JPS5995711A - Driving circuit of avalanche photodiode - Google Patents

Driving circuit of avalanche photodiode

Info

Publication number
JPS5995711A
JPS5995711A JP57205782A JP20578282A JPS5995711A JP S5995711 A JPS5995711 A JP S5995711A JP 57205782 A JP57205782 A JP 57205782A JP 20578282 A JP20578282 A JP 20578282A JP S5995711 A JPS5995711 A JP S5995711A
Authority
JP
Japan
Prior art keywords
temperature
apd
output
circuit
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57205782A
Other languages
Japanese (ja)
Other versions
JPH0151101B2 (en
Inventor
Kiyoharu Inao
稲生 清春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP57205782A priority Critical patent/JPS5995711A/en
Publication of JPS5995711A publication Critical patent/JPS5995711A/en
Publication of JPH0151101B2 publication Critical patent/JPH0151101B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the effect due to difference of inidividuality and temperature fluctuation by constituting a transistor circuit in which a bias voltage impressed to an Avalanche diode is expressed by a specific equation and providing a negative characteristic to temperature to a resistor. CONSTITUTION:A control signal Vc is applied to a positive input of an operational amplifier A and a feedback signal is inputted to a negative input respectively. A resistance circuit comprising R1, R2 and R3 is connected to an outut of the amplifier A and a potential at a connecting point between the resistors R1 and R2 is fed back to the negative input of the amplifier A. When 1<<R1/ (R2+R3) is established, an output VB is given by an equation (where; Vc is a control signal). In using a negative resistance element as the resistor R2, the temperature characteristic of (1+alphat) is given to the output VB, allowing to avoid the effect due to temperature fluctuation.

Description

【発明の詳細な説明】 本発明は、温度特性の影響を補償して増倍率を一定に保
つことができるようにしたアバランシェフォトダイオー
ドの駆動回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an avalanche photodiode drive circuit that can compensate for the effects of temperature characteristics and maintain a constant multiplication factor.

アバランシェフォトダイオード(以下APDと略す)は
、光電変換に際して増倍機能をもっているため長距離伝
送を主に、光レシーバに広く用いられている。ところで
APDに増倍作用を行わせるためには、かなシ高いバイ
アス電圧(例えば200■程度)f:必要とし、また個
体差、温度変動があるため制御が困難である。第1図は
、APDの特性を示す図である。図において、横軸はバ
イアス電圧を縦軸は増倍率をそれぞれ示している。
Avalanche photodiodes (hereinafter abbreviated as APD) have a multiplication function during photoelectric conversion, and are therefore widely used in optical receivers, mainly for long-distance transmission. However, in order to cause the APD to perform a multiplication effect, a very high bias voltage (for example, about 200 .ANG.) is required, and control is difficult due to individual differences and temperature fluctuations. FIG. 1 is a diagram showing the characteristics of APD. In the figure, the horizontal axis shows the bias voltage, and the vertical axis shows the multiplication factor.

vBRViAPDのブレークダウン電圧である。図よシ
明らかなように、バイアス電圧が変化すると増倍率は大
幅に変化し、また温度変化によっても大きく変わる。従
って、APDの駆動回路はバイアス電圧を温度に応じて
変化させ増倍率が温度変化の、影響を受けないように設
計される。
vBRViAPD breakdown voltage. As is clear from the figure, the multiplication factor changes significantly as the bias voltage changes, and also changes significantly with temperature changes. Therefore, the APD drive circuit is designed to change the bias voltage depending on the temperature so that the multiplication factor is not affected by temperature changes.

第2図は、APD駆動回路の従来例を示す電気的構成図
である。図において、R,、R,、R4,R5は抵抗、
R2は負性抵抗素子、例えばサーミスタである。Did
 APDSVce ld電源電圧である。図に示す駆動
回路は、抵抗R4とサーミスタR2及び抵抗R3とで構
成される分圧回路の分圧電圧をAPDのバイアス電圧と
したものであって、温度変化による増倍率の変化をサー
ミスタR2で補償し又一定の増倍率を得るようにしたも
のである。
FIG. 2 is an electrical configuration diagram showing a conventional example of an APD drive circuit. In the figure, R,,R,,R4,R5 are resistances,
R2 is a negative resistance element, such as a thermistor. Did
APDSVce ld power supply voltage. The drive circuit shown in the figure uses the divided voltage of a voltage dividing circuit composed of a resistor R4, thermistor R2, and resistor R3 as the bias voltage of the APD. It is designed to compensate and obtain a constant multiplication factor.

