JPH07115248A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH07115248A
JPH07115248A JP5260296A JP26029693A JPH07115248A JP H07115248 A JPH07115248 A JP H07115248A JP 5260296 A JP5260296 A JP 5260296A JP 26029693 A JP26029693 A JP 26029693A JP H07115248 A JPH07115248 A JP H07115248A
Authority
JP
Japan
Prior art keywords
light
laser
position detecting
incident
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5260296A
Other languages
Japanese (ja)
Inventor
Tetsuya Saito
哲哉 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP5260296A priority Critical patent/JPH07115248A/en
Publication of JPH07115248A publication Critical patent/JPH07115248A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser

Abstract

PURPOSE:To detect the wavelength fluctuation of oscillation of a semiconductor laser without using an external measuring instrument. CONSTITUTION:A laser beam 4 is turned by a ball lens 5 into an approximately parallel beam of light which are deflected. A light deflecting device 6 which can change this deflecting angle by the wavelength of an incident laser beam, and a position detecting device 7, in which the deflected parallel beam of light enter and an ouptut changes differentially depending on the position of incident beam, are provided on a laser diode 1 which impresses current on an electrode 1 and emits laser beams 3 and 4 from openings on both sides. From the differential output of the position detecting device, the wavelength fluctuation of the laser diode 1 is detected and the oscillation strength of the laser diode 1 is detected from the sum of both outputs of the position detecting device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザ光源として利用
される半導体レーザの構成に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the structure of a semiconductor laser used as a laser light source.

【0002】[0002]

【従来の技術】従来の半導体レーザの構成の一例を第5
図に示す.図5において、1はレーザダイオード、2は
電極、8はマウント、9は受光素子であり、レーザダイ
オード1は、電極2から電流が印加されると、レーザダ
イオード1の両劈開面からレーザ光3、4を出射する。
一方のレーザ光3は外部に放射されるが、他方のレーザ
光4は受光素子9に入射する。受光素子9はフォトダイ
オードから成り、レーザ光4の強度に比例した電流を出
力する。この出力電流によりレーザダイオード1の発光
強度を検出し、この検出信号に基づきレーザダイオード
1に印加する電流を変化させて、レーザ光3の強度を制
御することが一般的に行われる。
2. Description of the Related Art Fifth example of the configuration of a conventional semiconductor laser
Shown in the figure. In FIG. 5, 1 is a laser diode, 2 is an electrode, 8 is a mount, and 9 is a light receiving element. When a current is applied from the electrode 2 to the laser diode 1, the laser beam 3 is emitted from both cleaved surfaces of the laser diode 1. 4 is emitted.
One laser beam 3 is emitted to the outside, while the other laser beam 4 is incident on the light receiving element 9. The light receiving element 9 is composed of a photodiode and outputs a current proportional to the intensity of the laser light 4. It is general practice to detect the emission intensity of the laser diode 1 by this output current and change the current applied to the laser diode 1 based on this detection signal to control the intensity of the laser light 3.

【0003】[0003]

【発明が解決しようとする課題】従来の半導体レーザ
は、その発振波長の分布によってシングルモードレーザ
とマルチモードレーザに大別される。シングルモードレ
ーザからはほぼ単一波長のレーザ光が得られるが、この
波長は温度および光帰還により変動する。波長の安定性
が必要となる用途、例えば光ファイバを用いた光通信や
干渉計による光計測のための光源として利用する場合に
は、電子冷却器などにより温度を一定に保つ、あるいは
光アイソレータにより光帰還を防ぐ、等の措置を講じて
波長を安定化させている。このような場合、使用時の波
長変動を知るためには、外部にモノクロメータ等を接続
して波長を測定することが必要である。
Conventional semiconductor lasers are roughly classified into single mode lasers and multimode lasers according to the distribution of their oscillation wavelengths. A laser beam having a substantially single wavelength can be obtained from a single mode laser, but this wavelength varies depending on temperature and optical feedback. For applications requiring wavelength stability, for example, as a light source for optical communication using an optical fiber or optical measurement with an interferometer, keep the temperature constant with an electronic cooler or use an optical isolator. The wavelength is stabilized by taking measures such as preventing optical feedback. In such a case, in order to know the wavelength variation during use, it is necessary to connect a monochromator or the like to the outside and measure the wavelength.

