JPS6377171A - Optical receiver - Google Patents

Optical receiver

Info

Publication number
JPS6377171A
JPS6377171A JP61223154A JP22315486A JPS6377171A JP S6377171 A JPS6377171 A JP S6377171A JP 61223154 A JP61223154 A JP 61223154A JP 22315486 A JP22315486 A JP 22315486A JP S6377171 A JPS6377171 A JP S6377171A
Authority
JP
Japan
Prior art keywords
region
signal
photodetecting
output
photodiode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61223154A
Other languages
Japanese (ja)
Inventor
Manabu Tanabe
学 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61223154A priority Critical patent/JPS6377171A/en
Publication of JPS6377171A publication Critical patent/JPS6377171A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To be able to directly monitor a photodetecting power thereby to be able to optimally control the magnification of an avalanche photodiode without influence of temperature by dividing the photodiode into a signal photodetecting region and a photodetecting power monitoring region, and at least forming the former in an avalanche photodiode structure. CONSTITUTION:An optical signal from an optical fiber 12 is mostly irradiated to a photodetecting region 10 for signal photodetecting of an avalanche photodiode, and the remaining light is irradiated to a photodetecting power monitoring region 11. A bias voltage is applied by a bias controller 15 to the region 10. An output from the region 11 is directly proportional to the photodetecting power. An optimum signal value generator 13 is so set as to output a signal of the same amplitude as the output current of the photodetecting region 10 at the optimum amplification factor from the value of the output current. A comparator 14 compares the output with the output from the region 10 to raise the bias voltage of the region 10 through the controller 10 when the latter is smaller, and to lower it if it is larger.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光通信の分野で使用される、アバランシェ・
フォトダイオードを用いた光受信器に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to an avalanche system used in the field of optical communications.
This invention relates to an optical receiver using a photodiode.

従来の技術 従来のアバランシェ・フォトダイオードを受光素子とし
て使用した光受信器には、例えば第3図のようなものが
ある。第3図において、20は従来のアバランシェ0フ
オトダイオード、21はプリアンプ、22は可変利得ア
ンプ、23は振幅検出器、24はA G C(Auto
mat ic Ga in Contorl )回路で
ある。
2. Description of the Related Art An example of an optical receiver using a conventional avalanche photodiode as a light receiving element is shown in FIG. In FIG. 3, 20 is a conventional avalanche 0 photodiode, 21 is a preamplifier, 22 is a variable gain amplifier, 23 is an amplitude detector, and 24 is an AGC (Auto
matic Gain Control) circuit.

光受信器の出力電気信号は、振幅検出器23でその振幅
の大きさが検出され、その大きさに従ってAGC回路2
4が可変利得アンプ22の利得およびアバランシェ・フ
ォトダイオード2Qの増倍率を変化させることで、受光
電力の変動その他に対しても出力電気信号が一定となる
ように制御される。
The amplitude of the output electrical signal of the optical receiver is detected by the amplitude detector 23, and the AGC circuit 2
By changing the gain of the variable gain amplifier 22 and the multiplication factor of the avalanche photodiode 2Q, the output electric signal is controlled to be constant even with respect to fluctuations in received light power and other factors.

発明が解決しようとする問題点 しかしながら上記のような構成では、出力電気信号の振
幅が受光電力の変化に因るものなのか、可変利得アンプ
22の利得またはアバランシェ・フォトダイオード20
の増倍率Mの変化に因るものなのか判別がつかない。そ
のため、通常の光受信器では、可変利得アンプ22の利
得とアバランシェ・フォトダイオード2oの増倍率Mを
同時にではなくどちらか一方のみを変化させることが多
い。
Problems to be Solved by the Invention However, in the above configuration, it is difficult to determine whether the amplitude of the output electrical signal is due to a change in the received light power, the gain of the variable gain amplifier 22, or the avalanche photodiode 20.
It is difficult to determine whether this is due to a change in the multiplication factor M. Therefore, in a normal optical receiver, only one of the gain of the variable gain amplifier 22 and the multiplication factor M of the avalanche photodiode 2o is often changed, rather than at the same time.