このような従来回路では、APDの個体差による増倍率
の変動を吸収できず、また増倍率Mとしては一定値に固
定され必要に応じてMの値を変えることができない。
Such conventional circuits cannot absorb variations in the multiplication factor due to individual differences in APDs, and the multiplication factor M is fixed at a constant value and the value of M cannot be changed as necessary.

光レシーバでは、APDO増倍率MiAGCループの内
部に含むことが多い。第3図は光レシーバの構成を示す
ブロック図である。APDを含む駆動回路1の出力は、
プリアンプ2、可変ゲインアンプ3を経て信号出力VS
 として出力される。
In optical receivers, the APDO multiplication factor is often included inside the MiAGC loop. FIG. 3 is a block diagram showing the configuration of the optical receiver. The output of the drive circuit 1 including the APD is
Signal output VS via preamplifier 2 and variable gain amplifier 3
is output as

出力信号Vaの一部は、レベル検出器4に入る。A portion of the output signal Va enters the level detector 4.

レベル検出器4の出力は、続(AGC制御用アンプ5で
基準電圧EBと突き合わされ、該アンプからは出力レベ
ルに応じた制御信号Ecが出力される。該制御信号は可
変ゲインアンプ3の制御信号として働くとともに、続(
DC/DCコンバータ6に入って駆動回路1に与える電
源電圧VCCO値を制御している。図に示すAGC回路
のAPD駆動回路1として第2図に示すような従来回路
を用いると、vCCO値従ってバイアス電圧VBの変化
に応じてAPDの増倍率Mが大きく変化するため温度補
償を行うことができなかった。
The output of the level detector 4 is matched with a reference voltage EB by an AGC control amplifier 5, and a control signal Ec corresponding to the output level is output from the amplifier.The control signal is used to control the variable gain amplifier 3. In addition to working as a signal,
It controls the value of the power supply voltage VCCO that enters the DC/DC converter 6 and is applied to the drive circuit 1. If a conventional circuit as shown in FIG. 2 is used as the APD drive circuit 1 of the AGC circuit shown in the figure, the APD multiplication factor M changes greatly depending on the vCCO value and thus the bias voltage VB, so temperature compensation must be performed. I couldn't do it.

本発明は、このような点に鑑みてなされたものであって
、APDのバイアス電圧VBとフレークダウン電圧vB
Rとの比vB/vB□を一定に保てば、増倍率Mも一定
に保たれるというAPDの持つ特性を利用して個体差及
び温度変動による影響を受けないAPDの駆動回路を実
現したものである。
The present invention has been made in view of the above points, and is based on the bias voltage VB and flake-down voltage vB of the APD.
We have realized an APD drive circuit that is unaffected by individual differences and temperature fluctuations by utilizing the characteristic of APDs that if the ratio vB/vB□ with R is kept constant, the multiplication factor M is also kept constant. It is something.

以下、図面を参照して本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

APDのバイアス電圧VBと制御信号vcとの関係が、 Vs =K Vc            (11で表
わせるものとして比例定数KにAPDの個体差及び温度
変動の吸収特性を持たせるものとすムことで、定数にの
温度特性をAPDのブレークダウン電圧Vl]Rの温度
特性と一致させるようにする。
The relationship between the bias voltage VB of the APD and the control signal vc is expressed as follows: Vs = K Vc The temperature characteristics of the APD are made to match the temperature characteristics of the breakdown voltage Vl]R of the APD.

”BRは・ VBR=vBRo(1+αt)     (2)でよく
近似される温度特性を有する。ここで、■BRot−1
個体差によって決まる定数、tは温度、αは温度係数で
約2xlO−3(/℃’:lの値をもっている。従って
、比例定数Kにも K = Ko(1+αt )         (3)
で表わされるようなVBRと同様の温度特性をもたせる
。ここで、Koは温度によらない定数で個体差を吸収す
る。即ち、 Ko−に、vBRo(K、;定数)(4)を満足するよ
うな定数とする。
"BR has a temperature characteristic that is well approximated by VBR=vBRo(1+αt) (2). Here, ■BRot-1
A constant determined by individual differences, t is the temperature, and α is the temperature coefficient, which has a value of approximately 2xlO-3 (/°C': l. Therefore, the proportionality constant K also has the following formula: K = Ko (1 + αt) (3)
Provides temperature characteristics similar to VBR as expressed by . Here, Ko is a constant that is independent of temperature and absorbs individual differences. That is, let Ko- be a constant that satisfies vBRo(K,; constant) (4).

