JPH0222873A - Temperature compensation circuit of bias circuit for avalanche photodiode - Google Patents

Temperature compensation circuit of bias circuit for avalanche photodiode

Info

Publication number
JPH0222873A
JPH0222873A JP63171758A JP17175888A JPH0222873A JP H0222873 A JPH0222873 A JP H0222873A JP 63171758 A JP63171758 A JP 63171758A JP 17175888 A JP17175888 A JP 17175888A JP H0222873 A JPH0222873 A JP H0222873A
Authority
JP
Japan
Prior art keywords
avalanche photodiode
circuit
current
input terminal
current flowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63171758A
Other languages
Japanese (ja)
Other versions
JP2674110B2 (en
Inventor
Toshibumi Kono
河野 俊文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63171758A priority Critical patent/JP2674110B2/en
Publication of JPH0222873A publication Critical patent/JPH0222873A/en
Application granted granted Critical
Publication of JP2674110B2 publication Critical patent/JP2674110B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To stabilize an electric current flowing to an avalanche photodiode against a change in an ambient temperature by executing a control operation in such a way that a total electric current flowing to a germanium avalanche photodiode is increased by a changed amount in a dark current. CONSTITUTION:When an ambient temperature of avalanche photodiodes 1 and 5 is raised and a dark current flowing to the avalanche photodiode 1 is increased, a signal current component is decreased by an increased amount of the dark current if a potential to be impressed on the other input terminal of an amplification circuit 4 is definite. Also a dark current flowing to the avalanche photodiode 5 is increased by a rise in temperature; its value is nearly equal to a magnitude of the dark current flowing to the diode 1. The dark current flowing to the diode 5 is converted into a voltage proportional to a current value by means of a current detection circuit 6, a voltage at the other input terminal of the amplification circuit 4 is increased by an increased amount of the dark current of the diode 5 by means of an amplification circuit 7. Thereby, a more electric current by the increased amount of the dark current can flow to the diode 1. That is to say, an electric current of an optical signal component can be made definite irrespective of a change in the ambient temperature.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光通信に係シ、特にアバランシェホトダイオー
ドを受光素子とした光受信回路中のアバランシェホトダ
イオードのバイアス回路の温度補償回路に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to optical communications, and particularly to a temperature compensation circuit for a bias circuit of an avalanche photodiode in an optical receiving circuit using an avalanche photodiode as a light receiving element.

〔従来の技術〕[Conventional technology]

光デイジタル通信においては、受信した光信号をアバラ
ンシェホトダイオードなどで電気信号に変換1−1増幅
回路で増幅した後、識別回路で識別して信号を再生して
いる。
In optical digital communication, a received optical signal is converted into an electrical signal using an avalanche photodiode or the like, amplified by a 1-1 amplifier circuit, and then identified by an identification circuit to reproduce the signal.

そして、従来、識別回路への入力信号の振幅を一定にす
る丸めに、受信した信号の大きさに応じて増幅回路の利
得やアバランシェホトダイオードの増倍率を制御する方
式が一般的であった。
Conventionally, in order to keep the amplitude of the input signal input to the identification circuit constant, it has been common to control the gain of the amplifier circuit and the multiplication factor of the avalanche photodiode depending on the magnitude of the received signal.

すなわち、増幅回路の出力振幅の変動を検出して負帰還
をかけて増幅回路の利得およびアバランシェホトダイオ
ードの増倍率を制御していた。
That is, fluctuations in the output amplitude of the amplifier circuit are detected and negative feedback is applied to control the gain of the amplifier circuit and the multiplication factor of the avalanche photodiode.