一方、アバランシェ・フォトダイオード2oの増倍率に
は、出力電気信号のSN比を最大とする最適値が存在す
る。この最適増倍率は、受光電力によって決まり、増倍
率1のときのアバランシェ・フォトダイオードの出力電
流から求められる。しかし、上記のような構成の光受信
器では、この増倍率1のときの出力電流をリアルタイム
に知ることができないので、どのような受光電力に対し
ても常に最適増倍率をとることは難しい。また、アバラ
ンシェ・フォトダイオードは、周囲温度によってブレー
クダウン電圧や量子効率が変化し、それに伴って出力信
号の大きさが変化することが知られてお9、このことも
アバランシェ・7オトダイオードを用いた光受信器の最
適制御を難しくしている要因の1つとなっている。
On the other hand, the multiplication factor of the avalanche photodiode 2o has an optimum value that maximizes the S/N ratio of the output electrical signal. This optimum multiplication factor is determined by the received light power and is obtained from the output current of the avalanche photodiode when the multiplication factor is 1. However, in the optical receiver configured as described above, the output current when the multiplication factor is 1 cannot be known in real time, so it is difficult to always obtain the optimum multiplication factor for any received light power. In addition, it is known that the breakdown voltage and quantum efficiency of avalanche photodiodes change depending on the ambient temperature, and the magnitude of the output signal changes accordingly.9 This also explains why avalanche photodiodes are used. This is one of the factors that makes optimal control of optical receivers difficult.

本発明はかかる点に鑑み、受光電力の大きさを直接モニ
ターでき、温度の影響がなくアバランシェ・フォトダイ
オードの増倍率が最適値をとる制御を実現させる光受信
器を提供することを目的とする。
In view of the above, it is an object of the present invention to provide an optical receiver that can directly monitor the magnitude of received light power and realize control that takes the multiplication factor of an avalanche photodiode to an optimal value without being affected by temperature. .

問題点を解決するための手段 本発明は、アバランシェ・フォトダイオードを有し、光
ファイバまたは光源からの光信号が照射される部分を2
つの第1の領域及び第2の領域に分け、この各領域が同
じ基板上にそれぞれが独立して存在し、少なくとも1つ
の領域が前記アノ(ランシエ・フォトダイオードの構造
をとっているフォトダイオードを受光素子に用いたこと
を特徴とする光受信器である。
Means for Solving the Problems The present invention has an avalanche photodiode, and has two parts that are irradiated with an optical signal from an optical fiber or a light source.
each region exists independently on the same substrate, and at least one region includes a photodiode having the structure of the Ano(Ransier photodiode). This is an optical receiver characterized in that it is used as a light receiving element.

作  用 本発明は前記した構成により、フォトダイオードの2つ
に分けられた領域のうちアバランシェ・フォトダイオー
ドの構造をしている第1の領域を信号受光用領域として
用い、第2の領域を受光電力モニター用領域として使用
して、受光電力モニター用領域の出力電流を用いて信号
受光用領域の増倍率を最適に設定できるように制御する
According to the above-described configuration, the present invention uses the first region having an avalanche photodiode structure among the two regions of the photodiode as a signal light receiving region, and the second region as a light receiving region. It is used as a power monitoring area and controlled so that the multiplication factor of the signal light receiving area can be optimally set using the output current of the received light power monitoring area.

実施例 第1図は本発明の一実施例の光受信器に使用するアバラ
ンシェ・フォトダイオードの斜視図を、第2図にこのア
バランシェ・フォトダイオードを用いた光受信器のブロ
ック図を示す。
Embodiment FIG. 1 shows a perspective view of an avalanche photodiode used in an optical receiver according to an embodiment of the present invention, and FIG. 2 shows a block diagram of an optical receiver using this avalanche photodiode.

第1図において、1oは信号受光用領域であり、11は
受光電力モニター用領域、12は光ファイバである。ま
た、第2図において、13はフォトダイオードの受光電
力モニター用領域11の出力電流値に対応した信号を出
力する最適信号値発生器、14は最適信号値発生器13
の出力と信号受光用領域10からの出力の大きさを比較
する比較器、15は比較器14の比較結果によって信号
受光用領域1oに印加されるバイアス電圧を制御するバ
イアス制御部である。
In FIG. 1, 1o is a signal receiving area, 11 is a receiving power monitoring area, and 12 is an optical fiber. Further, in FIG. 2, 13 is an optimum signal value generator that outputs a signal corresponding to the output current value of the photodiode power monitoring area 11, and 14 is an optimum signal value generator 13.
A comparator 15 compares the magnitude of the output from the signal light receiving region 10 with the magnitude of the output from the signal light receiving region 10, and a bias control section 15 controls the bias voltage applied to the signal light receiving region 1o based on the comparison result of the comparator 14.

