JPS6285832A - Optical type thermometer - Google Patents

Optical type thermometer

Info

Publication number
JPS6285832A
JPS6285832A JP22728485A JP22728485A JPS6285832A JP S6285832 A JPS6285832 A JP S6285832A JP 22728485 A JP22728485 A JP 22728485A JP 22728485 A JP22728485 A JP 22728485A JP S6285832 A JPS6285832 A JP S6285832A
Authority
JP
Japan
Prior art keywords
light
temp
signal
semiconductor
sensitive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22728485A
Other languages
Japanese (ja)
Inventor
Eiji Iri
井利 英二
Hiroaki Murata
博昭 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP22728485A priority Critical patent/JPS6285832A/en
Publication of JPS6285832A publication Critical patent/JPS6285832A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make always stable temp. measurement with good accuracy at a low cost by constituting a photodetector of an InGaAs semiconductor. CONSTITUTION:The signal light Ls and reference light Lr radiated from respective light emitting devices 6, 10 are joined in a joining device 14 and are thereafter irradiated to a semiconductor temp. sensitive element 4 of a temp. sensor 2. The wavelength of the reference light Lr is larger than the fluctuation range at the optical absorption end of the temp. sensitive element 4 and therefore, said light transmits the temp. sensitive element 4 as it without being absorbed by said element. On the other hand, the signal light Ls receives the absorption corresponding to the temp. change of the temp. sensitive element 4 and the quantity of the light transmitted through the element is changed. The signal light Ls and reference light Lr transmitted through the temp. sensitive element 4 of the temp. sensor 2 are both detected by the photodetector 18 of the PIN photodiode constituted of the InGaAs semiconductor of the photodetector 16. The photodetection signal outputted from the photodetector 18 is transmitted to a signal processing circuit 20 of the next stage by which the external temp. is calculated.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、半導体のエネルギーギャップの温度変化を利
用した2波長方式の光学式温度計に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a two-wavelength optical thermometer that utilizes temperature changes in the energy gap of a semiconductor.

(ロ)従来技術とその問題点 一般に、GaAsなどの半導体は、温度変化によってエ
ネルギーギャップか変化し、これに伴ない光学的吸収端
も変化する。たとえば、第2図に示すように、温度がT
5、T2、T1、・・と高温側に変化すると、光学的吸
収端かλg1、λg2、λg3、・・・というように短
波長側から長波長側に移行する。
(b) Prior art and its problems In general, the energy gap of semiconductors such as GaAs changes with temperature changes, and the optical absorption edge changes accordingly. For example, as shown in FIG.
5, T2, T1, and so on, the optical absorption edge shifts from the short wavelength side to the long wavelength side, such as λg1, λg2, λg3, and so on.

したがって、このような半導体で構成された温度感知素
子に対して、その光学的吸収端の温度変動範囲とオーバ
ラップする波長範囲を有する信号光Ls(ピーク波長λ
S)を透過さ仕ろと、外部温度によってその信号光Ls
の透過光量が変化するので、この現象を利用して光学式
温度計を構成することができる。
Therefore, for a temperature sensing element made of such a semiconductor, signal light Ls (peak wavelength λ
S), the signal light Ls changes depending on the external temperature.
Since the amount of transmitted light changes, an optical thermometer can be constructed by utilizing this phenomenon.

このような半導体温度感知素子を用いた光学式温度計に
おいて、信号光Lsを単独で使用する場合には、光ファ
イバの屈曲による損失や光コネクタ部の接続損失のばら
つき等の外的要因によって透過光量が変化するため、測
定誤差を生じ、外部温度を精度良く検出することができ
なくなる。このため、従来は、光学的吸収端の温度変動
範囲よりら波長の大きい参照光Lr(ピーク波長λr)
を同時に使用して信号光Lsの透過光量変化を補償する
ようにした、いわゆる2波長方式の乙のが採用されてい
る。
In an optical thermometer using such a semiconductor temperature sensing element, when the signal light Ls is used alone, the transmission may be reduced due to external factors such as loss due to bending of the optical fiber or variation in connection loss of the optical connector. Since the amount of light changes, measurement errors occur, making it impossible to accurately detect the external temperature. For this reason, conventionally, the reference light Lr (peak wavelength λr) whose wavelength is larger than the temperature fluctuation range of the optical absorption edge
A so-called two-wavelength system is adopted in which the transmitting signal light Ls is used at the same time to compensate for changes in the amount of transmitted light of the signal light Ls.