ところで、APDの増倍率Mはバイアスを圧Vnの複雑
な関数でおるが、VB/■BRを一定に保てばMも一定
に保たれることが知られている。(1)〜(3)より次
式が成立する。
Incidentally, although the multiplication factor M of the APD is a complex function of the bias pressure Vn, it is known that if VB/BR is kept constant, M can also be kept constant. The following equation holds true from (1) to (3).

(5) 、 (4)式よシvB/vBRは次式で表わさ
れる。
(5) and (4), vB/vBR is expressed by the following equation.

(6)式より■B/vBRが一定となることがわかる。From equation (6), it can be seen that ■B/vBR is constant.

従で、個体差による影響及び温度変動による影響を除去
できる。そし1、Mがどのように変わってもそのMの値
のところで温度補正が行える。
It is possible to eliminate the effects of individual differences and temperature fluctuations. 1. No matter how M changes, temperature correction can be performed at the value of M.

第4図は、上述の技術的思想を実現した電気的構成図の
一例である。第2図と同一の抵抗及びサーミスタは、同
一の記号を付して示す。図において、Aは演算増幅器で
その正入力には制御信号VCが、負入力には帰還信号が
それぞれ入力されている。増幅器人の出力には、R,、
R2及びR3で構成される抵抗回路が接続され、R4と
R2の接続点の電位が増幅器人の負入力にフィードバッ
クされている。更に、増幅器Aの出力側にはAPDと抵
抗の直列回路が接続されている。図に示す回路の信号出
力Voは、APDと抵抗との接続点から取出されている
。なお、回路の電源電圧vccは、前述したように20
0vとかなり高いため、演算増幅器Aとしては市販され
ている演算増幅器をそのまま用いることができないため
、第5図に示すように、市販されでいる演算増幅器A、
の出力をトランジスタQ、IQ2e用いた電圧ブースト
回路でブーストしている。
FIG. 4 is an example of an electrical configuration diagram that realizes the above-mentioned technical idea. Resistors and thermistors that are the same as in FIG. 2 are shown with the same symbols. In the figure, A is an operational amplifier, to which a control signal VC is input to its positive input, and a feedback signal is input to its negative input. The output of the amplifier is R,,
A resistor circuit composed of R2 and R3 is connected, and the potential at the connection point of R4 and R2 is fed back to the negative input of the amplifier. Furthermore, the output side of the amplifier A is connected to a series circuit of an APD and a resistor. The signal output Vo of the circuit shown in the figure is taken out from the connection point between the APD and the resistor. Note that the power supply voltage vcc of the circuit is 20
Since the voltage is quite high at 0V, a commercially available operational amplifier cannot be used as it is as the operational amplifier A, so as shown in FIG. 5, a commercially available operational amplifier A,
The output is boosted by a voltage boost circuit using transistors Q and IQ2e.

このように構成された回路の出力VBは、次式で与えら
れる。
The output VB of the circuit configured in this way is given by the following equation.

但し、各抵抗の値として記号R1〜札ヲそのまま用いた
。(7)式の”十R2+R3’   が <11式の定
数Kに相当する。今 1 << R1/(R2+R,>
  が成シ立つものとすると、(7)式は次式のように
簡略化される。
However, the symbols R1 to R1 were used as they were as the values of each resistance. "10R2+R3' in equation (7) corresponds to the constant K in equation <11. Now 1 <<R1/(R2+R,>
Assuming that holds true, equation (7) can be simplified as shown below.

ここで、抵抗R2として前述したような負性抵抗素子例
えばサーミスタを用いるものとすると、VBは温度tの
上昇と共に増加する。即ち、近似的に(1+αt) の
温度特性をもたせることができる。
Here, if a negative resistance element such as a thermistor as described above is used as the resistor R2, VB increases as the temperature t rises. That is, it is possible to provide approximately a temperature characteristic of (1+αt).

