン3′ヲ耐酸化性マ
スクとして熱酸化を行ない、厚嘔約0.o1□07(−
#l’ウィi膜6□うユい。。わと同時に前記ボロンイ
オン注入層及びリンイオン注入層を活性化させてフィー
ルド酸化膜6下にP−型チャネルストッパ領域7及びN
−21チヤネルストツパ領域8全形成した(第6図図示
)。
Next, the silicon nitride film pattern 3' is thermally oxidized as an oxidation-resistant mask to reduce the thickness to about 0. o1□07(-
#l'wii film 6 □ Uiyu. . At the same time, the boron ion implantation layer and the phosphorus ion implantation layer are activated to form a P-type channel stopper region 7 and an N-type channel stopper region 7 under the field oxide film 6.
-21 channel stopper region 8 was completely formed (as shown in FIG. 6).

この後、前記シリコン窒化膜・母ターン3′及びその下
の熱酸化膜2を順次エツチング除去した後、素子領域表
面にダート酸化膜となる熱酸化膜を形成した。つづいて
、全面に多結晶シリコン膜を堆積した後、パターニング
してダート電極を形成し、このダート電極をマスクとし
て前記熱酸化膜をエツチング除去しぞゲート酸化膜を形
成した。つづいて、N+型ノース、ドレイン領域及び〆
型ソース、ドレイン領域を順次形成した。つづいて□、
全面にCVD−6’i02膜を堆積した後、コンタクト
ホー)b’f開孔した。つづいて、全面にAA膜を堆積
した後、パターニングして配線′全形成した。つづいて
、パッシベーション膜及びボンディング用開孔窓を形成
し、CMO8を製造□し次。  □ しかして、上記方法によれば以下のような効朱が得られ
る。
Thereafter, the silicon nitride film/mother turn 3' and the thermal oxide film 2 thereunder were sequentially removed by etching, and then a thermal oxide film to become a dirt oxide film was formed on the surface of the element region. Subsequently, a polycrystalline silicon film was deposited on the entire surface and then patterned to form a dirt electrode, and using the dirt electrode as a mask, the thermal oxide film was etched away to form a gate oxide film. Subsequently, N+ type north and drain regions and final type source and drain regions were successively formed. Continuing □,
After depositing a CVD-6'i02 film on the entire surface, a contact hole) b'f was opened. Subsequently, an AA film was deposited on the entire surface and then patterned to completely form the wiring. Next, a passivation film and a hole window for bonding were formed, and CMO8 was manufactured. □ However, according to the above method, the following effects can be obtained.

(1)第′3図図示の工程でP型ウェル領域5を形成す
るためにCVD −SiO2膜4を写真蝕刻法によシバ
ターニングしてCvD −、5i02膜ノぐターン4′
を形成した後石、第4図図示の工□程におけるP−型チ
ャネルストッパ領域を形成するためのlロンのイオン注
入B CVD −Sl02g〆リ−ン4′及び先に□形
成されたシリコン窒化膜パターン3′を□マスクとして
、また第□5図図示の工程におけるN−型チャネルスト
ッパ領域を形成するためのリンのイオン圧入はシリコン
窒化膜ノ々ターン3′をマスクとして行なわれる。した
がって、従来の方法と比較すると写真蝕刻工程をlll
減らすことができ、ホトレノストノリ−ンの欠陥の影響
を受けることが少ないため、歩留9を向上できるうえ、
コストダウン及び製造時間の短縮を図ることができる。
(1) In the step shown in FIG. 3, the CVD-SiO2 film 4 is patterned by photolithography to form the P-type well region 5, and the CVD-,5i02 film is turned 4'.
After forming the silicon, ion implantation of lron to form the P-type channel stopper region in the step □ shown in Fig. 4 is performed. Using the film pattern 3' as a □ mask, ion implantation of phosphorus for forming an N-type channel stopper region in the step shown in FIG. 5 is carried out using the silicon nitride film notation 3' as a mask. Therefore, compared to the traditional method, the photo-etching process is
Because it is less affected by defects in Photorenost Noreen, it is possible to improve the yield9, and
Cost reduction and manufacturing time can be reduced.

(11)(1)で述べたようにP−型チャネルストッA
?領域形成のだめのポロンのイオン注入工程とN−型チ
ャネルストッパ領域形成のためのリンのイオン注入工程
との間に写真蝕刻工程が入らないので、マスク合せずれ
の問題が生じることがなく、製造されるCVD3におい
てはP型ウェル領域5、P〜型チャ坏ルストッパ領域7
及びN−型チャネルストッ・母領域8の位置関係は常に
一定となる。したがって、各領域間の耐圧等の電気的特
注はIC間でバラツキがなく均一となる。
(11) As mentioned in (1), P-type channel stock A
? Since there is no photolithography process between the poron ion implantation process for forming the region and the phosphorus ion implantation process for forming the N-type channel stopper region, there is no problem of mask misalignment, and the manufacturing process is easy. In the CVD 3, a P-type well region 5, a P~-type chall stopper region 7
The positional relationship of the N-type channel stock/mother region 8 is always constant. Therefore, electrical customization such as withstand voltage between each region becomes uniform without variation among ICs.