ところで、従来の2波長方式の光学式温度計では、たと
えば、信号光Lsの発光素子としてAlGaAs系の発
光ダイオードが、参照光L rの発光素子としてInG
aAs系の発光ダイオードがそれぞれ使用され、また、
受光素子として信号光Lsから参照光Lrまでの波長範
囲に渡る感度特性を有するGe系のフォトダイオード(
PDあるいはAPD)が使用されている。なお、Si系
のフォトダイオードは、波長感度特性が悪いために実用
に適さない。
By the way, in a conventional two-wavelength optical thermometer, for example, an AlGaAs light emitting diode is used as the light emitting element for the signal light Ls, and an InG light emitting diode is used as the light emitting element for the reference light Lr.
aAs-based light emitting diodes are used, and
As a light-receiving element, a Ge-based photodiode (
PD or APD) is used. Note that Si-based photodiodes are not suitable for practical use because of poor wavelength sensitivity characteristics.

ところが、上記のGe系の受光素子は、暗電流か温度に
よって指数関数的に増加するので、この影響を取り除か
ないと精度良い温度測定が不可能となる。このため、従
来は、受光素子を恒温槽内に配置したり、チョッパで入
射光をパルス状にして受光素子からの出力信号を交流化
するなどして暗電流の影響を除去4″ろようにしている
。しかしなから、このような手段を講じろと、装置が大
形化し、高価になるばかってなく、受光側の信号処理回
路か複雑になる。さらに、Ge系の受光素子では、41
2列抵抗が小さい、雑音等価パワーが大きく微弱光に対
するSZN比が悪いなどの問題らある。
However, in the above-mentioned Ge-based light-receiving element, the dark current increases exponentially with temperature, so unless this influence is removed, accurate temperature measurement becomes impossible. For this reason, in the past, attempts were made to remove the effects of dark current by placing the light receiving element in a thermostatic chamber, or using a chopper to pulse the incident light and converting the output signal from the light receiving element to AC. However, taking such measures would not only make the device larger and more expensive, but also complicate the signal processing circuit on the light receiving side.Furthermore, with Ge-based light receiving elements, 41
There are problems such as the second row resistance is small, the noise equivalent power is large, and the SZN ratio for weak light is poor.

本発明は、従来のかかる問題点を解消し、常に安定した
精度良い温度測定かできるようにするととらに、安価で
実用に適した光学式温度計を提供することを目的とする
SUMMARY OF THE INVENTION An object of the present invention is to solve these conventional problems and to provide an optical thermometer that is inexpensive and suitable for practical use, in addition to being able to constantly measure temperature with high precision.

(ハ)問題点を解決するための手段 本発明は」二記の目的を達成するために、温度変化に対
応してエネルギーギャップが変動する半導体温度感知素
子を有する温度センサを備え、この温度センサのifI
記温度感知素子に対して互いにピーク波長が異なる信号
光と参照光とを透過させ、透過した面記信号光と参照光
とを受光素子で受光して両者の光強度比に基づいて外部
温度を検知する2波長方式の光学式温度計において、前
記受光素子をInGaAs系半導体で構成している。
(c) Means for Solving the Problems In order to achieve the objects described in 2., the present invention is provided with a temperature sensor having a semiconductor temperature sensing element whose energy gap changes in response to temperature changes. ifI of
Signal light and reference light having different peak wavelengths are transmitted through the temperature sensing element, and the transmitted signal light and reference light are received by the light receiving element and the external temperature is determined based on the light intensity ratio between the two. In the two-wavelength detection optical thermometer, the light receiving element is made of an InGaAs semiconductor.

(ニ)実施例 以下、本発明を図面に示す実施例に基づいて詳細に説明
する。
(d) Examples Hereinafter, the present invention will be explained in detail based on examples shown in the drawings.

第1図は、本発明の実施例に係る光学式温度計の構成図
である。同図において、符号lは2波長方式の光学式温
度計、2は温度変化に対応してエネルギーギャップが変
動する半導体温度感知素子11を存する温度センサであ
る。また、6は信号光L sを発生ずるAlGaAs系
の発光ダイオード8が内蔵された第1発光器、10は参
照光Lrを発生するInGaAs系の発光ダイオードが
内蔵された第2発光器である。したがって、本例の場合
、信号光Lsのピーク波長は0.87μm1参照光Lr
のピーク波長は1.3μmにそれぞれ設定されている。
FIG. 1 is a configuration diagram of an optical thermometer according to an embodiment of the present invention. In the figure, reference numeral 1 denotes a two-wavelength optical thermometer, and 2 denotes a temperature sensor including a semiconductor temperature sensing element 11 whose energy gap changes in response to temperature changes. Further, 6 is a first light emitter in which an AlGaAs light emitting diode 8 for generating the signal light Ls is built in, and 10 is a second light emitter in which an InGaAs light emitting diode is built in for generating the reference light Lr. Therefore, in the case of this example, the peak wavelength of signal light Ls is 0.87 μm1 reference light Lr
The peak wavelength of each is set to 1.3 μm.