以上のように構成された本実施例の光受信器について、
以下にその動作を説明する。
Regarding the optical receiver of this embodiment configured as above,
The operation will be explained below.

光ファイバまたは光源からの光信号は、その大部分がフ
ォトダイオードの信号受光用領域10に照射され、残り
が受光電力モニター用領域11に照射されるような構造
をとっている。そして、信号受光用領域10にはバイア
ス制御部16によってバイアス電圧が印加されている。
The structure is such that most of the optical signal from the optical fiber or light source is applied to the signal receiving area 10 of the photodiode, and the rest is applied to the received light power monitoring area 11. A bias voltage is applied to the signal light receiving area 10 by a bias control section 16 .

一方、受光電力モニター用領域11からの出力は、受光
電力と出力電流の直線性を保つために極めて小さい抵抗
かあるいはトランスインピーダンス型のアンプで受けら
れている。この受光電力モニター用領域11からの出力
電流は、受光電力に正比例して増減するので、この値を
モニターすることによって直接受光電力の大きさを知る
ことができる。最適信号値発生器13は、この出力電流
の値から最適増倍率における信号受光用領域1oの出力
電流と同じ大きさの信号を出力するようにしておく。そ
して、比較器15でこの出力と信号受光用領域10から
の実際の出力の大きさを比較して後者の方が小さい場合
には、バイアス制御部14を通じて信号受光用領域10
に印加されるバイアス電圧を上げ、反対に後者が大きい
場合にはバイアス電圧を下げて両者が同じになるように
制御する。
On the other hand, the output from the received light power monitoring area 11 is received by an extremely small resistor or a transimpedance type amplifier in order to maintain linearity between the received light power and the output current. Since the output current from the received light power monitoring area 11 increases or decreases in direct proportion to the received light power, the magnitude of the received light power can be directly determined by monitoring this value. The optimum signal value generator 13 is configured to output a signal having the same magnitude as the output current of the signal light receiving area 1o at the optimum multiplication factor from this output current value. Then, the comparator 15 compares this output with the actual output from the signal light receiving area 10, and if the latter is smaller, the signal light receiving area 10 is
In contrast, if the latter is large, the bias voltage is lowered so that the two become equal.

このような構成とすることによって、常に信号受光用領
域10のアバランシェ・フォトダイオードの増倍率を最
適とする制御を実現することが可能となる。
With such a configuration, it is possible to realize control that always optimizes the multiplication factor of the avalanche photodiode in the signal light receiving area 10.

また、信号受光用領域1oの出力信号の大きさを上述の
ように最適制御することによって、出力信号の温度変化
においてブレークダウン電圧の温度変動が支配的な場合
や、あるいは2つの領域の量子効率の温度特性が等しい
場合に、温度変化に伴う増倍率の変化の影響をまったく
受けない出力電気信号を得ることができる。
In addition, by optimally controlling the magnitude of the output signal of the signal light receiving region 1o as described above, it is possible to solve cases where the temperature variation of the breakdown voltage is dominant in the temperature change of the output signal, or the quantum efficiency of the two regions. When the temperature characteristics of the two are the same, it is possible to obtain an output electrical signal that is completely unaffected by changes in the multiplication factor due to changes in temperature.

一方、受光電力モニター用領域11からの出力は、それ
ほど速い応答も要求されないので十分広い受光面で受光
できるうえに、それ程高いSN比が必要とされないので
受光電力モニター用領域11に照射される光信号はごく
わずかで良く、はとんどの光信号を信号受光用領域1o
に照射することができ損失も少なくてすむ。
On the other hand, the output from the received light power monitoring area 11 does not require a very fast response, so the light can be received over a sufficiently wide light receiving surface, and the output from the received light power monitoring area 11 does not require a very high signal-to-noise ratio. Only a small amount of signal is required, and most optical signals can be transmitted to the signal receiving area 1o.
can be irradiated with less loss.