010  第3図図示の工程で形成ちれるP型ウェル領
域5は横方向に犬さく拡散するため、第6図に示す如く
N−型チャネルストッパ領域8は必ずP型ウェル領域5
に人9込んで形成てれる。
010 Since the P-type well region 5 formed in the step shown in FIG. 3 is diffused in the horizontal direction, the N-type channel stopper region 8 is always in the P-type well region 5 as shown in FIG.
It was formed with 9 people in it.

このため後の熱工程においてP−型チャネルストッパ領
域7からN−型チャネルストッ・千領域8ヘデロンが拡
散しても後の工程で形成されるPチャイ・ルトランノス
タのソース、ドメイン領域とP型ウェル領域5との間に
N−型チャネルスト。
Therefore, even if the N-type channel stopper region 8 hederon is diffused from the P-type channel stopper region 7 in the later thermal process, the source, domain region and P-type well of the P-type channel stopper region 7 formed in the later step are an N-type channel strike between region 5;

パ領域8を確保することができる。したがって、従来の
方法で製造されたCVD3と比較するとP型ソース、ド
レイン領域とP型ウェル領域間の距tWが同一であって
も、不発り]方法で製造されるCVD8の方が両領域間
の耐圧が大きくなる。
The space area 8 can be secured. Therefore, compared to CVD3 manufactured by the conventional method, even if the distance tW between the P-type source and drain regions and the P-type well region is the same, CVD8 manufactured by the conventional method has a higher distance between the two regions. The withstand pressure increases.

(い第3図図示の工程でpaミラエル域5を形成する際
には表面の大部分がシリコン窒化膜パターン3′で覆わ
れているので酸化される部分に少なく、最終的には表面
の高低差が少なくなるため、従来の方法と比較して平坦
性がよい。
(When forming the pa mirael region 5 in the step shown in FIG. 3, most of the surface is covered with the silicon nitride film pattern 3', so there is little oxidation in the part, and the surface height and height are Since the difference is reduced, flatness is better compared to conventional methods.

したがって、後の工程において加工がし易くなり、ぼた
、配線やパッシベーション膜等のカバレージに対し有利
となシ歩留シ向上が期待できる。
Therefore, it becomes easier to process in subsequent steps, and an improvement in yield can be expected, which is advantageous for coverage of wires, passivation films, and the like.

なお、上記実2I!Ii列では第2図図示の工程でシリ
コン窒化膜パターン3′に対して選択エツチング性を有
する被膜としてCVD −5i02膜4を堆積したが、
この被膜は例えば多結晶シリコン膜でもよい。この場合
、第5図図示の工程で多結晶シリコン膜パターンのみ全
エツチング除去し、シリコン窒化膜パターン3′に覆わ
れていない熱酸化膜2全残存させたままリンのイオン注
入全行ない、更に第6図図示の工程で前記熱酸化膜2を
残存させた1ま熱酸化を行なってもよい。
In addition, the above real 2I! In row Ii, a CVD-5i02 film 4 was deposited as a film having selective etching properties with respect to the silicon nitride film pattern 3' in the step shown in FIG.
This coating may be, for example, a polycrystalline silicon film. In this case, only the polycrystalline silicon film pattern is completely etched away in the step shown in FIG. In the step shown in FIG. 6, thermal oxidation may be performed for the first time with the thermal oxide film 2 remaining.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明の相補型MIS半導体装置の製
造方法によれば、歩留りの向上及びコストの低減全図る
とともに、各素子の電気的特性を均一にし得る等顕著な
効果を奏するものである。
As detailed above, according to the method of manufacturing a complementary MIS semiconductor device of the present invention, it is possible to improve the yield and reduce the cost, and also to achieve remarkable effects such as making the electrical characteristics of each element uniform. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第6図は本発明の実施例におけるCVD8の製
造方法を示す断面図である。 1・・・N型シリコン基板、2・・・熱酸化膜、3・・
・ノリコン望化膜、3′・・・シリコ/屋化膜パターン
、4 ・−CVD −SiO2膜、4′・= CVD 
−5i02膜パターン、5・・・P型ウェル領域、6・
・・フィールド酸化膜、7・・・P−型チャイ・ルスト
、・母領域、8・・・N−型チャネルストッパ領域。
1 to 6 are cross-sectional views showing a method of manufacturing CVD 8 in an embodiment of the present invention. 1...N-type silicon substrate, 2...thermal oxide film, 3...
・Noricon Hokame film, 3'...Silico/Yaba film pattern, 4 ・-CVD -SiO2 film, 4'・=CVD
-5i02 film pattern, 5... P-type well region, 6...
. . . Field oxide film, 7 .

