JPS599955A - Complementary insulated gate field effect semiconductor integrated circuit device - Google Patents

Complementary insulated gate field effect semiconductor integrated circuit device

Info

Publication number
JPS599955A
JPS599955A JP57117972A JP11797282A JPS599955A JP S599955 A JPS599955 A JP S599955A JP 57117972 A JP57117972 A JP 57117972A JP 11797282 A JP11797282 A JP 11797282A JP S599955 A JPS599955 A JP S599955A
Authority
JP
Japan
Prior art keywords
layer
type
buried layer
input
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57117972A
Other languages
Japanese (ja)
Other versions
JPS632154B2 (en
Inventor
Koji Eguchi
江口 宏次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57117972A priority Critical patent/JPS599955A/en
Publication of JPS599955A publication Critical patent/JPS599955A/en
Publication of JPS632154B2 publication Critical patent/JPS632154B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0255Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using diodes as protective elements

Abstract

PURPOSE:To enable to satisfy the prescribed protective withstand voltage even when the titled device is integrated in high density by a method wherein an oppositely conductive buried layer provided on a semiconductor substrate is connected respectively to an input bonding pad and an input gate. CONSTITUTION:The input bonding pad 21 is connected ohmically to the P type buried layer 23 through a P<+> type diffusion layer 26 provided on the layer 23. Moreover a wiring to the input gate is connected ohmically after passing through a resistor 29 formed by the layer 23 and the P<+> type diffusion layers 26. N<+> type diffusion layers 24 are provided respectively on the layer 23 and the N type semiconductor substrate, and are connected ohmically to a VCC electric power source wiring. According to said construction, the even when high voltage noise is applied to the pad 21, because the depth of the layer 23 is made deeper than the depth of the diffusion layer, the conduction due to an alloy spike between the layer 23 and the N type substrate can be prevented from generating. Moreover, by providing the layer 24 on the layer 23 to form a low withstand voltage diode 28, gate protecting function thereof can be ensured.

Description

【発明の詳細な説明】 本発明は半導体集積回路装置に係り、特にその入力ゲー
ト保護装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor integrated circuit device, and particularly to an input gate protection device thereof.

抵抗素子と容量素子とで構成された従来の入力ゲート保
護装置において、画素子の形成材料としてけ一導電型の
不純物を含むポリシリコンと拡散層等が使用されていた
。一般に、入力ゲート保護耐圧は、入力ゲート保護装置
の抵抗素子と容量素子の値が大きくなるにつれて増大し
ていくが、これに従いレイアウトパターンの面積も増大
していく。
In a conventional input gate protection device composed of a resistive element and a capacitive element, polysilicon containing a single conductivity type impurity, a diffusion layer, and the like are used as materials for forming the pixel element. In general, the input gate protection breakdown voltage increases as the values of the resistive element and capacitive element of the input gate protection device increase, and the area of the layout pattern also increases accordingly.

又、近年における。高密度集積化や電気的特性の向上を
目的に、レイアウトパターンの縮小化とウェハー製造工
程における拡散層のシャロー化やポリシリコンの膜厚減
少化等が進んでいるがこれらの事は現在の入力保護装置
を構成する抵抗素子と容量素子にとっては入力ゲート保
護耐圧を維持することは困難であるばかシでなく、レイ
アウトパターン面積の増大になる。すなわち拡散層のシ
ャロー化による拡散層中へのアルミニウム浸透、いわゆ
るアロイスパイクの発生防止に努め々ければならないし
又、ポリシリコンの膜厚減小化によって所定の抵抗値を
得る為レイアウトパターン面積の増大化が必然的に行わ
れてしまう。従って、近年の高密度集積化や電気的特性
向上の為の製造プロセスの改良等が成されても入力ゲー
ト保護装置は所定の保護耐圧を維持するばかりで々く、
レイアウトパターンの面積についても1従来の保護装置
よシ更に小さなものにしていかなければならない。
Also, in recent years. In order to achieve higher density integration and improve electrical characteristics, progress is being made in reducing layout patterns, making diffusion layers shallower in the wafer manufacturing process, and reducing polysilicon film thickness. It is not only difficult to maintain the input gate protection breakdown voltage for the resistive element and capacitive element constituting the protection device, but also increases the layout pattern area. In other words, efforts must be made to prevent aluminum from penetrating into the diffusion layer by making the diffusion layer shallower, so-called alloy spikes, and to reduce the layout pattern area in order to obtain a predetermined resistance value by reducing the polysilicon film thickness. Expansion will inevitably occur. Therefore, even with recent improvements in manufacturing processes to increase density integration and improve electrical characteristics, input gate protection devices still have to maintain a specified protection voltage.
The area of the layout pattern must also be made smaller than that of the conventional protection device.