発明の詳細 な説明したように、本発明によれば、アバンシェ・フォ
トダイオードの一部に第2の領域を形成することによっ
て受光電力の大きさを直接モニターでき、このフォトダ
イオードを用いて温度の影響が無く増倍率が最適値をと
ったときの信号を出力する光受信器を実現させることが
できる。
DETAILED DESCRIPTION OF THE INVENTION As described in detail, according to the present invention, the magnitude of the received light power can be directly monitored by forming the second region in a part of the avanche photodiode, and this photodiode can be used to monitor the temperature. It is possible to realize an optical receiver that outputs a signal when the multiplication factor takes an optimum value without any influence.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例にお・ける光受信器に用いた
フォトダイオードの斜視図、第2図は同光受信器の全体
構成を示すブロック図、第3図は従来のアバランシェ・
フォトダイオードを用いた光受信器のブロック図である
。 1o・・・・・・信号受光用領域、11・・・・・・受
光電力モニター用領域、12・・・・・・光スィッチ、
13・・・・・・最適信号値発生器、14・・・・・・
比較器、15・・・・・・バイアス制御部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第 2 図
FIG. 1 is a perspective view of a photodiode used in an optical receiver according to an embodiment of the present invention, FIG. 2 is a block diagram showing the overall configuration of the optical receiver, and FIG. 3 is a conventional avalanche
FIG. 2 is a block diagram of an optical receiver using a photodiode. 1o... Area for signal light reception, 11... Area for monitoring received light power, 12... Optical switch,
13...Optimum signal value generator, 14...
Comparator, 15...bias control section. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)アバランシェ・フォトダイオードを有し、光ファ
イバまたは光源からの光信号が照射される部分を2つの
領域に分け、2つの領域に分けられたそれぞれの領域が
同じ基板上に独立して存在し、かつ少なくとも1つの領
域(第1の領域と呼び他の領域を第2の領域と呼ぶ)が
アバランシェ・フォトダイオードの構造をとっているフ
ォトダイオードを受光素子として用いたことを特徴とす
る光受信器。
(1) It has an avalanche photodiode, and the part to which the optical signal from the optical fiber or light source is irradiated is divided into two regions, and each of the two regions exists independently on the same substrate. and a photodiode in which at least one region (referred to as a first region and the other region is referred to as a second region) has an avalanche photodiode structure is used as a light receiving element. receiver.
(2)フォトダイオードの第2の領域からの出力電流値
により第1の領域の増倍率を制御する機能を少なくとも
有することを特徴とする特許請求の範囲第1項記載の光
受信器。
(2) The optical receiver according to claim 1, characterized in that it has at least a function of controlling the multiplication factor of the first region based on the output current value from the second region of the photodiode.
JP61223154A 1986-09-19 1986-09-19 Optical receiver Pending JPS6377171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61223154A JPS6377171A (en) 1986-09-19 1986-09-19 Optical receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61223154A JPS6377171A (en) 1986-09-19 1986-09-19 Optical receiver

Publications (1)

Publication Number Publication Date
JPS6377171A true JPS6377171A (en) 1988-04-07

Family

ID=16793636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61223154A Pending JPS6377171A (en) 1986-09-19 1986-09-19 Optical receiver

Country Status (1)

Country Link
JP (1) JPS6377171A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001015348A1 (en) * 1999-08-25 2001-03-01 Hamamatsu Photonics K.K. Optical receiver and method of support and arrangement thereof
JP2005093610A (en) * 2003-09-16 2005-04-07 Sumitomo Electric Ind Ltd Optical receiver
JP2006054507A (en) * 2004-08-09 2006-02-23 Sumitomo Electric Ind Ltd Optical receiving circuit
US7214924B2 (en) 2003-09-19 2007-05-08 Sumitomo Electric Industries, Ltd. Light-receiving method of an avalanche photodiode and a bias control circuit of the same
US7302193B2 (en) 2003-09-18 2007-11-27 Sumitomo Electric Industries, Ltd. Optical receiver
US7315698B2 (en) 2003-10-22 2008-01-01 Sumitomo Electric Industries, Ltd. Optical module and an optical receiver using the same
US7326905B2 (en) 2003-12-17 2008-02-05 Sumitomo Electric Industries, Ltd. Photodetector and optical receiver
US7366428B2 (en) 2003-09-16 2008-04-29 Sumitomo Electric Indutries, Ltd. Optical receiver
JP2009099914A (en) * 2007-10-19 2009-05-07 Sumitomo Electric Ind Ltd Light receiving element array and imaging device
WO2011118571A1 (en) * 2010-03-25 2011-09-29 トヨタ自動車株式会社 Photodetector

