JPS5996724A - Manufacture of semiconductor device with contact hole having no poor contact - Google Patents

Manufacture of semiconductor device with contact hole having no poor contact

Info

Publication number
JPS5996724A
JPS5996724A JP20673582A JP20673582A JPS5996724A JP S5996724 A JPS5996724 A JP S5996724A JP 20673582 A JP20673582 A JP 20673582A JP 20673582 A JP20673582 A JP 20673582A JP S5996724 A JPS5996724 A JP S5996724A
Authority
JP
Japan
Prior art keywords
etching
insulating film
contact hole
polycrystalline silicon
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20673582A
Other languages
Japanese (ja)
Inventor
Kazuyuki Mizushima
水嶋 和之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP20673582A priority Critical patent/JPS5996724A/en
Publication of JPS5996724A publication Critical patent/JPS5996724A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To improve the poor contact due to having non-uniformity of film thickness of an insulating film by a method wherein the first vapor-phase grown insulating film is thinly formed, the second vapor-phase growing insulating film is formed creating a buffer action against a polycrystalline silicon film using a method having an excellent ratio of etching selectivity, and an anisotropic etching is performed. CONSTITUTION:After a source and drain region 22 has been formed, the first insulating film 209 is formed in a vapor-phase, and a film thin enough for the size of a contact hole is formed. Then, the first contact hole 211 is provided. Pertaining to the etching to be performed at this time, a method having an excellent ratio of etching selectivity can be used. Subsequently, a polycrystalline silicon film 212 is grown, and a polycrystalline silicon region is formed by performing a photo etching with a proper margine on the first contact. Then, the second insulating film 213 is formed in a vapor-phase, and a contact hole 214 is provided. An anisotropic etching is applied for the above-mentioned etching. As the polycrystalline silicon layer is turned to a buffer layer, there is no possibility of an etching performed on a diffusion layer 202.

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法にかかシ、とくに集積回
路のコンタクト孔の形成法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of forming contact holes in an integrated circuit.

集製回路の集積度上昇とともに微細加工技術が要求され
、コンタクト孔の開口は微細加工に有利な平行平板型ス
パッタ・エツチング装置によるR1.E (反応性イオ
ン・エツチング)技術が実用化されている。しかし、ガ
スにCF4+H2を用いた場合、几IEのエツチング選
択比は、酸化珪素対珪素で約20対1、窒化珪素対珪素
で約10対1程度であり、十分大きいとは言えず、多様
なすべてのコンタクトをフォトエツチングにて開口する
場合などは絶縁膜厚の不均一、性等のため、かなシのオ
ーバーエツチングを要している。、 一方、集積回路は集積度向上、高性能化のため拡散層深
さは浅い方が好ましく肩側としてMOS FETのソー
ス・ドレイン拡散層深さは0.2μm〜0.3μm程度
になっている。
As the degree of integration of integrated circuits increases, microfabrication technology is required, and the opening of the contact hole is etched by R1. E (reactive ion etching) technology has been put into practical use. However, when CF4+H2 is used as the gas, the etching selectivity of the IE is approximately 20:1 for silicon oxide to silicon and approximately 10:1 for silicon nitride to silicon, which is not sufficiently large and can be used in various ways. When all contacts are opened by photo-etching, over-etching is required due to non-uniformity of the insulating film thickness, etc. On the other hand, in order to improve the degree of integration and performance of integrated circuits, it is preferable for the depth of the diffusion layer to be shallow.The depth of the source/drain diffusion layer of a MOS FET on the shoulder side is approximately 0.2 μm to 0.3 μm. .

しかしコンタクト孔開口時のオーバーエッチングは拡散
層へのくい込みとなり、最悪の場合拡散層と半導体基板
間の接合が破壊され、素子の特性劣化、歩留り低下につ
ながる。
However, over-etching when opening a contact hole digs into the diffusion layer, and in the worst case, the bond between the diffusion layer and the semiconductor substrate is destroyed, leading to deterioration of device characteristics and lower yield.