本発明は1従来の保護耐圧と同等以上の性能を持ち更に
、レイアウトパターンの占有面積についても、従来の保
護装置の面積よりも小さくて済む為、より高密度集積化
が実限可能となるものである。
The present invention has performance equivalent to or higher than that of conventional protection voltages, and the area occupied by the layout pattern is smaller than that of conventional protection devices, making higher density integration possible. It is.

本発明によれは一導電型半導体基体上に設けられた反対
導電型の埋込み層が、入力用ポンディングパッドと入力
用ゲートにそれぞれオーミック接続され更に、該半導体
基体と、該埋込み層内に設けられ該半導体基体と同一導
電型の不純物を含む拡散層とがオーミック接続した構造
の入力ゲート保護装置が得られる。
According to the present invention, a buried layer of an opposite conductivity type provided on a semiconductor substrate of one conductivity type is ohmically connected to an input bonding pad and an input gate, and further provided in the semiconductor substrate and the buried layer. Thus, an input gate protection device having a structure in which the semiconductor substrate and the diffusion layer containing impurities of the same conductivity type are ohmically connected can be obtained.

本発明をN型半導体基板上にP型埋体み層を使った相補
型MO8構造における入力ゲート保護装置を例にとって
従来の装置と比較し寿から図面を用いて説明していく。
The present invention will be explained with reference to the drawings, taking as an example an input gate protection device in a complementary MO8 structure using a P-type buried layer on an N-type semiconductor substrate and comparing it with a conventional device.