これに対し、アバランシェホトダイオードに流れる電流
を検出して、アバランシェホトダイオードにかかる逆バ
イアス電圧を制御して増倍率を変え、アバランシェホト
ダイオードに流れる電流を一定にすることによシ増幅回
路の出力振幅を一定にする方法が考えられた。そして、
この方法により増幅回路の出力から直流電圧変換回路へ
の帰還回路が不要になり、回路が簡単化されるという利
点がある。また、増幅回路の代わりにコンパレータなど
のようなリミッタ回路を用いれば増幅回路の利得を制御
する帰還回路も不要になってさらに簡単化されしか本ダ
イナミックレンジも増幅回路ノ利得やアバランシェホト
ダイオードの増倍率を制御する方法に比べて同程度の値
が得られる。
On the other hand, by detecting the current flowing through the avalanche photodiode and controlling the reverse bias voltage applied to the avalanche photodiode to change the multiplication factor and keeping the current flowing through the avalanche photodiode constant, the output amplitude of the amplifier circuit can be kept constant. I thought of a way to do that. and,
This method eliminates the need for a feedback circuit from the output of the amplifier circuit to the DC voltage conversion circuit, and has the advantage of simplifying the circuit. In addition, if a limiter circuit such as a comparator is used instead of an amplifier circuit, the feedback circuit that controls the gain of the amplifier circuit is not required, which further simplifies the dynamic range. The same value can be obtained compared to the method of controlling.

〔発明が解決しようとする課題〕 上述したアバランシェホトダイオードに流れる電流を検
出して、その電流が一定になるように制御する回路は、
受光素子としてゲルマニウム−アバランシェホトダイオ
ードを使用した場合、以下に述べるような不都合が生じ
る。
[Problems to be Solved by the Invention] A circuit that detects the current flowing through the avalanche photodiode described above and controls the current so that it is constant is as follows:
When a germanium avalanche photodiode is used as a light receiving element, the following disadvantages occur.

すなわち、光の長波長(波長1.0〜1.31μm)用
の受光素子として使われるゲルマニウム−アバランシェ
ホトダイオードは、短波長(波長0.7μm〜0.8μ
m)用の受光素子として使われるシリコン−アバランシ
ェホトダイオードに比べて暗電流(光の強さに関係なく
流れる電流で雑音源となる)が大きくしかも温度上昇に
対し指数関係的に増加するという特徴がある。したがっ
てゲルマニウム−アバランシェホトダイオードに流れる
全電流は、光信号が電流信号に変換された光信号成分の
電流と上記暗電流の和で表わされる。
In other words, a germanium avalanche photodiode used as a light receiving element for long wavelength light (wavelength 1.0 to 1.31 μm) can be used for short wavelength light (wavelength 0.7 μm to 0.8 μm).
Compared to the silicon avalanche photodiode used as a photodetector for 3D photodiodes, dark current (a current that flows regardless of the intensity of light and is a source of noise) is large, and it increases exponentially with temperature rise. be. Therefore, the total current flowing through the germanium-avalanche photodiode is represented by the sum of the current of the optical signal component obtained by converting the optical signal into a current signal and the dark current.

したがって、上述の方法でゲルマニウム−アバランシェ
ホトダイオードに流れる電流を安定化した場合、弯度上
昇にともなって暗電流が増加するため光信号成分の電流
が小さくなるように制御がかかる。すなわち、温度が上
昇すれば光信号成分の電流が減少するという課題があっ
た。
Therefore, when the current flowing through the germanium avalanche photodiode is stabilized by the above-described method, the dark current increases as the curvature increases, so control is applied so that the current of the optical signal component becomes small. That is, there is a problem in that as the temperature rises, the current of the optical signal component decreases.