本発明は従来の半導体装置製造設備を用い、集積度の低
下をともなうことなく、良好なコンタクト孔の開口を可
能にすることを目的としている。
It is an object of the present invention to make it possible to form contact holes with good quality using conventional semiconductor device manufacturing equipment without reducing the degree of integration.

すなわち、本発明は第1の絶縁膜に対し第1のコンタク
ト孔をフォトエツチングによシ開口する工程と、前記コ
ンタクト上に多結晶珪素層を成長し、フォトエツチング
により所望の形状に形成する工程と、第2の絶縁膜を成
長し第2のコンタクト孔をフォトエツチングによシ開口
する工程とを有することを特徴とする半導体装置の製造
方法にある。
That is, the present invention includes a step of opening a first contact hole in a first insulating film by photoetching, and a step of growing a polycrystalline silicon layer on the contact and forming it into a desired shape by photoetching. and a step of growing a second insulating film and opening a second contact hole by photo-etching.

本発明を以下図面を用いて説明する。The present invention will be explained below using the drawings.

第1図は従来技術によシ形成したコンタクト孔を含む半
導体装置の断面図である。ここでは例として一層配線シ
リコンゲートMO8FETを示している。半導体基板1
01にリース・ドレイン領域102を形成した後、例え
ば酸化購のような絶縁膜105を気相成長法により付着
させ、所望の位置にソース・ドレイン、ゲートの各コン
タクト孔106をフォトエツチング法により開口する。
FIG. 1 is a cross-sectional view of a semiconductor device including contact holes formed according to the prior art. Here, a single-layer wiring silicon gate MO8FET is shown as an example. Semiconductor substrate 1
After forming the lease/drain region 102 on the substrate 01, an insulating film 105 such as oxide film is deposited by vapor phase epitaxy, and source/drain and gate contact holes 106 are opened at desired positions by photoetching. do.

コンタクト孔のエツチング法は集積度上昇のためRIE
等の異方性エツチングが用いられている。七の後に配線
物質107を付着させ、フォトエツチング法にて配線系
を形成し、最後に保護膜108を気相成−長法により付
着させている。
The etching method for contact holes is RIE to increase the degree of integration.
Anisotropic etching methods such as etching are used. After step 7, a wiring material 107 is deposited, a wiring system is formed by photoetching, and finally a protective film 108 is deposited by vapor phase growth.

第2図は本発明の一実施例の方法を示すものである。例
として一層配線シリコンゲー) MOSFETを示す。
FIG. 2 shows a method according to one embodiment of the present invention. As an example, a single-layer wiring silicon MOSFET is shown.

従来技術によシンース・ドレイン領域202を半導体基
板201に形成した後、第1の絶縁膜209を気相成長
法によシ付着する。このとき第1の絶縁膜209の膜厚
は、コンタクト孔の大きさに対して十分薄くしておく。
After a thin drain region 202 is formed on a semiconductor substrate 201 using conventional techniques, a first insulating film 209 is deposited using a vapor phase growth method. At this time, the thickness of the first insulating film 209 is made sufficiently thin relative to the size of the contact hole.

次に7オトレジスト210をマスクに第1のコンタクト
孔211を開口する(第2図A)。第1のコンタクト孔
開口の際のエツチングは、第1の絶縁膜を薄くしである
ため、等方性エツチングを適用しても横方向のひろがシ
は小さく、なるべくエツチング選択比のよい方法を用い
ることができる。例えば第1の絶縁膜に酸化珪素を用い
た場合、第1のコンタクト孔のエツチングは弗化水素系
のウェットエツチングで行なえ、コンタクト開口時の基
板のオーバーエッチ量を最小限に留めることができろ。
Next, a first contact hole 211 is opened using the No. 7 photoresist 210 as a mask (FIG. 2A). The etching for opening the first contact hole is to thin the first insulating film, so even if isotropic etching is applied, the lateral spread is small, so a method with a good etching selectivity is preferred. Can be used. For example, when silicon oxide is used for the first insulating film, the first contact hole can be etched using hydrogen fluoride-based wet etching, and the amount of overetching of the substrate when opening the contact can be kept to a minimum. .