第1図(a)は、従来から実施されてきた入力ゲート保
護装置のレイアウトパターンの一例を示し、第1図(b
)及び、第1図(c)はそれぞれ第1図(a)の等何回
路及び第1図(a)におけるa−bの断面図を示す。第
1図(a)、 (b)、 (c)において、入力用ポン
ディングパッド11はN型不純物を含むポリシリコン抵
抗12の一端とオーミック接続される。次に前記ポリシ
リコン抵抗12の他端はP型埋体み層13上に設けられ
たN型拡散層14とアルミニウム配線15を介してオー
ミック接続され更に、入力ゲートへと通じる。次に、前
記P型埋体み層13は高濃度のP型不純物を含んだP型
拡散層16を介してGND電源のアルミニウム配1a1
7とオーミック接続されている。この保護装置の動作と
してGND電極17に対し、ポンディングパッド11に
正のノイズが印加された場合を説明すると、印加された
ノイズ電流は、ポリシリコン抵抗12を介してP型埋体
み層13とN型拡散層14との間で形成されるダイオー
ド18へと流れる。このノイズ電流は前記ダイオード1
8からみて、逆方向電流となるがこのダイオードの耐圧
は1通常15V程度なのでこの電圧以上のノイズが印加
された場合1このダイオードは十分な電流パスとなりノ
イズ電圧の吸収を行って、入力ゲートの保護機能を果た
している。しかし、この様な従来の入力ゲート保護装置
では、先ず、N型拡散層のシャロー化が行われた場合N
型拡散層中へのアルミニウム浸透が発生し、N型拡散層
とP型埋体み層とが完全に導通状態になる。又、高密度
集積化を目的にポリシリコン抵抗の値を小さくすること
は、上記したアルミニウム浸透をよシ一層発生しやすく
するものである。
FIG. 1(a) shows an example of the layout pattern of a conventional input gate protection device, and FIG.
) and FIG. 1(c) respectively show the equivalent circuit of FIG. 1(a) and a sectional view taken along a-b in FIG. 1(a). In FIGS. 1(a), 1(b), and 1(c), an input bonding pad 11 is ohmically connected to one end of a polysilicon resistor 12 containing an N-type impurity. Next, the other end of the polysilicon resistor 12 is ohmically connected to an N-type diffusion layer 14 provided on the P-type buried layer 13 via an aluminum wiring 15, and further leads to an input gate. Next, the P-type buried layer 13 is connected to the aluminum wiring 1a1 of the GND power source via the P-type diffusion layer 16 containing a high concentration of P-type impurities.
7 and is ohmic connected. To explain the operation of this protection device, when positive noise is applied to the bonding pad 11 with respect to the GND electrode 17, the applied noise current flows through the P-type buried layer 13 through the polysilicon resistor 12. and the N-type diffusion layer 14. This noise current flows through the diode 1
8, this is a reverse current, but the withstand voltage of this diode is usually about 15V, so if noise higher than this voltage is applied, this diode becomes a sufficient current path to absorb the noise voltage and reduce the input gate voltage. fulfills a protective function. However, in such a conventional input gate protection device, if the N-type diffusion layer is made shallow, the N
Aluminum permeates into the type diffusion layer, and the N type diffusion layer and the P type buried layer become completely electrically connected. Further, reducing the value of polysilicon resistance for the purpose of high-density integration makes the above-described aluminum penetration more likely to occur.

本発明では埋込み層の深さが拡散層に比較して深いこと
に注目して、アルミニウム浸透の起こらない。しかもポ
リシリコン抵抗を省いて高密度集積化を計っても、所定
の保護耐圧を十分に満足できる、入力ゲート保護装置を
提供するものである。
In the present invention, attention is paid to the fact that the depth of the buried layer is deeper than that of the diffusion layer, so that aluminum penetration does not occur. Furthermore, the present invention provides an input gate protection device that can sufficiently satisfy a predetermined protection voltage even when high-density integration is achieved by omitting a polysilicon resistor.