【0004】本発明は上記の点にかんがみてなされたも
のであり、その目的は前記した課題を解決して、外部に
測定器を用いることなく、発振波長の変動を検出できる
半導体レーザを提供することにある。
The present invention has been made in view of the above points, and an object thereof is to solve the above-mentioned problems and provide a semiconductor laser capable of detecting the fluctuation of the oscillation wavelength without using an external measuring device. Especially.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本願請求項1による発明においては、レーザダイオ
ードに、このレーザダイオードから出射するレーザ光を
このレーザ光の波長に応じた偏向角で偏向する光偏向素
子と、この光偏向素子によって偏向された光の一部が入
射する位置検出素子と、を設け、この位置検出素子は、
入射光位置に対して差動的に変化する2組の信号を出力
するものとする。
In order to achieve the above object, in the invention according to claim 1 of the present application, a laser diode is provided to a laser diode at a deflection angle corresponding to the wavelength of the laser beam. An optical deflecting element for deflecting and a position detecting element on which a part of the light deflected by the optical deflecting element is incident are provided, and the position detecting element is
It is assumed that two sets of signals that change differentially with respect to the incident light position are output.

【0006】また、本願請求項2による発明において
は、光偏向素子は、平面状あるいは凹面状の反射型回折
格子からなるものとする。また、本願請求項3による発
明においては、光偏向素子は、透過型回折格子からなる
ものとする。また、本願請求項4による発明において
は、光偏向素子は、波長分散特性を有するプリズムから
なるものとする。
Further, in the invention according to claim 2 of the present application, the light deflection element is composed of a planar or concave reflection type diffraction grating. Further, in the invention according to claim 3 of the present application, the light deflection element is formed of a transmission type diffraction grating. Further, in the invention according to claim 4 of the present application, the light deflection element is formed of a prism having a wavelength dispersion characteristic.

【0007】また、本願請求項5による発明において
は、位置検出素子は、半導体光位置検出器(PSD)か
らなるものとする。また、本願請求項6による発明にお
いては、位置検出素子は、2分割されたホトダイオード
からなるものとする。
Further, in the invention according to claim 5 of the present application, the position detecting element comprises a semiconductor optical position detector (PSD). In the invention according to claim 6 of the present application, the position detecting element is composed of a photodiode divided into two.

【0008】[0008]

【作用】上記構成により、レーザダイオードから出射し
たレーザ光の内、少なくとも一方のレーザ光は、レーザ
ダイオードの出射面の近くに設けられた光偏向素子に入
射し、偏向され、少なくともその一部は位置検出素子に
入射する。レーザダイオードの出射波長が基準波長のと
き、光偏向素子によって偏向された光が、例えば、位置
検出素子の中央部に入射し、位置検出素子の両出力端か
らバランスした出力が得られる。レーザダイオードの出
射波長が変化すると、光偏向素子において、レーザ光の
出射波長変動に応じて、偏向角が変化し、位置検出素子
に入射する位置が中央部よりずれて、位置検出素子の両
出力の差をとることにより、レーザダイオードの出射波
長変動を検出することができる。また、レーザダイオー
ドの当該出射光が位置検出素子に全て入射する範囲にお
いて、位置検出素子の両出力の和から、レーザ光出力に
比例した出力が得られ、この結果、レーザダイオードの
基準波長からの出射波長の変動と、出射光の強度と、を
検出することができる。
With the above structure, at least one of the laser beams emitted from the laser diode is incident on and deflected by the optical deflecting element provided near the emission surface of the laser diode, and at least a part of the laser beam is deflected. It is incident on the position detection element. When the emission wavelength of the laser diode is the reference wavelength, the light deflected by the optical deflecting element enters, for example, the central portion of the position detecting element, and balanced outputs are obtained from both output ends of the position detecting element. When the emission wavelength of the laser diode changes, the deflection angle changes in the optical deflection element according to the variation of the emission wavelength of the laser light, and the position of incidence on the position detection element deviates from the center, and both outputs of the position detection element By taking the difference between, it is possible to detect the variation in the emission wavelength of the laser diode. Further, in the range in which all the emitted light of the laser diode is incident on the position detection element, an output proportional to the laser light output is obtained from the sum of both outputs of the position detection element. It is possible to detect the variation of the emission wavelength and the intensity of the emission light.

