JPS6388871A - Optical hybrid integrated circuit device - Google Patents

Optical hybrid integrated circuit device

Info

Publication number
JPS6388871A
JPS6388871A JP61233890A JP23389086A JPS6388871A JP S6388871 A JPS6388871 A JP S6388871A JP 61233890 A JP61233890 A JP 61233890A JP 23389086 A JP23389086 A JP 23389086A JP S6388871 A JPS6388871 A JP S6388871A
Authority
JP
Japan
Prior art keywords
light
current
voltage
output
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61233890A
Other languages
Japanese (ja)
Inventor
Hiroshi Oshitari
忍足 博
Tetsuya Nakajima
哲也 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitani Electronics Industry Corp
Original Assignee
Mitani Electronics Industry Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitani Electronics Industry Corp filed Critical Mitani Electronics Industry Corp
Priority to JP61233890A priority Critical patent/JPS6388871A/en
Publication of JPS6388871A publication Critical patent/JPS6388871A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier

Abstract

PURPOSE:To execute an accurate light/voltage signal conversion operation by using first and second photodetectors including static induction transistors, detecting an input light by the first photodetector, setting the second photodetector to a shielding state, and differentially amplifying detection signals from the first and second photodetectors. CONSTITUTION:A detecting current corresponding to input optical information is obtained from a first photodetector 11, and a voltage signal is output from a first current/voltage conversion circuit 13. A second photodetector 12 is, on the other hand, shielded, a dark current corresponding to the state of a zero input light is supplied to a second voltage/current conversion circuit 14, which generates a voltage signal corresponding the dark current as a reference voltage signal. Since the output voltage signals from the conversion circuits 13, 14 are supplied to a differential amplifier circuit 15, a GB product can be enhanced in accuracy in the order of approx. hundred times as compared with the case that the output signal from an optical element is amplified and output by a conventional phototransistor, photodiode, etc.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、光信号の検出さらに増幅動作を行わせる光
混成集積回路装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical hybrid integrated circuit device that detects and amplifies optical signals.

[従来の技術〕 光を用いた情報伝送を行わせるには、光信号を受信し、
この光信号を電気的な信号に変換するための装置が必要
であり、このためには電子回路部品によって構成された
混成集積回路が用いられている。そして、この混成集積
回路には、例えば別個に設定された受光手段からの受光
信号を供給し、この受光信号を電気的な例えば電圧信号
に変換し、増幅して出力させるようにするものである。
[Prior art] In order to transmit information using light, it is necessary to receive an optical signal and
A device is required to convert this optical signal into an electrical signal, and for this purpose, a hybrid integrated circuit made up of electronic circuit components is used. The hybrid integrated circuit is supplied with a light reception signal from, for example, a separately set light receiving means, converts this light reception signal into an electric signal, for example, a voltage signal, amplifies it, and outputs it. .

また、最近にあっては、センサ内蔵型として発光ダイオ
ードやフォトカプラ等を混成集積回路に組み込み設定す
るようにしたものが考えられている。すなわち、増幅出
力回路を構成する混成集積回路の入力側に接続されるよ
うに、フォトダイオード、フォトトランジスタ等の光素
子を組み込み設定するものである。
Furthermore, recently, sensor built-in devices in which a light emitting diode, a photocoupler, etc. are incorporated into a hybrid integrated circuit have been considered. That is, optical elements such as photodiodes and phototransistors are installed and set so as to be connected to the input side of the hybrid integrated circuit that constitutes the amplification output circuit.

しかし、このような構成では、充分に検出感度を向上さ
せることが困難であり、また温度変化等の影響を受は易
いものである。
However, with such a configuration, it is difficult to sufficiently improve detection sensitivity, and it is easily affected by temperature changes and the like.

[発明が解決しようとする問題点コ この発明は上記のような点に鑑みなされたもので、光信
号の検出感度が充分大きく設定されるようにした増幅手
段が設定されるようにし、さらに温度等の環境変化が生
ずるような場合にあっても、精度の高い光−電圧の信号
変換動作が実行されるようにした、光混成集積回路装置
を提供しようとするものである。
[Problems to be Solved by the Invention] This invention has been made in view of the above points, and the amplifying means is set such that the detection sensitivity of the optical signal is set sufficiently large, and the temperature It is an object of the present invention to provide an optical hybrid integrated circuit device that is capable of performing highly accurate optical-voltage signal conversion operations even when such environmental changes occur.