第2図(a)は本発明を採用した一実施例のレイアウト
パターンを示し第2図(b)及び第2図(c)ldそれ
ぞれ第2図(a)の等何回路及び、第2図(a)におけ
るa /  B /の断面図を示す、第2図(a)、 
(b)、 (c)において入力用ポンディングパッド2
1は、P型埋体み層23とこのP型埋体みM2S上に設
けた高濃度のP型不純物を含むP散拡散層26を介して
オーミック接続されている。次に入力ゲートへの配線は
P型埋体み層23とP散拡散層26により形成される抵
抗29をえた後、アルミニウム配線25によジオ−ミッ
ク接続される、P型埋体み層23上とN型半導体基体上
には高濃度のN型不純物を含むN型拡散層24がそれぞ
れ設けられ、Vcc電源のアルミニウム配!1J27と
オーミック接続されている。このような構造によって、
高電圧のノイズが入力用ポンディングパッドに印加され
てもP型埋体み層の深さが拡散層のそれより深い為アロ
イスパイクによるP型埋体み層とN型基体間の導通が防
止できる。ここで、P型埋体み層上にN型拡散層を設け
た理由は、入力用ポンディングパッドに負の高電圧ノイ
ズが印加された場合釦有効となるものであふ。即ちP型
埋体み層とN型基体との間で形成されるダイオード30
の耐圧は通常100V程度ある為1このままでは1入カ
ゲートが破壊してしまいゲート保護の機能を果たさない
、その為にP型埋へみ層上に高濃度の不純物を含んだN
型拡散層を設けて、耐圧の低いダイオード28を形成す
ることKよって、ゲート保護の機能を確実なものKする
ものである。
FIG. 2(a) shows a layout pattern of an embodiment employing the present invention, and FIG. 2(b) and FIG. FIG. 2(a) shows a cross-sectional view of a/B/ in (a),
Input pad 2 in (b) and (c)
1 is ohmically connected to a P-type buried layer 23 through a P-diffusion layer 26 containing a high concentration of P-type impurity and provided on the P-type buried layer M2S. Next, the wiring to the input gate is connected to the P-type buried layer 23, which is connected geometrically by the aluminum wiring 25 after obtaining a resistor 29 formed by the P-type buried layer 23 and the P-diffusion layer 26. N-type diffusion layers 24 containing a high concentration of N-type impurities are provided on the upper and N-type semiconductor substrates, respectively, and the aluminum wiring of the Vcc power supply is provided. It is ohmic connected to 1J27. With such a structure,
Even if high voltage noise is applied to the input bonding pad, the depth of the P-type buried layer is deeper than that of the diffusion layer, preventing conduction between the P-type buried layer and the N-type substrate due to alloy spikes. can. Here, the reason why the N-type diffusion layer is provided on the P-type buried layer is that the button becomes effective when negative high voltage noise is applied to the input bonding pad. That is, the diode 30 formed between the P-type buried layer and the N-type substrate.
Since the withstand voltage of normally is about 100V, if left as it is, the first input gate will be destroyed and the gate protection function will not be fulfilled.For this reason, N containing a high concentration of impurity on the P-type buried layer is
By providing the type diffusion layer and forming the diode 28 with a low breakdown voltage, the gate protection function is ensured.

尚、本発明の実施例をN型基体上にP型埋へみ層を用い
た場合について説明したが、逆にP型基体上にN型埋込
み層を用いた場合についても本発明の効果がそのまま発
揮できるものである。
Although the embodiments of the present invention have been described using a P-type buried layer on an N-type substrate, the effects of the present invention can also be obtained when an N-type buried layer is used on a P-type substrate. It can be used as is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は、従来の入力ゲート保護装置のレイアウ
トパターンを示し、第1図(b)は、第1図(a)の等
価回路を示す。第1図(c)は、第1図(a)のa−b
における断面図である。第2図(a)は、本発明による
入力ゲート保護装置のレイアウトパターンで第2図(b
)は第2図(a)の等価回路を示す。第2図(c)は第
2図(a)のa′−b′における断面図である。 なお図において、11.21・・・・・・入力用ポンデ
ィングパッド、12・・・・・・N型不純物を含むポリ
シリコン抵抗、13,23°゛“−P型埋へみ層、14
゜24°・・・・・N型拡散層、15,25,17.2
7・・・パ°アルミニウム配L16,26・・・・・・
P型拡散層、18.28.30・・・・・・ダイオード
、29・・・・・・抵抗、である。 第 1 図 (θ) 箔1図(b) 4 第1図(C) 第2図(CL) 第2閃(C)
FIG. 1(a) shows a layout pattern of a conventional input gate protection device, and FIG. 1(b) shows an equivalent circuit of FIG. 1(a). Figure 1(c) shows a-b in Figure 1(a).
FIG. FIG. 2(a) shows a layout pattern of an input gate protection device according to the present invention.
) shows the equivalent circuit of FIG. 2(a). FIG. 2(c) is a sectional view taken along line a'-b' of FIG. 2(a). In the figure, 11.21... Input bonding pad, 12... Polysilicon resistor containing N-type impurity, 13, 23°''-P-type buried layer, 14
゜24°・・・N-type diffusion layer, 15, 25, 17.2
7... Aluminum arrangement L16, 26...
P-type diffusion layer, 18, 28, 30... diode, 29... resistor. Fig. 1 (θ) Foil 1 Fig. (b) 4 Fig. 1 (C) Fig. 2 (CL) 2nd flash (C)