VB に(1+αt)の温度特性をもたせることができ
れば、前述したようにvB/vBRを一定に保つことが
でき従って温度変化に関係なくAPDの増倍率Mを一定
に維持することができる。また、抵抗R1を可変とすれ
ばvBROの個体差も吸収させることができて都合がよ
い。このようなVBをバイアス電圧として受けるAPD
は、個体差及び温度変化による影響を除去した信号Vo
を出力することができる。本発明によれば、増倍率Mが
どのように変わってもそのときの値で温度補正を行うこ
とができる。従って、第3図に示すようなAGCルーズ
の中に組込んでも温度変化の影響を受けない。
If VB can have a temperature characteristic of (1+αt), as mentioned above, vB/vBR can be kept constant, and therefore, the APD multiplication factor M can be kept constant regardless of temperature changes. Furthermore, if the resistance R1 is made variable, individual differences in vBRO can also be absorbed, which is convenient. APD that receives such VB as a bias voltage
is the signal Vo from which the effects of individual differences and temperature changes have been removed.
can be output. According to the present invention, no matter how the multiplication factor M changes, temperature correction can be performed using the value at that time. Therefore, even if it is incorporated into an AGC loose as shown in FIG. 3, it will not be affected by temperature changes.

第6図は、本発明の他の実施例を示す電気的構成図であ
る。図に示す回路は、制御信号vc ’1非反転増幅回
路に入力する前にR1,R2,R,で構成される分圧回
路で−たん分圧してから入力するようにしたもので、バ
イアス電圧VBは となり(8)式に類似した特性を得ることができる。
FIG. 6 is an electrical configuration diagram showing another embodiment of the present invention. In the circuit shown in the figure, before inputting the control signal vc '1 to the non-inverting amplifier circuit, the voltage is divided by a voltage divider consisting of R1, R2, and R, and the bias voltage is VB becomes, and characteristics similar to equation (8) can be obtained.

第7図は、本発明の他の実施例を示す構成ブロック図で
ある。1は前述した駆動回路であり、該駆動回路の出力
をトランジスタ駆動回路20.昇圧回路21及び整流回
路22で構成されるDC/DCC/式−タで昇圧し、該
コンバータ出力をバイアス電圧VBとするものである。
FIG. 7 is a configuration block diagram showing another embodiment of the present invention. 1 is the aforementioned drive circuit, and the output of the drive circuit is transmitted to a transistor drive circuit 20. The voltage is boosted by a DC/DCC/type converter composed of a booster circuit 21 and a rectifier circuit 22, and the output of the converter is used as a bias voltage VB.

このような構成の回路としては、駆動回路1の電源とし
て高圧のものは必要でない。図においては、駆動回路1
として第4図に示すようなものを用いたとすると、第4
図の出力VBを駆動回路20に入力することになる。な
お、このときは、第4図に示す人PD回路は整流回路2
2の後に持っていくべきであることはいうまでもない。
In a circuit having such a configuration, a high-voltage power source for the drive circuit 1 is not required. In the figure, drive circuit 1
If we use something like the one shown in Figure 4 as
The output VB shown in the figure is input to the drive circuit 20. In this case, the human PD circuit shown in FIG. 4 is the rectifier circuit 2.
It goes without saying that you should take it after 2.

上述の説明では、温度補償用の負性抵抗素子としてサー
ミスタを例にとったが、温度上昇と共に抵抗値が減少す
るような素子であればどのようなものでおってもよい。
In the above description, a thermistor was used as an example of the negative resistance element for temperature compensation, but any element whose resistance value decreases as the temperature rises may be used.

以上、詳細に説明したように、本発明によれは、APD
のバイアス電圧VBとブレークダウン電圧V との比■
B/vBR金一定に保ては増倍率Mも一R 足に保たれるというAPDの持つ特性を利用して個体差
及び温度変動による影響を受けないAPDの駆動回路を
実現することができる。
As explained in detail above, according to the present invention, the APD
The ratio between the bias voltage VB and the breakdown voltage V
Utilizing the characteristic of the APD that if the B/vBR gold is kept constant, the multiplication factor M is also kept at 1 R, it is possible to realize an APD drive circuit that is not affected by individual differences and temperature fluctuations.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はAPDの特性を示す図、第2図は従来例を示す
電気的構成図、第3図は光レシーバの構成を示すブロッ
ク図、第4図は本発明の一実施例を示す電気的構成図、
第5図は演算増幅器の構成を示す図、第6図、第7図は
本発明の他の実施例を示す電気的構成図である。 R,、R3,R4,R5・・・抵抗、几、・・・負性抵
抗素子、D°°°アバランシェフォトダイオード(AP
D)、A、A、・・・演算増幅器、1・・・駆動回路、
2・・・プリアンプ、3・・・可変ゲインアンプ、4・
・・レベル検出器、5・・・AGC制御用アンプ、6・
・・DC/DCC/式−タ、20・・・トランジスタ駆
動回路、21・・・昇圧回路、22・・・整流回路。
Fig. 1 is a diagram showing the characteristics of APD, Fig. 2 is an electrical configuration diagram showing a conventional example, Fig. 3 is a block diagram showing the configuration of an optical receiver, and Fig. 4 is an electrical diagram showing an embodiment of the present invention. configuration diagram,
FIG. 5 is a diagram showing the configuration of an operational amplifier, and FIGS. 6 and 7 are electrical configuration diagrams showing other embodiments of the present invention. R,, R3, R4, R5...Resistance,...Negative resistance element, D°°° Avalanche photodiode (AP
D), A, A,... operational amplifier, 1... drive circuit,
2...Preamplifier, 3...Variable gain amplifier, 4.
...Level detector, 5...AGC control amplifier, 6.
...DC/DCC/formula-ta, 20... transistor drive circuit, 21... booster circuit, 22... rectifier circuit.