[問題点を解決するための手段] すなわち、この発明に係る光混成集積回路装置にあって
は、例えば静電誘導フォトトランジスタ(SIPT)等
の、静電誘導トランジスタ(SIT)を含み構成される
第1および第2の受光素子を用いるもので、第1の受光
素子で入力光を検知し、第2の受光素子は遮光状態に設
定する。
[Means for Solving the Problems] That is, the optical hybrid integrated circuit device according to the present invention includes a static induction transistor (SIT) such as a static induction phototransistor (SIPT). It uses first and second light receiving elements, the first light receiving element detects input light, and the second light receiving element is set to a light blocking state.

そして、上記第1および第2の受光素子からの検出信号
を差動増幅させるようにしているものである。
The detection signals from the first and second light receiving elements are differentially amplified.

[作用] 上記のように構成される光混成集積回路装置にあっては
、遮光状態にある第2の受光素子からの検出信号が基準
信号となるものであり、第1の受光素子で検出された入
力光信号に対応する信号が、上記基準信号に基づいて差
動増幅されるようになる。したがって、例えば温度等の
環境が大きく変化したような場合であっても、この環境
変化を入力信号を検出する第1の受光素子と同様に受け
る第2の受光素子からの信号が基準として設定されるも
のであるため、常に信頼性の高い出力信号が得られるも
のである。ざらに差動増幅することによって、充分にG
B(ゲイン・バンド幅)積を高めることができるもので
あり、増幅率も効果的に向上させられるものである。
[Function] In the optical hybrid integrated circuit device configured as described above, the detection signal from the second light-receiving element in the light-shielded state serves as the reference signal, and the detection signal from the first light-receiving element is detected by the first light-receiving element. The signal corresponding to the input optical signal is differentially amplified based on the reference signal. Therefore, even if there is a large change in the environment such as temperature, the signal from the second light receiving element which receives this environmental change in the same way as the first light receiving element which detects the input signal is set as the reference. Therefore, a highly reliable output signal can always be obtained. By rough differential amplification, sufficient G
The B (gain bandwidth) product can be increased, and the amplification factor can also be effectively improved.

[発明の実施例] 以下、図面を参照してこの発明の一実施例を説明する。[Embodiments of the invention] Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

添附図面はその構成を示すもので、例えば静電誘導フォ
トトランジスタ(SIPT)によって構成された第1お
よび第2の受光素子11および12を備える。この場合
、上記第2の受光素子12には、透過光を遮断するフィ
ルタ等が設定されるもので、入射光零の状態に設定され
るものであり、入力光信号は第1の受光素子11のみ入
力されるようになっている。
The attached drawings show the structure thereof, and include first and second light receiving elements 11 and 12 formed of, for example, static induction phototransistors (SIPTs). In this case, the second light-receiving element 12 is provided with a filter or the like that blocks transmitted light, and is set to a state where the incident light is zero, and the input optical signal is transmitted to the first light-receiving element 11. only.

上記第1および第2の受光素子11および12を構成す
る5IPTのコレクタは、それぞれ第1および第2の電
流−電圧変換回路13および14を構成するオペアンプ
OP1、OR2のそれぞれ(−)側端子に接続されるも
のであり、このオペアンプOP1およびOR3のそれぞ
れ(+)側には、直流電源Voが供給されるようになっ
ている。そして、この第1および第2の電流−電圧変換
回路13および14からの出力電圧信号は、差動増幅回
路15で差動増幅され、出力端子16から光検出出力信
号として取出される。すなわち、受光素子11および1
2を構成する5IPTのトレインバイアスは、電流−電
圧変換回路を構成するオペアンプの非反転側バイアスか
ら与えられるようになり、外部からの直接バイアスが避
けられるようになっている。
The collectors of the 5IPTs constituting the first and second light receiving elements 11 and 12 are connected to the (-) side terminals of operational amplifiers OP1 and OR2 constituting the first and second current-voltage conversion circuits 13 and 14, respectively. A DC power source Vo is supplied to the (+) side of each of the operational amplifiers OP1 and OR3. The output voltage signals from the first and second current-voltage conversion circuits 13 and 14 are differentially amplified by a differential amplifier circuit 15 and taken out from an output terminal 16 as a photodetection output signal. That is, the light receiving elements 11 and 1
The train bias of the 5IPT that constitutes 2 is given from the non-inverting side bias of the operational amplifier that constitutes the current-voltage conversion circuit, so that direct bias from the outside can be avoided.