Claims (1)

【特許請求の範囲】[Claims] 一導電型半導体基体上に設けられた反対導電型の埋込み
層が入力用ポンディングパッド及び入力用ゲートにそれ
ぞれオーミック接続され、更に前記半導体基体と前記埋
込み層内に設けられ前記半導体基体と同一導電型の不純
物を含む拡散層とがオーミyり接続してなることを特徴
とする相補型絶縁ゲート電界効果半導体集積回路装置。
A buried layer of an opposite conductivity type provided on a semiconductor substrate of one conductivity type is ohmically connected to an input bonding pad and an input gate, and a buried layer provided in the semiconductor substrate and the buried layer has the same conductivity as the semiconductor substrate. 1. A complementary insulated gate field effect semiconductor integrated circuit device, characterized in that a diffusion layer containing a type of impurity is ohmically connected.
JP57117972A 1982-07-07 1982-07-07 Complementary insulated gate field effect semiconductor integrated circuit device Granted JPS599955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57117972A JPS599955A (en) 1982-07-07 1982-07-07 Complementary insulated gate field effect semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57117972A JPS599955A (en) 1982-07-07 1982-07-07 Complementary insulated gate field effect semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
JPS599955A true JPS599955A (en) 1984-01-19
JPS632154B2 JPS632154B2 (en) 1988-01-18

Family

ID=14724828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57117972A Granted JPS599955A (en) 1982-07-07 1982-07-07 Complementary insulated gate field effect semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS599955A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262560A (en) * 1985-09-12 1987-03-19 Sanyo Electric Co Ltd Input protective circuit
JPS6262559A (en) * 1985-09-12 1987-03-19 Sanyo Electric Co Ltd Input protective circuit
JPS6354771A (en) * 1986-08-25 1988-03-09 Nec Corp Semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262560A (en) * 1985-09-12 1987-03-19 Sanyo Electric Co Ltd Input protective circuit
JPS6262559A (en) * 1985-09-12 1987-03-19 Sanyo Electric Co Ltd Input protective circuit
JPH0518467B2 (en) * 1985-09-12 1993-03-12 Sanyo Electric Co
JPS6354771A (en) * 1986-08-25 1988-03-09 Nec Corp Semiconductor device

Also Published As

Publication number Publication date
JPS632154B2 (en) 1988-01-18

Similar Documents

Publication Publication Date Title
JPH03224263A (en) Static charge protective construction for cmos integrated circuit
JPS599955A (en) Complementary insulated gate field effect semiconductor integrated circuit device
JPS648469B2 (en)
JP2854900B2 (en) Semiconductor device
JP2611639B2 (en) Semiconductor device
JPS6359257B2 (en)
JP4136372B2 (en) Semiconductor device
JPH0590579A (en) Power field-effect transistor
JPH0691206B2 (en) Semiconductor device
JPS59154056A (en) Semiconductor device
JP2601664B2 (en) Insulated gate field effect semiconductor device
JP2009130025A (en) Device for protection against electrostatic discharge, and semiconductor integrated circuit with the same
JP2949769B2 (en) Semiconductor input protection device
JP2821128B2 (en) Semiconductor input protection device
JPH0410228B2 (en)
JPH01185974A (en) Mis-fet
JPH09181335A (en) Semiconductor device
JPS6114764A (en) Insulated gate field effect transistor
JPH07112043B2 (en) Semiconductor integrated circuit
JPS6196757A (en) Semiconductor device
JPS5898966A (en) Input protecting device for semiconductor device
JPS59105369A (en) Semiconductor device
JPS5863177A (en) Semiconductor device
JPH0716006B2 (en) Semiconductor device
JPS6237550B2 (en)