Claims (1)

【特許請求の範囲】 アバランシェフォトダイオードの駆動回路において、制
御信号をVC,抵抗値をそれぞれR4,R2゜R3とし
てアバランシェフォトダイオードに印加するバイアス電
圧VBが で表わされるトランジスタ回路を構成しかつ抵抗値R2
に温度に対して負性特性をもたせるようにしたことを特
徴とするアバランシェフォトダイオードの駆動回路。
[Scope of Claims] In an avalanche photodiode drive circuit, a transistor circuit is configured in which a control signal is VC, resistance values are R4 and R2°R3, and a bias voltage VB to be applied to the avalanche photodiode is expressed by . R2
An avalanche photodiode drive circuit characterized in that the avalanche photodiode has a negative characteristic with respect to temperature.
JP57205782A 1982-11-24 1982-11-24 Driving circuit of avalanche photodiode Granted JPS5995711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57205782A JPS5995711A (en) 1982-11-24 1982-11-24 Driving circuit of avalanche photodiode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57205782A JPS5995711A (en) 1982-11-24 1982-11-24 Driving circuit of avalanche photodiode

Publications (2)

Publication Number Publication Date
JPS5995711A true JPS5995711A (en) 1984-06-01
JPH0151101B2 JPH0151101B2 (en) 1989-11-01

Family

ID=16512578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57205782A Granted JPS5995711A (en) 1982-11-24 1982-11-24 Driving circuit of avalanche photodiode

Country Status (1)

Country Link
JP (1) JPS5995711A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6422122A (en) * 1987-07-17 1989-01-25 Fujitsu Ltd Light reception circuit
JP2012019354A (en) * 2010-07-07 2012-01-26 Opnext Japan Inc Optical receiver

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5370479A (en) * 1976-12-06 1978-06-22 Hitachi Ltd Photo agc system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5370479A (en) * 1976-12-06 1978-06-22 Hitachi Ltd Photo agc system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6422122A (en) * 1987-07-17 1989-01-25 Fujitsu Ltd Light reception circuit
JP2012019354A (en) * 2010-07-07 2012-01-26 Opnext Japan Inc Optical receiver

Also Published As

Publication number Publication date
JPH0151101B2 (en) 1989-11-01

Similar Documents

Publication Publication Date Title
US4096382A (en) Photo-current log-compression circuit
US4143331A (en) Summing amplifier for developing a squelch and meter voltage in a radio receiver
JPS5995711A (en) Driving circuit of avalanche photodiode
JPS60180347A (en) Temperature compensating circuit of avalanche photo diode
EP0504974B1 (en) Electrical supply circuit, in particular for APDs
JPS60111540A (en) Temperature compensating circuit of apd
JPH0315859B2 (en)
JP2536412B2 (en) Optical AGC circuit
JPH06244801A (en) Optical receiver
JPS6146075B2 (en)
JPH0129333B2 (en)
JPH0222873A (en) Temperature compensation circuit of bias circuit for avalanche photodiode
JPS6374304A (en) Compensating method for offset or drift or the like in optical receiving circuit
JPH01126032A (en) Apd bias circuit
JPS58117707A (en) Common mode signal reducing circuit
JPH08139679A (en) Automatic gain control circuit for optical receiver
JPH02193402A (en) Optical coupling element
JPS6167311A (en) Automatic level controlling circuit
JPH043125B2 (en)
SU678678A1 (en) Device for suppressing parasitic phase modulation
JPH0712131B2 (en) Electronic volume circuit
SU517179A1 (en) Frequency-Manipulated Demodulator
JP2688745B2 (en) Voltage output circuit of semiconductor light receiving element
JPH0246057Y2 (en)
JPH09116435A (en) Ad conversion circuit