そして、上述の寸法において、温度変化によらス、ケル
マニウムーアパランシエホトダイオードに流れる信号成
分の電流を一定にするKは、ゲルマニウム−アバランシ
ェホトダイオードに流れる全電流を暗電流の変化分だけ
増加させるように制御を刃口えてやればよい。
With the above dimensions, K, which keeps the signal component current flowing through the germanium avalanche photodiode constant due to temperature changes, is such that the total current flowing through the germanium avalanche photodiode increases by the change in dark current. All you have to do is sharpen the control.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のアバランシェホトダイオードのバイアス回路の
温度補償回路は、光信号を受信するための第1のアバラ
ンシェホトダイオードと、この第1のアバランシェホト
ダイオードに逆バイアス電圧を印加しかつ増倍率を可変
とするための直流電圧変換回路と、上記第1のアバラン
シェホトダイオードに流れる電流を検出する第1の電流
検出回路と、この第1の電流検出回路の出力を第1の増
幅回路の第1の入力端子に接続しその出力が上記直流電
圧変換回路の入力端子に接続されて構成されるアバラン
シェホトダイオードのバイアス路において、上記直流電
圧変換回路によって逆バイアス電圧が印加されている第
2のアバランシェホトダイオードと、この第2のアバラ
ンシェホトダイオードに流れる電流を検出する第2の電
流検出回路と、この第2の電流検出回路の出力を第1の
入力端子に接続し第2の入力端子を基準電圧源に接続し
その出力端子が上記第1の増幅回路の第2の入力端子に
接続された第2の増幅回路から構成されるものである。
The temperature compensation circuit of the avalanche photodiode bias circuit of the present invention includes a first avalanche photodiode for receiving an optical signal, and a temperature compensation circuit for applying a reverse bias voltage to the first avalanche photodiode and making the multiplication factor variable. A DC voltage conversion circuit, a first current detection circuit for detecting the current flowing through the first avalanche photodiode, and an output of the first current detection circuit connected to a first input terminal of the first amplifier circuit. In the bias path of the avalanche photodiode whose output is connected to the input terminal of the DC voltage conversion circuit, a second avalanche photodiode to which a reverse bias voltage is applied by the DC voltage conversion circuit; A second current detection circuit detects the current flowing through the avalanche photodiode, the output of the second current detection circuit is connected to the first input terminal, the second input terminal is connected to the reference voltage source, and the output terminal is connected to the reference voltage source. The second amplifier circuit is connected to the second input terminal of the first amplifier circuit.

〔作用〕[Effect]

本発明においては、アバランシェホトダイオードに流れ
る電流を安定化する回路に暗電流増加分を補償する回路
を追加することにより、周囲温度の変化に対してアバラ
ンシェホトダイオードに流れる電流を安定化する。
In the present invention, a circuit that compensates for an increase in dark current is added to a circuit that stabilizes the current flowing through the avalanche photodiode, thereby stabilizing the current flowing through the avalanche photodiode against changes in ambient temperature.

〔実施例〕 以下、図面に基づき本発明の実施例を詳細に説明する。〔Example〕 Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

第1@は本発明の一実施例を示すブロック図である。The first @ is a block diagram showing one embodiment of the present invention.

図において、1は光信号を受信するためのアバランシェ
ホトダイオート−2はこのアバランシェホトダイオード
に逆バイアス電圧を印加しかつ増倍率を可変とするため
の直流電圧変換回路、3はアバランシェホトダイオード
1に流れる電流を検出する電流検出回路である。そして
、この電流検出回路3の出力は増幅回路4の一方の入力
端子に接続され、その増幅回路4の出力が直流電圧変換
回路2の入力端子に接続されている。
In the figure, 1 is an avalanche photodiode for receiving optical signals, 2 is a DC voltage conversion circuit for applying a reverse bias voltage to this avalanche photodiode and making the multiplication factor variable, and 3 is a current flowing to the avalanche photodiode 1. This is a current detection circuit that detects current. The output of the current detection circuit 3 is connected to one input terminal of an amplifier circuit 4, and the output of the amplifier circuit 4 is connected to the input terminal of the DC voltage conversion circuit 2.