Claims (1)

【特許請求の範囲】[Claims] 第1導電型の半導体基板表面に熱酸化膜及び窒化膜を順
次形成する工程と、フィールド酸化膜形成予定部上の前
記窒化膜を選択的にエツチング除去して窒化膜・ぐター
ンを形成した後、全面に該窒化膜パターンに対して選択
エツチング性を有する被膜を堆積する工程と、第2′導
電型のウェル領域形成予定部上の前記被膜に7択的にエ
ツチング除去して被膜パターンを形成した後、第2導電
型の不純物をイオン注入し、熱処理して第2導電型のウ
ェル領域を形成する工程と、□前記被膜パターンと前記
ウェル領域上の窒化膜・やター/全マスクとして第2導
電型の不純物全イオン注入する工程と、少なくとも前記
被BA7′l′ターンをエツチング除去した後、前記窒
化PIX’l’−ンをマスクとして第1導電型の不純物
をイオン注入する工程と、□前記窒化膜パターン勿耐酸
化性マスクとして熱酸化を行ない、フィールド酸化膜及
びその下に第1及び第2導電型のテヤネルストッ・ぐ領
域を形成する工程とを具備したことを特徴とする相補型
MIS半導体装置の製造方法。
After sequentially forming a thermal oxide film and a nitride film on the surface of a first conductivity type semiconductor substrate, and selectively etching and removing the nitride film on a portion where a field oxide film is to be formed, a nitride film/gutter is formed. , a step of depositing a film having selective etching properties with respect to the nitride film pattern over the entire surface, and selectively etching away the film on the portion where the 2' conductivity type well region is to be formed to form a film pattern. After that, a step of ion-implanting impurities of a second conductivity type and performing heat treatment to form a well region of a second conductivity type; a step of implanting all ions of impurities of a second conductivity type; and a step of ion-implanting impurities of a first conductivity type using the nitrided PIX'l'-n as a mask after etching away at least the BA7'l'turn; □ A complementary type characterized by comprising the step of performing thermal oxidation on the nitride film pattern as well as an oxidation-resistant mask to form a field oxide film and Tejanel storage regions of the first and second conductivity types thereunder. A method for manufacturing an MIS semiconductor device.
JP57209054A 1982-11-29 1982-11-29 Manufacture of complementary mis semiconductor device Pending JPS5999758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57209054A JPS5999758A (en) 1982-11-29 1982-11-29 Manufacture of complementary mis semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57209054A JPS5999758A (en) 1982-11-29 1982-11-29 Manufacture of complementary mis semiconductor device

Publications (1)

Publication Number Publication Date
JPS5999758A true JPS5999758A (en) 1984-06-08

Family

ID=16566488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57209054A Pending JPS5999758A (en) 1982-11-29 1982-11-29 Manufacture of complementary mis semiconductor device

Country Status (1)

Country Link
JP (1) JPS5999758A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63500482A (en) * 1985-07-25 1988-02-18 アメリカン テレフオン アンド テレグラフ カムパニ− Selective doping of isolation trenches used in CMOS devices
JP2015057869A (en) * 2008-12-10 2015-03-26 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー Image sensor having lateral overflow drain

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63500482A (en) * 1985-07-25 1988-02-18 アメリカン テレフオン アンド テレグラフ カムパニ− Selective doping of isolation trenches used in CMOS devices
JPH0551181B2 (en) * 1985-07-25 1993-07-30 American Telephone & Telegraph
JP2015057869A (en) * 2008-12-10 2015-03-26 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー Image sensor having lateral overflow drain

Similar Documents

Publication Publication Date Title
KR0133540B1 (en) Bicmos process for forming shallow npn emitters and mosfet
JPH0348459A (en) Semiconductor device and manufacture thereof
US4877748A (en) Bipolar process for forming shallow NPN emitters
JPS63219152A (en) Manufacture of mos integrated circuit
JPS5999758A (en) Manufacture of complementary mis semiconductor device
JP3058981B2 (en) Method for manufacturing transistor
JP2968078B2 (en) Method for manufacturing MOS transistor
JPS6115595B2 (en)
JPS6333868A (en) Manufacture of mis field-effect transistor
JP2995931B2 (en) Method for manufacturing semiconductor device
JPH0423329A (en) Manufacture of semiconductor device
JPS643070B2 (en)
JPH0481336B2 (en)
JP2890550B2 (en) Method for manufacturing semiconductor device
JPS6156448A (en) Manufacture of complementary semiconductor device
JP3066124B2 (en) Method of manufacturing MIS type semiconductor device
JPH0527995B2 (en)
JPH04260331A (en) Manufacture of semiconductor device
JPS6140052A (en) Manufacture of complementary insulated gate field effect transistor
JPS60226169A (en) Manufacture of semiconductor device
JPS61251164A (en) Manufacture of bi-mis integrated circuit
JPH04363019A (en) Manufacture of semiconductor device
JPH0621444A (en) Manufacture od semiconductor device
JPH04277621A (en) Manufacture of semiconductor device
JPH0527259B2 (en)