14は第1発光器6からの信号光L sと第2発光器1
0からの参照光Lrとを合流する合流器である。また、
16は温度センサ2の前記温度感知素子4を透過した信
号光Lsと参照光L rとを共に受光する受光器であっ
て、この受光器16には、InGaAs系半導体で構成
されたPINフォトダイオードの受光素子18か内蔵さ
れている。このInG aA s系半導体の受光素子1
8は、暗電流が25°CでlnA程度、40℃てl0n
A程度と極めて小さく、また、並列抵抗が大きく、雑音
等価パワーか大きいなとの特性を有している。
14 is the signal light Ls from the first light emitter 6 and the second light emitter 1
This is a merging device that merges the reference light Lr from 0. Also,
Reference numeral 16 denotes a light receiver that receives both the signal light Ls and the reference light Lr that have passed through the temperature sensing element 4 of the temperature sensor 2, and this light receiver 16 includes a PIN photodiode made of an InGaAs semiconductor. A light receiving element 18 is built-in. This InGaAs s semiconductor light receiving element 1
8 has a dark current of about 1nA at 25°C and 10n at 40°C.
It has the characteristics that it is extremely small at about A, has a large parallel resistance, and has a large noise equivalent power.

20は受光器16で受光された信号光Lsと参照光Lr
とに基づいて出力される各光検出信号から信号光L s
と参照光Lrとの強度比に基づいて外部温度を算出する
信号処理回路、22は光ファイバである。
20 is the signal light Ls received by the light receiver 16 and the reference light Lr.
Signal light L s from each photodetection signal output based on
A signal processing circuit 22 is an optical fiber that calculates the external temperature based on the intensity ratio of the reference light Lr and the reference light Lr.

上記構成の光学式温度計において、第1発光器6の発光
ダイオード8から信号光Lsが、第2発光器10の発光
ダイオード12から参照光Lrがそれぞれ時分割多重方
式で出力される。各発光器6.10から放射された信号
光Lsと参照光Lrとは合流器14て合流された後、共
に温度センサ2の導体温度感知素子4に照射され。その
際、参照光L「の波長は、半導体温度感知素子4の光学
的吸収端の変動範囲よりも大きいために、該温度感知素
子4に吸収されることなくそのまま透過する。
In the optical thermometer having the above configuration, the signal light Ls is output from the light emitting diode 8 of the first light emitter 6, and the reference light Lr is output from the light emitting diode 12 of the second light emitter 10 in a time division multiplexing manner. The signal light Ls and the reference light Lr emitted from each light emitter 6.10 are combined at the combiner 14, and then both are irradiated onto the conductor temperature sensing element 4 of the temperature sensor 2. At this time, since the wavelength of the reference light L'' is larger than the variation range of the optical absorption edge of the semiconductor temperature sensing element 4, it is not absorbed by the temperature sensing element 4 and is transmitted as it is.

一方、信号光Lsは、半導体温度感知素子4の温度変化
に応じた吸収を受けてその透過光量が変化する。
On the other hand, the signal light Ls is absorbed in accordance with the temperature change of the semiconductor temperature sensing element 4, and the amount of transmitted light changes.