5は直流電圧変換回路によって逆バイアス電圧が印加さ
れているアバランシェホトダイオード、6はこのアバラ
ンシェホトダイオード5に流れる電流を検出する電流検
出回路、7はこの電流検出回路6の出力を一方の入力端
子に接続し他方の入力端子を基準電圧源8に接続しその
出力端子が増幅回路4の他方の入力端子に接続された増
幅回路である。
5 is an avalanche photodiode to which a reverse bias voltage is applied by a DC voltage conversion circuit; 6 is a current detection circuit that detects the current flowing through this avalanche photodiode 5; and 7 is the output of this current detection circuit 6 connected to one input terminal. The other input terminal is connected to the reference voltage source 8, and the output terminal thereof is connected to the other input terminal of the amplifier circuit 4.

つぎにこの第1図に示す実施例の動作を説明する。Next, the operation of the embodiment shown in FIG. 1 will be explained.

マス、アバランシェホトダイオード1は直流電圧変換回
路2によシ逆バイアス電圧がかけられている。そして、
このアバランシェホトダイオード1に流れる電流の平均
値は、電流検出回路3によって電流に比例した電圧に変
換されて増幅回路4の一方の入力端子に加えられ、この
増幅回路4によシ、常に増幅回路4の他方の入力端子の
電圧に等しくなるようにアバランシェホトダイオード1
の増倍率を制御している。すなわち、光入力信号の増減
に対し、アバランシェホトダイオード1に加わる逆バイ
アス電圧を変化させて増倍率を変えるととKよシアパラ
ンシエホトダイオードIKfiれる電流を一定にしてい
る。
A reverse bias voltage is applied to the mass avalanche photodiode 1 by a DC voltage conversion circuit 2. and,
The average value of the current flowing through the avalanche photodiode 1 is converted into a voltage proportional to the current by the current detection circuit 3 and applied to one input terminal of the amplifier circuit 4. avalanche photodiode 1 to be equal to the voltage at the other input terminal of
The multiplication rate is controlled. That is, when the reverse bias voltage applied to the avalanche photodiode 1 is changed to change the multiplication factor in response to an increase or decrease in the optical input signal, the current flowing through the avalanche photodiode IKfi is kept constant.

つぎに1アバランシエホトダイオード5は、光信号が入
力されない状態で、直流電圧変換回路2によシ逆バイア
ス電圧がかけられている。すなわち、このアバランシェ
ホトダイオード5には、アバランシェホトダイオード1
に流れる暗電流と同じ値の暗電流のみが流れている。こ
の暗電流を電流検出回路6で電流値に比例し九電圧に変
換し、増幅回路7で増幅して増幅回路4の他方の入力端
子に供給する。
Next, a reverse bias voltage is applied to the first avalanche photodiode 5 by the DC voltage conversion circuit 2 in a state where no optical signal is input. That is, the avalanche photodiode 5 includes the avalanche photodiode 1.
Only the dark current of the same value as that flowing in is flowing. This dark current is converted into a voltage proportional to the current value by the current detection circuit 6, amplified by the amplifier circuit 7, and supplied to the other input terminal of the amplifier circuit 4.

そしで、アバランシェホトダイオード1および5の周囲
温度が上昇した場合、アバランシェホトダイオード1に
流れる暗電流が増加する。このとき、もし、増幅回路4
の他方、の入力端子に印加する電位が一定ならば、暗電
流の増加分だけ信号電流成分が減少することになる。一
方、アバランシェホトダイオード5に流れる電流も温度
の上昇により暗電流が増加し、その値はアバランシェホ
トダイオード1に流れる暗電流の大きさくほぼ等しい。
Therefore, when the ambient temperature around the avalanche photodiodes 1 and 5 increases, the dark current flowing through the avalanche photodiode 1 increases. At this time, if the amplifier circuit 4
If the potential applied to the other input terminal of is constant, the signal current component will decrease by the increase in dark current. On the other hand, the dark current of the current flowing through the avalanche photodiode 5 also increases due to the rise in temperature, and its value is approximately equal to the magnitude of the dark current flowing through the avalanche photodiode 1.