第1のコンタクト孔開口径多結晶珪素膜212を成長し
、第1のコンタクト上に適当なマニジンをとって多結晶
珪素領域をフオ)エツチングにより形成する(第2図B
)0 次に第2の絶縁膜213気相成長法により成長し、第2
のコンタクト孔214を開口する。
A polycrystalline silicon film 212 with a first contact hole opening size is grown, and a polycrystalline silicon region is formed on the first contact by photo-etching using an appropriate manufacturer (FIG. 2B).
)0 Next, a second insulating film 213 is grown by vapor phase epitaxy, and the second insulating film 213 is grown by vapor phase growth.
A contact hole 214 is opened.

第2のコンタクト孔開口の際のエツチングは、反応性イ
オンエツチング等の異方性エツチングを適用する。この
時、多少のオーバーエツチングを行なっても多結晶珪素
層がエツチングに対する緩衝膜213を気相成長法によ
り成長1第2のコンタクト孔214を開口する。第2の
コンタクト孔開口の際のエツチングは、反応性イオンエ
ツチング等の異方性エンチングを適用する。この時 多
少のオーバーエツチングを行なっても多結晶珪素層がエ
ツチングに対する緩衝層となり、拡散層202がエツチ
ングされてしまうことはない(第2図C)。
For etching when opening the second contact hole, anisotropic etching such as reactive ion etching is applied. At this time, even if some over-etching is performed, the polycrystalline silicon layer forms a buffer film 213 against etching, and a second contact hole 214 is opened by the vapor phase growth method. For etching when opening the second contact hole, anisotropic etching such as reactive ion etching is applied. At this time, even if some overetching is performed, the polycrystalline silicon layer serves as a buffer layer against etching, and the diffusion layer 202 will not be etched (FIG. 2C).

第2のコンタクト孔開口後、配線物質207を付着させ
フォトエツチングにより配線系を形成し、保護膜208
を気相成長法により付着させMOS FETは完成する
(第2図D)。
After opening the second contact hole, a wiring material 207 is deposited and a wiring system is formed by photo-etching, and a protective film 208 is formed.
is deposited by vapor phase growth to complete the MOS FET (Fig. 2D).

以上、MOS FETを例にとシ祝明裟行なったが、本
発明は絶線膜を気相成長法によυ形成し、これに対しコ
ンタクト孔をフォトエツチング法にて開口する工程を持
つすべての集積回路は適用できる。
The above has been carried out using a MOS FET as an example, but the present invention is applicable to all devices which include the process of forming an insulated film by a vapor phase epitaxy method and opening a contact hole using a photoetching method. integrated circuits are applicable.

以上の説明よシ明らかな如く本発明は、絶縁膜成長工程
での膜厚の不均一性等に起因するコンタクト不良を改善
し、集積回路の歩留シを上げる方法を提供している。
As is clear from the above description, the present invention provides a method for improving contact defects caused by non-uniformity of film thickness during the insulating film growth process and increasing the yield of integrated circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術によ多開口したコンタクト孔を含むM
OS FETの断面図である。第2図(5)〜(D)は
各々本発明の一実施例7MO8FETを例にとシ示した
工程順断面図である。 同、図において、101,201・・・・・・半導体基
板、102.202・・・リースドレイン拡散層、10
3゜203・・・・・・多結晶シリコンゲート、104
,204・・・・・・素子間分離酸化膜、105・・・
・・・絶縁j漠、106・・・・・・従来技術で開口し
たコンタクト孔、107.207・・・・・・配線物質
、108,208・・・・・・保護膜、209・・・・
・・第1の絶縁膜、21O・・山フォトレジスト、21
1・ 第1のコンタクト孔、212・・・・・・多結晶
珪素、213・・・・・第2の絶縁膜、214・・・・
・・第2のコンタクト孔、である。 81図
FIG. 1 shows an M including contact holes with multiple openings according to the prior art.
FIG. 2 is a cross-sectional view of an OS FET. FIGS. 2(5) to 2(D) are sectional views in the order of steps, each showing a MO8FET according to an embodiment of the present invention as an example. In the same figure, 101, 201... Semiconductor substrate, 102, 202... Lease drain diffusion layer, 10
3゜203・・・Polycrystalline silicon gate, 104
, 204... Inter-element isolation oxide film, 105...
...Insulation, 106...Contact hole opened using conventional technology, 107.207...Wiring material, 108,208...Protective film, 209...・
...First insulating film, 21O...Mountain photoresist, 21
1. First contact hole, 212... polycrystalline silicon, 213... second insulating film, 214...
...Second contact hole. Figure 81