ここで、上記第1および第2の受光素子11.12を構
成する一対の5IPT、電流−電圧変換回路13.14
、さらに差動増幅回路15を構成するオペアンプOP1
〜OP3は、混成集積回路として一体的に構成されるよ
うになるものである。
Here, a pair of 5IPTs and a current-voltage conversion circuit 13.14 constituting the first and second light receiving elements 11.12 are used.
, and an operational amplifier OP1 that constitutes the differential amplifier circuit 15.
~OP3 is configured integrally as a hybrid integrated circuit.

すなわち、第1の受光素子11に入力光情報が照射され
るようになるものであり、この第1の受光素子11から
は入力光情報に対応した検出電流が得られるようになり
、この検出電流に対応した電圧信号が第1の電流−電圧
変換回路13から出力されるようになる。
That is, input light information is irradiated onto the first light receiving element 11, and a detection current corresponding to the input light information is obtained from this first light receiving element 11. A voltage signal corresponding to the voltage signal is outputted from the first current-voltage conversion circuit 13.

6一 一方、第2の受光素子12は遮光されているものである
ため、入力光零の状態に対応する暗電流が第2の電圧−
電流変換回路14に供給され、この暗電流に対応した電
圧信号が基準電圧信号として発生されるようになる。そ
して、この第1および第2の電流−電圧変換回路13お
よび14からの出力電圧信号が差動増幅回路15に供給
されるようになるもので、従来のフォトトランジスタ、
フォトダイオード等に光素子からの出力信号を増幅出力
させた場合等に比較して、GB積を2桁程度高めること
ができるようになる。
On the other hand, since the second light-receiving element 12 is shielded from light, the dark current corresponding to the state of zero input light is the second voltage -
The dark current is supplied to the current conversion circuit 14, and a voltage signal corresponding to this dark current is generated as a reference voltage signal. Then, the output voltage signals from the first and second current-voltage conversion circuits 13 and 14 are supplied to the differential amplifier circuit 15.
Compared to the case where the output signal from the optical element is amplified and outputted by a photodiode or the like, the GB product can be increased by about two orders of magnitude.

また、入力光を検出する第1の受光素子からの出力信号
と、遮光した第2の受光素子からの出力信号との差動出
力を取るようにしているものであるため、差動アンプの
オフセットが非常にとり易くなっているものであり、ま
た温度係数も小さな状態とされる。そして、増幅率も例
えば上記フォト1ヘランジスタ等を使用した場合に比較
して、80dB以上まで高められるようになる。すなわ
ち、上記実施例に示されるような5IPTを用いて構成
された増幅器にあっては、この5IPTをフォトトラン
ジスタに置換えた場合の遮断周波数が1に!−1z止ま
りなのに対して、同じ回路素子定数で100KHzまで
帯域を伸ばすことができるようになる。
In addition, since it is designed to take a differential output between the output signal from the first light receiving element that detects input light and the output signal from the second light receiving element that is shielded from light, the offset of the differential amplifier is is very easy to obtain, and the temperature coefficient is also small. Furthermore, the amplification factor can be increased to 80 dB or more, compared to, for example, the case where the photo 1 helangister or the like is used. That is, in an amplifier configured using 5IPTs as shown in the above embodiment, the cutoff frequency becomes 1 when the 5IPTs are replaced with phototransistors! While the band is limited to -1z, it is now possible to extend the band to 100KHz with the same circuit element constants.