ソシて、アバランシェホトダイオード5に流れる暗電流
は、電流検出回路6によって、電流値に比例した電圧に
変換され増幅回路7によって増幅回路4の他方の入力端
子電圧をアバランシェホトダイオード5の暗電流の増加
分だけ上昇させる。
The dark current flowing through the avalanche photodiode 5 is converted by the current detection circuit 6 into a voltage proportional to the current value, and the amplifier circuit 7 converts the voltage at the other input terminal of the amplifier circuit 4 by the increase in the dark current of the avalanche photodiode 5. only to rise.

このことKよシ、アバランシェホトダイオード1に、暗
電流の増加分だけ電流を多く流すことができる。すなわ
ち、周囲温度の変化にかかわらず、光信号成分の電流を
一定にすることができる。
This means that more current can be passed through the avalanche photodiode 1 by the amount of increase in dark current. In other words, the current of the optical signal component can be kept constant regardless of changes in ambient temperature.

第2図は本発明の実施例の具体的構成を示す回路図であ
る。
FIG. 2 is a circuit diagram showing a specific configuration of an embodiment of the present invention.

この第2図において第1図と同一符号のものは相幽部分
を示し、電流検出回路3は抵抗R1とこの抵抗R1に並
列接続されたコンデンサCIによって構成され、増幅回
路4は演算増幅回路AMP 1から構成され、また、電
流検出回路6は抵抗R1によって構成され、増幅回路7
は演算増幅回路A M P mと抵抗Rs、R4によっ
て構成されている。
In FIG. 2, the same reference numerals as in FIG. 1, the current detection circuit 6 is composed of a resistor R1, and the amplifier circuit 7 is composed of a resistor R1.
is composed of an operational amplifier circuit A M P m and resistors Rs and R4.

そして、電流検出回路3の抵抗R1+コンデンサC1と
アバランシェホトダイオード1との接続点は増幅回路4
の一方の入力端子(一端子)に接続され、この増幅回路
4の他方の入力端子(+端子)には増幅回路1の出力端
子が接続されている。また、電流検出回路6の抵抗Rt
とアバランシェホトダイオード5との接続点は増幅回路
1の一方の入力端子(+端子)に接続され、この増幅回
路Tの他方の入力端子(一端子)は抵抗R3を介して出
力端子に接続されるとともに抵抗R4を介して基準電圧
源8に接続されている。
The connection point between the resistor R1 + capacitor C1 of the current detection circuit 3 and the avalanche photodiode 1 is connected to the amplifier circuit 4.
The output terminal of the amplifier circuit 1 is connected to the other input terminal (+ terminal) of the amplifier circuit 4 . In addition, the resistance Rt of the current detection circuit 6
The connection point between T and the avalanche photodiode 5 is connected to one input terminal (+ terminal) of the amplifier circuit 1, and the other input terminal (one terminal) of this amplifier circuit T is connected to the output terminal via a resistor R3. It is also connected to a reference voltage source 8 via a resistor R4.

つぎKこの第2図に示す実施例の動作を説明する。Next, the operation of the embodiment shown in FIG. 2 will be explained.

増幅回路Tの抵抗R3とR4は等しい値が選ばれている
ので、この増幅回路Tの利得は2倍である。このため電
流検出回路6の抵抗R3の値を電流検出回路3の抵抗R
1のHにすれば、増幅回路4の他方の入力端子(+端子
)Kは、抵抗R8の両端に発生する電圧と等しい電圧が
現われる。言い換れば、アバランシェホトダイオード1
に流れる電流が暗電流の増加分だけ多く流すことができ
る。
Since the resistors R3 and R4 of the amplifier circuit T are selected to have the same value, the gain of the amplifier circuit T is twice. Therefore, the value of the resistance R3 of the current detection circuit 6 is set to the value of the resistance R3 of the current detection circuit 3.
When set to H of 1, a voltage equal to the voltage generated across the resistor R8 appears at the other input terminal (+ terminal) K of the amplifier circuit 4. In other words, avalanche photodiode 1
The current flowing in the dark current can be increased by the increase in the dark current.