【0009】[0009]

【実施例】図1は本発明による一実施例による半導体レ
ーザの要部構成図、図2は他の実施例による半導体レー
ザの要部構成図、図3は一実施例による位置検出素子の
原理説明図、図4は他の実施例による位置検出素子の原
理説明図を示し、図5に対応する同一部材には同じ符号
が付してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic view of a semiconductor laser according to an embodiment of the present invention, FIG. 2 is a schematic view of a semiconductor laser according to another embodiment, and FIG. 3 is a principle of a position detecting element according to the embodiment. FIG. 4 and FIG. 4 are explanatory views of the principle of the position detecting element according to another embodiment, and the same members corresponding to FIG. 5 are denoted by the same reference numerals.

【0010】図1に本発明の一実施例を示す。この実施
例の半導体レーザは、従来技術と同様に、レーザダイオ
ード1は、電極2から電流が印加されるとその両劈開面
からレーザ光3、4を出射し、一方のレーザ光3は外部
に放射される。他方のレーザ光4は、その焦点がレーザ
ダイオード1の出射端面に一致するように設けられたボ
ールレンズ5に入射し、ほぼ平行光となって出射され
る。この出射光は、反射型回折格子から成る光偏向素子
6に入射し、ここで回折効果により偏向される。ここで
1次回折光が光偏向素子6への入射光となす角、すなわ
ち偏向角は、入射光の波長により変化する。位置検出素
子7は、レーザ光4の出射波長が基準波長のとき、上述
の光偏向素子6によって偏向された1次回折光が、例え
ば、位置検出素子7の受光面の中央部に入射するように
配置される。
FIG. 1 shows an embodiment of the present invention. In the semiconductor laser of this embodiment, the laser diode 1 emits laser light 3 and 4 from both cleaved surfaces of the laser diode 1 when a current is applied from the electrode 2, and one laser light 3 is emitted to the outside, as in the prior art. Is emitted. The other laser beam 4 enters a ball lens 5 provided so that its focal point coincides with the emission end face of the laser diode 1, and is emitted as substantially parallel light. The emitted light is incident on the light deflection element 6 composed of a reflection type diffraction grating, and is deflected there by the diffraction effect. Here, the angle formed by the first-order diffracted light with the incident light on the light deflection element 6, that is, the deflection angle, changes depending on the wavelength of the incident light. When the emission wavelength of the laser light 4 is the reference wavelength, the position detecting element 7 is configured so that the first-order diffracted light deflected by the above-mentioned optical deflecting element 6 enters the central portion of the light receiving surface of the position detecting element 7, for example. Will be placed.

【0011】この位置検出素子7は、第3図に示すよう
に高抵抗半導体基板10の一方の面にP型抵抗層11、他方
の面にN型抵抗層12がそれぞれ形成され、両面によりP
N接合を構成し、一般には半導体光位置検出器PSD(P
osition Sensitive Detector) と呼ばれるものである。
長さLの抵抗層11の両端には光電効果により生成された
光電流を取り出す一対の電極P1、P2が設けられる。抵抗
層11上に光が入射するとその強度に比例した光電流I0
が生じ、この光電流I0 は受光位置から各々の電極P1、
P2までの抵抗値R1、R2に逆比例するように分割されて、
電流I1、I2として出力される。ここで抵抗層11の抵抗率
の分布を均一にすると、抵抗値R1、R2は受光位置から各
々の電極P1、P2までの距離 (L/2)−x、 (L/2)+xに比
例するので、受光位置xと出力電流I1、I2との間には下
式の関係がある。
As shown in FIG. 3, the position detecting element 7 has a P-type resistance layer 11 formed on one surface of a high resistance semiconductor substrate 10 and an N-type resistance layer 12 formed on the other surface thereof.
An N-junction is constructed, and in general, a semiconductor optical position detector PSD (P
osition Sensitive Detector).
A pair of electrodes P1 and P2 for extracting a photocurrent generated by the photoelectric effect are provided at both ends of the resistance layer 11 having a length L. When light is incident on the resistance layer 11, a photocurrent I0 proportional to its intensity is generated.
This photocurrent I0 is generated from the light receiving position at each electrode P1,
It is divided so as to be inversely proportional to the resistance values R1 and R2 up to P2,
Output as currents I1 and I2. Here, if the resistivity distribution of the resistance layer 11 is made uniform, the resistance values R1 and R2 are proportional to the distance (L / 2) −x, (L / 2) + x from the light receiving position to the respective electrodes P1 and P2. Therefore, there is the following relationship between the light receiving position x and the output currents I1 and I2.