上記実施例では静電誘電型フォトトランジスタ(S I
 PT)を用いるようにしたが、これは例えばPinダ
イスオードと静電誘導トランジスタ(SIT)とを組合
わせて受光部を構成するようにしたものでも、同様の効
果が発揮できるものである。このようにPinダイオー
ドを用いる場合、その使用目的に対応した受光面積の設
定されるチップを用いるようにすれば、特別の仕様の需
要に対しても、効果的に対応可能である。
In the above embodiment, an electrostatic dielectric phototransistor (S I
PT), but the same effect can be achieved even if the light receiving section is configured by combining a Pin diode and a static induction transistor (SIT), for example. When using a Pin diode in this way, if a chip with a light-receiving area corresponding to the purpose of use is used, it is possible to effectively meet demands for special specifications.

[発明の効果] 以上のようにこの発明に係る光混成集積回路装置にあっ
ては、受光部はその受光素子として第1および第2の静
電誘導素子を用い、その一方で光入力を検出すると共に
、他方は遮光した状態に設定してその差動出力を検出す
るようにしているものであり、また上記受光素子を構成
するトランジスタのドレインバイアスが、次段のオペア
ンプの非反転側と同電位とされるようにしている。そし
て、電源から直接バイアスされないようにしている。し
たがって、受光素子から得られる光電流は、電源側に分
岐されることがなく、全て利用されるようになるもので
あり、受光効率はもとより、S/Nも効果的に改善され
るようになる。
[Effects of the Invention] As described above, in the optical hybrid integrated circuit device according to the present invention, the light receiving section uses the first and second electrostatic induction elements as its light receiving elements, while detecting optical input. At the same time, the other side is set in a light-shielded state to detect its differential output, and the drain bias of the transistor constituting the light receiving element is the same as that of the non-inverting side of the next stage operational amplifier. It is made to be a potential. And it is made sure that it is not biased directly from the power supply. Therefore, the photocurrent obtained from the light-receiving element is not branched to the power supply side, but is fully utilized, and not only the light-receiving efficiency but also the S/N ratio is effectively improved. .

【図面の簡単な説明】[Brief explanation of the drawing]

添附図面は、この発明の一実施例に係る光混成集積回路
装置を説明するための回路図である。 11.12・・・第1および第2の受光素子(SIPT
)、13.14・・・第1および第2の電流−電圧変換
回路、15・・・差動増幅回路。
The accompanying drawings are circuit diagrams for explaining an optical hybrid integrated circuit device according to an embodiment of the present invention. 11.12...First and second light receiving elements (SIPT
), 13.14...first and second current-voltage conversion circuits, 15...differential amplifier circuit.

Claims (1)

【特許請求の範囲】 入力光を受光する静電誘導トランジスタを含み構成され
た第1の受光素子と、 入力光が遮蔽された状態で設定される、上記第1の受光
素子と同様に構成された第2の受光素子と、 上記第1および第2の受光素子からの検出信号をそれぞ
れ電圧信号として出力する第1および第2の電流−電圧
電圧変換回路と、 上記第2の電流−電圧変換回路からの出力信号を基準と
して、上記第1の電流−電圧変換回路からの出力信号を
光受信信号として出力させる差動増幅手段とを具備し、 上記第1および第2の受光素子を構成する静電誘導トラ
ンジスタのドレインバイアスが、上記電流−電圧変換回
路を構成するオペアンプを介して設定されるようにした
ことを特徴とする光混成集積回路装置。
[Claims] A first light-receiving element configured to include an electrostatic induction transistor that receives input light; and a first light-receiving element configured in the same manner as the first light-receiving element, which is set in a state where the input light is shielded. first and second current-to-voltage conversion circuits that output detection signals from the first and second light-receiving elements as voltage signals, respectively; and the second current-to-voltage conversion circuit. and differential amplification means for outputting the output signal from the first current-voltage conversion circuit as an optical reception signal using the output signal from the circuit as a reference, and forming the first and second light receiving elements. An optical hybrid integrated circuit device characterized in that the drain bias of the electrostatic induction transistor is set via an operational amplifier constituting the current-voltage conversion circuit.
JP61233890A 1986-10-01 1986-10-01 Optical hybrid integrated circuit device Pending JPS6388871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61233890A JPS6388871A (en) 1986-10-01 1986-10-01 Optical hybrid integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61233890A JPS6388871A (en) 1986-10-01 1986-10-01 Optical hybrid integrated circuit device

Publications (1)