そして、アバランシェホトダイオード1に流れる電流の
うち、光信号成分の電流値は基準電圧源8における基準
電圧を変えることで自由に設定することができる。
Of the current flowing through the avalanche photodiode 1, the current value of the optical signal component can be freely set by changing the reference voltage in the reference voltage source 8.

〔発明の効果〕〔Effect of the invention〕

以上説明し九ように本発明は、アバランシェホトダイオ
ードに流れる電流を安定化する回路に暗電流増加分を補
償する回路を追加するととkよシ、周囲温度の変化に対
してアバランシェホトダイオードに流れる電流を安定化
することができるという効果がある。
As explained above, in the present invention, by adding a circuit to compensate for the increase in dark current to a circuit that stabilizes the current flowing through the avalanche photodiode, the current flowing through the avalanche photodiode can be stabilized in response to changes in ambient temperature. It has the effect of being able to stabilize.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図、第2図は
本発明の実施例の具体的構成を示す回路図である。 1・・・・アバランシェホトダイオード、2・・・・直
流電圧変換回路、3・・・・電流検出回路、4・・・・
増幅回路、5・・・・アバランシェホトダイオード、6
・・・・電流検出回路、T・・・−増幅回路、8・・・
・基準電圧源。
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a circuit diagram showing a specific configuration of the embodiment of the present invention. 1... Avalanche photodiode, 2... DC voltage conversion circuit, 3... Current detection circuit, 4...
Amplifier circuit, 5... Avalanche photodiode, 6
...Current detection circuit, T...-amplification circuit, 8...
・Reference voltage source.

Claims (1)

【特許請求の範囲】[Claims] 光信号を受信するための第1のアバランシェホトダイオ
ードと、この第1のアバランシェホトダイオードに逆バ
イアス電圧を印加しかつ増倍率を可変とするための直流
電圧変換回路と、前記第1のアバランシェホトダイオー
ドに流れる電流を検出する第1の電流検出回路と、この
第1の電流検出回路の出力を第1の増幅回路の第1の入
力端子に接続しその出力が前記直流電圧変換回路の入力
端子に接続されて構成されるアバランシェホトダイオー
ドのバイアス回路において、前記直流電圧変換回路によ
って逆バイアス電圧が印加されている第2のアバランシ
ェホトダイオードと、この第2のアバランシェホトダイ
オードに流れる電流を検出する第2の電流検出回路と、
この第2の電流検出回路の出力を第1の入力端子に接続
し第2の入力端子を基準電圧源に接続しその出力端子が
前記第1の増幅回路の第2の入力端子に接続された第2
の増幅回路から構成されることを特徴とするアバランシ
ェホトダイオードのバイアス回路の温度補償回路。
a first avalanche photodiode for receiving an optical signal; a DC voltage conversion circuit for applying a reverse bias voltage to the first avalanche photodiode and making the multiplication factor variable; a first current detection circuit for detecting current; an output of the first current detection circuit is connected to a first input terminal of a first amplifier circuit; and the output thereof is connected to an input terminal of the DC voltage conversion circuit. an avalanche photodiode bias circuit configured with a second avalanche photodiode to which a reverse bias voltage is applied by the DC voltage conversion circuit; and a second current detection circuit that detects a current flowing through the second avalanche photodiode. and,
The output of the second current detection circuit is connected to a first input terminal, the second input terminal is connected to a reference voltage source, and the output terminal is connected to a second input terminal of the first amplifier circuit. Second
1. A temperature compensation circuit for an avalanche photodiode bias circuit, comprising an amplifier circuit.
JP63171758A 1988-07-12 1988-07-12 Temperature compensation circuit for avalanche photodiode bias circuit Expired - Lifetime JP2674110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63171758A JP2674110B2 (en) 1988-07-12 1988-07-12 Temperature compensation circuit for avalanche photodiode bias circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63171758A JP2674110B2 (en) 1988-07-12 1988-07-12 Temperature compensation circuit for avalanche photodiode bias circuit