そして、温度センサ2の半導体温度感知素子4を透過し
た信号光Lsと参照光Lrは、共に受光器16のInG
aAs系半導体で構成されたPINフォトダイオードの
受光素子18で受光される。受光素子18からは受光し
た信号光Lsと参照光Lrの光量に対応した光検出信号
がそれぞれ出力され、これらの光検出信号が次段の信号
処理回路20に送出される。したがって、信号処理回路
20は、信号光Lsと参照光Lrに信号光Lsと参照光
Lrとの強度比に基づいて外部温度を算出する。すなわ
ち、いま、受光器16から出力される信号光L−sに基
づく検出電圧をVs、参照光Lrに基づく検出電圧をV
rとすると、 Vs=A、αC8α5(t)            
(1)V r = A 2 αc t        
       (2)ここに、A1、A、は発光、受光
素子や回路系の特性によって決まる定数、C5(t)は
半導体温度感知素子4の温度によって変化する透光率、
αCいαC3はそれぞれ光ファイバ22の曲がりなどに
起因して伝送中に生しる光の透過率である。ここで、上
記VsとVrとの比をV。とすると、V o= V s
/ V r−(A I/ A 2)C5(tXαc+/
αC2)となる。(3)式において、A、SA、は既知
の値であり、また、光ファイバ22の伝送中に信号光L
Sと参照光Lrとか同し損失を受けるときには、αc+
/αC7の比率はlとなるので、 V oCca 5(t)              
 (4)すなわち、Voを測定することで外部温度が算
出される。
The signal light Ls and the reference light Lr that have passed through the semiconductor temperature sensing element 4 of the temperature sensor 2 are both in the InG state of the light receiver 16.
The light is received by the light receiving element 18, which is a PIN photodiode made of an aAs semiconductor. The light-receiving element 18 outputs photodetection signals corresponding to the amounts of the received signal light Ls and reference light Lr, respectively, and these photodetection signals are sent to the signal processing circuit 20 at the next stage. Therefore, the signal processing circuit 20 calculates the external temperature based on the intensity ratio between the signal light Ls and the reference light Lr. That is, now, the detection voltage based on the signal light L-s output from the light receiver 16 is Vs, and the detection voltage based on the reference light Lr is Vs.
If r, Vs=A, αC8α5(t)
(1) V r = A 2 αc t
(2) Here, A1, A are constants determined by the characteristics of the light emitting and light receiving elements and the circuit system, C5(t) is the light transmittance that changes depending on the temperature of the semiconductor temperature sensing element 4,
αC and αC3 are transmittances of light generated during transmission due to bending of the optical fiber 22, respectively. Here, the ratio of the above Vs and Vr is V. Then, Vo=Vs
/ V r−(A I/ A 2) C5(tXαc+/
αC2). In equation (3), A and SA are known values, and the signal light L during transmission through the optical fiber 22
When S and reference light Lr suffer the same loss, αc+
The ratio of /αC7 is l, so V oCca 5(t)
(4) That is, the external temperature is calculated by measuring Vo.

(へ)効果 以上のように本発明によれば、受光素子を[r+GaA
s系半導体で構成したので、暗電流が少ない、並列抵抗
が大きく、雑音等価パワーが大きいなどの特性が得られ
る。このため、常に安定した精度良い温度測定ができる
ようになるとともに、安価で実用に適した光学式温度計
が得られる等の効果が発揮される。
(f) Effect As described above, according to the present invention, the light receiving element is [r+GaA
Since it is constructed from an s-based semiconductor, characteristics such as low dark current, high parallel resistance, and high noise equivalent power can be obtained. Therefore, stable and accurate temperature measurement can be performed at all times, and an optical thermometer that is inexpensive and suitable for practical use can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す光学式温度計の概略構成
図、第2図は温度感知素子の光学的吸収端、信号光、参
照先の各関係を示す説明図である。 1・・・光学式温度計、2・・・温度センサ、4・・半
導体温度感知素子、18・・・受光素子。
FIG. 1 is a schematic configuration diagram of an optical thermometer showing an embodiment of the present invention, and FIG. 2 is an explanatory diagram showing the relationships among the optical absorption edge of the temperature sensing element, signal light, and reference destination. DESCRIPTION OF SYMBOLS 1... Optical thermometer, 2... Temperature sensor, 4... Semiconductor temperature sensing element, 18... Light receiving element.

Claims (1)

【特許請求の範囲】[Claims] (1)温度変化に対応してエネルギーギャップが変動す
る半導体温度感知素子を有する温度センサを備え、この
温度センサの前記温度感知素子に対して互いにピーク波
長が異なる信号光と参照光とを透過させ、透過した前記
信号光と参照光とを受光素子で受光して両者の光強度比
に基づいて外部温度を検知する2波長方式の光学式温度
計において、 前記受光素子をInGaAs系半導体で構成したことを
特徴とする光学式温度計。
(1) A temperature sensor having a semiconductor temperature sensing element whose energy gap changes in response to temperature changes is provided, and a signal light and a reference light having different peak wavelengths are transmitted through the temperature sensing element of the temperature sensor. , a two-wavelength optical thermometer that receives the transmitted signal light and reference light with a light receiving element and detects an external temperature based on the light intensity ratio of the two, wherein the light receiving element is made of an InGaAs-based semiconductor. An optical thermometer characterized by:
JP22728485A 1985-10-11 1985-10-11 Optical type thermometer Pending JPS6285832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22728485A JPS6285832A (en) 1985-10-11 1985-10-11 Optical type thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22728485A JPS6285832A (en) 1985-10-11 1985-10-11 Optical type thermometer

Publications (1)

Publication Number Publication Date
JPS6285832A true JPS6285832A (en) 1987-04-20

Family

ID=16858399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22728485A Pending JPS6285832A (en) 1985-10-11 1985-10-11 Optical type thermometer