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上の絶縁膜に、コンタクト孔を同時に開口す
る工程を有する半導体装置の製造方法において、第1の
絶縁膜を成長する工程と、前記第1の絶縁膜に第1のコ
ンタクト孔を開口する工程と、前記第1の・コンタクト
孔上に多結晶シリコン層を形成し所望の形状にパターン
ニングする工程と、前記第1のコンタクト上にパターン
ニングされた多結晶シリコンを持つ半導体基板上に、第
2の絶縁膜を成長し、第2のコンタクト孔を開口する工
程とを有することを特徴とする半導体装置の製造方法。
A method for manufacturing a semiconductor device comprising the steps of simultaneously opening a contact hole in an insulating film on a semiconductor substrate, the step of growing a first insulating film, and opening a first contact hole in the first insulating film. a step of forming a polycrystalline silicon layer over the first contact hole and patterning it into a desired shape; A method for manufacturing a semiconductor device, comprising the steps of growing a second insulating film and opening a second contact hole.
JP20673582A 1982-11-25 1982-11-25 Manufacture of semiconductor device with contact hole having no poor contact Pending JPS5996724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20673582A JPS5996724A (en) 1982-11-25 1982-11-25 Manufacture of semiconductor device with contact hole having no poor contact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20673582A JPS5996724A (en) 1982-11-25 1982-11-25 Manufacture of semiconductor device with contact hole having no poor contact

Publications (1)

Publication Number Publication Date
JPS5996724A true JPS5996724A (en) 1984-06-04

Family

ID=16528231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20673582A Pending JPS5996724A (en) 1982-11-25 1982-11-25 Manufacture of semiconductor device with contact hole having no poor contact

Country Status (1)

Country Link
JP (1) JPS5996724A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6316671A (en) * 1986-07-08 1988-01-23 Nec Corp Manufacture of silicide gate semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6316671A (en) * 1986-07-08 1988-01-23 Nec Corp Manufacture of silicide gate semiconductor device

Similar Documents

Publication Publication Date Title
JPS5898943A (en) Manufacture of semiconductor device
JP2734027B2 (en) Wiring formation method
JPS5996724A (en) Manufacture of semiconductor device with contact hole having no poor contact
JP2812013B2 (en) Method for manufacturing semiconductor device
JP2672596B2 (en) Method for manufacturing semiconductor device
JP3011729B2 (en) Manufacturing method of bipolar semiconductor integrated circuit device
JP2822795B2 (en) Method for manufacturing semiconductor device
JP2554339B2 (en) Semiconductor device and manufacturing method thereof
JPH1012868A (en) Semiconductor and its manufacture
JPS58159348A (en) Separation of semiconductor device
JPH05226466A (en) Manufacture of semiconductor device
JPS63313834A (en) Semiconductor integrated circuit
JPS63170922A (en) Wiring method
JP2553539B2 (en) Method for manufacturing semiconductor device
JPH01117342A (en) Formation of contact hole
JPH0713999B2 (en) Method for manufacturing semiconductor device
JPS59149030A (en) Manufacture of semiconductor device
JPH05304261A (en) Fabrication of semiconductor device
JPH11135608A (en) Manufacture of semiconductor device
JPH11111691A (en) Manufacture of semiconductor device
JPH04317321A (en) Semiconductor device and manufacture thereof
JPH11340244A (en) Manufacture of semiconductor device
KR20040060118A (en) Method for manufacturing semiconductor device
JPH04336447A (en) Fabrication of semiconductor device
JPS61112343A (en) Manufacture of semiconductor device