Publications (2)

Publication Number Publication Date
JPH0222873A true JPH0222873A (en) 1990-01-25
JP2674110B2 JP2674110B2 (en) 1997-11-12

Family

ID=15929137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63171758A Expired - Lifetime JP2674110B2 (en) 1988-07-12 1988-07-12 Temperature compensation circuit for avalanche photodiode bias circuit

Country Status (1)

Country Link
JP (1) JP2674110B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5182326A (en) * 1991-04-08 1993-01-26 Westvaco Corporation Rosin and fatty acid based pigment grinding aids for water-based ink formulations
US5532609A (en) * 1992-06-11 1996-07-02 Cascade Microtech, Inc. Wafer probe station having environment control enclosure
US6570149B2 (en) 2000-03-23 2003-05-27 Hioki Denki Kabushiki Kaisha Photodetector having a control block for maintaining a detection signal within a predetermined tolerance range
US7489883B2 (en) * 2002-11-08 2009-02-10 Aptina Imaging Corporation Method for determining temperature of an active pixel imager and automatic correcting temperature induced variations in an imager

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928389A (en) * 1982-08-09 1984-02-15 Sumitomo Electric Ind Ltd Photo receiving circuit
JPS6388871A (en) * 1986-10-01 1988-04-19 Mitani Denshi Kogyo Kk Optical hybrid integrated circuit device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928389A (en) * 1982-08-09 1984-02-15 Sumitomo Electric Ind Ltd Photo receiving circuit
JPS6388871A (en) * 1986-10-01 1988-04-19 Mitani Denshi Kogyo Kk Optical hybrid integrated circuit device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5182326A (en) * 1991-04-08 1993-01-26 Westvaco Corporation Rosin and fatty acid based pigment grinding aids for water-based ink formulations
US5532609A (en) * 1992-06-11 1996-07-02 Cascade Microtech, Inc. Wafer probe station having environment control enclosure
US6570149B2 (en) 2000-03-23 2003-05-27 Hioki Denki Kabushiki Kaisha Photodetector having a control block for maintaining a detection signal within a predetermined tolerance range
US7489883B2 (en) * 2002-11-08 2009-02-10 Aptina Imaging Corporation Method for determining temperature of an active pixel imager and automatic correcting temperature induced variations in an imager

Also Published As

Publication number Publication date
JP2674110B2 (en) 1997-11-12

Similar Documents

Publication Publication Date Title
JPS5911215B2 (en) optical receiver circuit
JP2004289206A (en) Optical receiver
JPH0222873A (en) Temperature compensation circuit of bias circuit for avalanche photodiode
JPS6377171A (en) Optical receiver
JPS5873251A (en) Optical reception circuit
JPS58168343A (en) Optical agc circuit
US4529928A (en) Automatic control circuit for a current translating device
JPS58165020A (en) Photoelectric converter
JP2536412B2 (en) Optical AGC circuit
JPH066308A (en) Light reception agc circuit
JPH0250534A (en) Apd bias voltage control circuit
JP2002217833A (en) Optical receiver
JPS63181536A (en) Optical receiving equipment
JPS62208724A (en) Optical receiver
JPH079450Y2 (en) Optical receiver circuit
JP3039875B2 (en) Optical receiver
JPS61248628A (en) Optical reception circuit
JPH03126335A (en) Optical reception circuit
JPH02149139A (en) Optical receiver
JPS62120134A (en) Optical signal reception circuit
JPS6313534A (en) Bias voltage control circuit
JPH0244218A (en) Photo detection circuit
JPS61277236A (en) Optical modulation circuit
JPS637041A (en) Agc switching circuit
JPH01258514A (en) Light receiving circuit