Publication Number Publication Date
JPS6388871A true JPS6388871A (en) 1988-04-19

Family

ID=16962168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61233890A Pending JPS6388871A (en) 1986-10-01 1986-10-01 Optical hybrid integrated circuit device

Country Status (1)

Country Link
JP (1) JPS6388871A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222873A (en) * 1988-07-12 1990-01-25 Nec Corp Temperature compensation circuit of bias circuit for avalanche photodiode
JPH02200030A (en) * 1989-01-30 1990-08-08 Oki Electric Ind Co Ltd Current/voltage converting circuit
JPH03111997A (en) * 1989-09-26 1991-05-13 Matsushita Electric Works Ltd Photoelectric smoke sensor
JPH08335712A (en) * 1995-04-05 1996-12-17 Matsushita Electron Corp Photodetector and its manufacture
GB2448869A (en) * 2007-04-20 2008-11-05 Sharp Kk Stray light compensation in ambient light sensor
JP2009020101A (en) * 2007-07-12 2009-01-29 Berkin Bv Coriolis type fluid flowmeter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS521271A (en) * 1975-06-23 1977-01-07 Mitsubishi Motors Corp Fluid joint
JPS5245889A (en) * 1975-10-08 1977-04-11 Matsushita Electric Ind Co Ltd Photoelectric onversion circuit
JPS55158677A (en) * 1979-05-29 1980-12-10 Hitachi Ltd Light-signal sensor
JPS6199389A (en) * 1984-10-19 1986-05-17 Semiconductor Res Found Semiconductor light detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS521271A (en) * 1975-06-23 1977-01-07 Mitsubishi Motors Corp Fluid joint
JPS5245889A (en) * 1975-10-08 1977-04-11 Matsushita Electric Ind Co Ltd Photoelectric onversion circuit
JPS55158677A (en) * 1979-05-29 1980-12-10 Hitachi Ltd Light-signal sensor
JPS6199389A (en) * 1984-10-19 1986-05-17 Semiconductor Res Found Semiconductor light detector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222873A (en) * 1988-07-12 1990-01-25 Nec Corp Temperature compensation circuit of bias circuit for avalanche photodiode
JPH02200030A (en) * 1989-01-30 1990-08-08 Oki Electric Ind Co Ltd Current/voltage converting circuit
JPH03111997A (en) * 1989-09-26 1991-05-13 Matsushita Electric Works Ltd Photoelectric smoke sensor
JPH08335712A (en) * 1995-04-05 1996-12-17 Matsushita Electron Corp Photodetector and its manufacture
GB2448869A (en) * 2007-04-20 2008-11-05 Sharp Kk Stray light compensation in ambient light sensor
JP2009020101A (en) * 2007-07-12 2009-01-29 Berkin Bv Coriolis type fluid flowmeter

Similar Documents

Publication Publication Date Title
US5410145A (en) Light detector using reverse biased photodiodes with dark current compensation
TWI302194B (en) Apparatus and method for sensing ambient light
US5644385A (en) Distance measuring device using position sensitive light detector
CN108362377B (en) Low-frequency low-noise balanced homodyne detector
JP2574780B2 (en) Reflective photoelectric switch
KR20090030197A (en) Light detection apparatus
US8471621B2 (en) Circuit and method for performing arithmetic operations on current signals
JPS6388871A (en) Optical hybrid integrated circuit device
RU2290614C1 (en) Two-channel spectral ratio pyrometer
JPH04252923A (en) Photo detecting circuit
JP2004179651A5 (en)
US4744105A (en) Receiver using optical feedback
JPS63207175A (en) Optical hybrid integrated circuit device
CN108534893A (en) A kind of photoelectric detective circuit for optical heterodyne detection
JP2000261385A (en) Optical signal receiving circuit
JP3534443B2 (en) Optical frequency mixing device
JPH0451774B2 (en)
JP2000216425A (en) Photoelectric mixer
JP2928616B2 (en) Photodetector
JPS6285832A (en) Optical type thermometer
CN116545390A (en) Operational amplifier circuit and photoelectric detection system
JPS62202566A (en) Semiconductor photo detecting device
JPH051791Y2 (en)
JPH04247761A (en) Synchronization detection circuit
KR20230102808A (en) Balanced photodetector and receiver using the same