Country Status (1)

Country Link
JP (1) JPS6285832A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5779365A (en) * 1992-11-25 1998-07-14 Minnesota Mining And Manufacturing Company Temperature sensor for medical application
US6019507A (en) * 1992-11-25 2000-02-01 Terumo Cardiovascular Systems Corporation Method of making temperature sensor for medical application
JP2011252716A (en) * 2010-05-31 2011-12-15 Sumitomo Electric Device Innovations Inc Light intensity measurement method
US10139290B2 (en) 2014-03-04 2018-11-27 Tokyo Electron Limited Optical temperature sensor and method for manufacturing optical temperature sensor
US10139289B2 (en) 2014-03-04 2018-11-27 Tokyo Electron Limited Temperature measurement device, light emitting module and temperature measurement method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5680179A (en) * 1979-12-05 1981-07-01 Nec Corp Planar type hetero-junction light detector
JPS57198668A (en) * 1981-06-01 1982-12-06 Fujitsu Ltd Light receiving element
JPS5861679A (en) * 1981-10-07 1983-04-12 Kokusai Denshin Denwa Co Ltd <Kdd> Avalanche photo diode with quantum well
JPS59168328A (en) * 1983-03-15 1984-09-22 Toshiba Corp Optical-temperature measuring device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5680179A (en) * 1979-12-05 1981-07-01 Nec Corp Planar type hetero-junction light detector
JPS57198668A (en) * 1981-06-01 1982-12-06 Fujitsu Ltd Light receiving element
JPS5861679A (en) * 1981-10-07 1983-04-12 Kokusai Denshin Denwa Co Ltd <Kdd> Avalanche photo diode with quantum well
JPS59168328A (en) * 1983-03-15 1984-09-22 Toshiba Corp Optical-temperature measuring device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5779365A (en) * 1992-11-25 1998-07-14 Minnesota Mining And Manufacturing Company Temperature sensor for medical application
US6019507A (en) * 1992-11-25 2000-02-01 Terumo Cardiovascular Systems Corporation Method of making temperature sensor for medical application
US6283632B1 (en) 1992-11-25 2001-09-04 Terumo Cardiovascular Systems Corporation Method of measuring temperature
JP2011252716A (en) * 2010-05-31 2011-12-15 Sumitomo Electric Device Innovations Inc Light intensity measurement method
US8520199B2 (en) 2010-05-31 2013-08-27 Sumitomo Electric Device Innovations, Inc. Method for measuring optical input power by avalanche photodiode
US10139290B2 (en) 2014-03-04 2018-11-27 Tokyo Electron Limited Optical temperature sensor and method for manufacturing optical temperature sensor
US10139289B2 (en) 2014-03-04 2018-11-27 Tokyo Electron Limited Temperature measurement device, light emitting module and temperature measurement method

Similar Documents

Publication Publication Date Title
JP2574780B2 (en) Reflective photoelectric switch
CN111982168A (en) High-precision fiber grating signal demodulation system and method thereof
RU2290614C1 (en) Two-channel spectral ratio pyrometer
JPS6285832A (en) Optical type thermometer
CN105157830A (en) Laser power meter based on infrared radiation measurement
US4669872A (en) Temperature measuring device
CN204788657U (en) Laser power meter based on infrared measures
US4749275A (en) Optical power meter with automatic switching of photodetectors having different wavelength sensitivity characteristics
GB2343745A (en) Light receiving circuit for use in electrooptic sampling oscilloscope
CN110553987A (en) gas detection method and system
JPS6388871A (en) Optical hybrid integrated circuit device
JPS5924397B2 (en) light wave distance meter
JPS6217621A (en) Optical power meter
JPH0778435B2 (en) Optical fiber inspection device
JPS6144334A (en) Temperature measuring device
Friedl LiDAR and autonomous cars: no conventional solution: TOF lidars are recognized as the norm, but FMCW systems are increasingly growing in popularity
CN216132474U (en) Fiber grating center wavelength demodulation system and demodulation instrument
KR102637771B1 (en) Balanced photodetector for polarization measurement and receiver using the same
CN217542162U (en) Time transfer detector based on single photon
JPS61225626A (en) Photometer
KR100282611B1 (en) Photodetector for wavelength stabilization device and active wavelength measurement device and manufacturing method of the photodetector
JPH0572046A (en) Optical beat frequency measuring apparatus
JPS6197540A (en) Temperature measuring apparatus
SU1137403A1 (en) Device for touch-free measuring of current
JPH07115248A (en) Semiconductor laser