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62135004A (en) * 1985-12-06 1987-06-18 Nec Corp Gain control system of avalanche photo diode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62135004A (en) * 1985-12-06 1987-06-18 Nec Corp Gain control system of avalanche photo diode

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6858830B2 (en) 1999-08-25 2005-02-22 Hamamatsu Photonics K.K. Optical receiver apparatus and holding apparatus and arranging method thereof
DE10084933B3 (en) * 1999-08-25 2012-01-19 Hamamatsu Photonics K.K. Optical receiver and associated holding device and associated method for arranging
WO2001015348A1 (en) * 1999-08-25 2001-03-01 Hamamatsu Photonics K.K. Optical receiver and method of support and arrangement thereof
US7366428B2 (en) 2003-09-16 2008-04-29 Sumitomo Electric Indutries, Ltd. Optical receiver
JP2005093610A (en) * 2003-09-16 2005-04-07 Sumitomo Electric Ind Ltd Optical receiver
US7067854B2 (en) 2003-09-16 2006-06-27 Sumitomo Electric Industries, Ltd. Optical receiver
US7302193B2 (en) 2003-09-18 2007-11-27 Sumitomo Electric Industries, Ltd. Optical receiver
US7214924B2 (en) 2003-09-19 2007-05-08 Sumitomo Electric Industries, Ltd. Light-receiving method of an avalanche photodiode and a bias control circuit of the same
US7282692B2 (en) 2003-09-19 2007-10-16 Sumitomo Electric Industries, Ltd. Light receiving method of an avalanche photodiode and a bias control circuit of the same
US7315698B2 (en) 2003-10-22 2008-01-01 Sumitomo Electric Industries, Ltd. Optical module and an optical receiver using the same
US7326905B2 (en) 2003-12-17 2008-02-05 Sumitomo Electric Industries, Ltd. Photodetector and optical receiver
JP4590974B2 (en) * 2004-08-09 2010-12-01 住友電気工業株式会社 Optical receiver circuit
JP2006054507A (en) * 2004-08-09 2006-02-23 Sumitomo Electric Ind Ltd Optical receiving circuit
JP2009099914A (en) * 2007-10-19 2009-05-07 Sumitomo Electric Ind Ltd Light receiving element array and imaging device
WO2011118571A1 (en) * 2010-03-25 2011-09-29 トヨタ自動車株式会社 Photodetector
JP2011204879A (en) * 2010-03-25 2011-10-13 Toyota Central R&D Labs Inc Photodetector
US9006853B2 (en) 2010-03-25 2015-04-14 Toyota Jidosha Kabushiki Kaisha Photodetector

Similar Documents

Publication Publication Date Title
US4954786A (en) Optical amplifying device
US7214924B2 (en) Light-receiving method of an avalanche photodiode and a bias control circuit of the same
JPS6377171A (en) Optical receiver
JPH02113640A (en) Automatic gain controller
JPH0687549B2 (en) Optical receiver
JP2674110B2 (en) Temperature compensation circuit for avalanche photodiode bias circuit
JPH04150324A (en) Optical reception circuit
JPS59110232A (en) Light receiving signal controller
JP2600462B2 (en) Optical receiving circuit
JPS62226704A (en) Optical input level monitor circuit for optical receiver
JPH02164110A (en) Optical receiver
JPH02100530A (en) Light-receiving circuit
JPS63181536A (en) Optical receiving equipment
JPS637041A (en) Agc switching circuit
JPS60214129A (en) Agc circuit for optical receiver
JPS6253510A (en) Optical receiver
JPS6313534A (en) Bias voltage control circuit
JPH0758702A (en) Optical receiving circuit
JP2974063B2 (en) Automatic frequency control circuit
JPH06164501A (en) Bais system for avalanche photodiode
JPH04299589A (en) Stabilizing circuit of modulation factor
JPS61277236A (en) Optical modulation circuit
JPS63256023A (en) Identifying circuit for optical receiver
JPH02166812A (en) Optical receiver
JPH04362617A (en) Gain control circuit for optical amplifier