【0012】 x= (L/2)・{(I1-I2)/(I1+I2)} (1) 従って、レーザダイオード1の発振波長が変化すると光
偏向素子6からの1次回折光の出射方向が変化し、これ
が位置検出素子7の受光面上の入射光位置の変化とな
り、位置検出素子7の電流出力I1、I2に対し(1)式に
示した演算を行い受光位置xを求めることで、レーザダ
イオード1の発振波長の変化が検出できる。 また、位
置検出素子7の出力電流I1、I2の和は受光面に生じた光
電流I0であり、この値は入射光の強度に比例するので、
従来の半導体レーザにおけると同様に、この出力電流の
和の大きさからレーザダイオード1の発光強度を検出
し、これに基づきレーザダイオード1に印加する電流を
変化させてレーザ光3の強度を制御することができる。
X = (L / 2) · {(I1-I2) / (I1 + I2)} (1) Therefore, when the oscillation wavelength of the laser diode 1 changes, the emission direction of the first-order diffracted light from the optical deflection element 6 Changes, and this changes the position of the incident light on the light receiving surface of the position detecting element 7, and by calculating the light receiving position x by performing the calculation shown in the equation (1) on the current outputs I1 and I2 of the position detecting element 7. The change in the oscillation wavelength of the laser diode 1 can be detected. Further, the sum of the output currents I1 and I2 of the position detection element 7 is the photocurrent I0 generated on the light receiving surface, and since this value is proportional to the intensity of the incident light,
Similar to the conventional semiconductor laser, the emission intensity of the laser diode 1 is detected from the magnitude of the sum of the output currents, and the current applied to the laser diode 1 is changed based on this to control the intensity of the laser light 3. be able to.

【0013】上記実施例においては、レーザ光4はボー
ルレンズ5を介して光偏向素子6に入射したが、本発明
はこれに限定されることない。第2図に他の実施例を示
す。第2図において、レーザ光4を凹面反射型回折格子
から成る光偏向素子6Aに入射させると、ここで回折され
た1次回折光は、位置検出素子7に集光し、入射する。
この場合も第1図に示した一実施例と同様の作用が得ら
れる。即ち、レーザダイオード1を出射したレーザ光4
は、凹面反射型回折格子から成る光偏向素子6によって
回折され、これは位置検出素子7の受光面上にほぼ集光
され入射する。レーザ光4の出射波長が基準波長のと
き、上述の光偏向素子6によって偏向された1次回折光
が、位置検出素子7の受光面の中央部に入射するように
配置することにより、レーザ光4の波長の変動が入射光
位置の変化となり、位置検出素子7の両出力I1、I2の差
よりレーザ光4の波長の変動を検出できる。
In the above embodiment, the laser beam 4 is incident on the light deflection element 6 via the ball lens 5, but the present invention is not limited to this. FIG. 2 shows another embodiment. In FIG. 2, when the laser beam 4 is made incident on the optical deflecting element 6A composed of a concave reflection type diffraction grating, the first-order diffracted light diffracted here is condensed and made incident on the position detecting element 7.
Also in this case, the same operation as that of the embodiment shown in FIG. 1 can be obtained. That is, the laser light 4 emitted from the laser diode 1
Is diffracted by the light deflecting element 6 composed of a concave reflection type diffraction grating, and it is substantially condensed and incident on the light receiving surface of the position detecting element 7. When the emission wavelength of the laser light 4 is the reference wavelength, the first-order diffracted light deflected by the above-mentioned optical deflecting element 6 is arranged so as to be incident on the central portion of the light receiving surface of the position detecting element 7. Changes in the incident light position, and the change in the wavelength of the laser light 4 can be detected from the difference between the outputs I1 and I2 of the position detection element 7.

【0014】さらに、本発明における光偏向素子6は、
反射型回折格子でなく、透過型回折格子、あるいは、波
長分散のある材料で作られるプリズム、で構成しても、
レーザ光4の波長の変動によって、位置検出素子7の入
射位置の変化となり、レーザ光4の波長の変動を検出で
きる。また、位置検出素子7は、図3で説明した半導体
光位置検出器PSDでなく、図4に図示した2分割され
たホトダイオードで構成することができる。図4の (A)
において、2分割されたホトダイオードは、2つのホト
ダイオードの受光面21、22を平面上に隣接して構成され
る。これらの受光面21、22上に入射する入射光23の位置
と2つのホトダイオードの電流出力I1、I2は、第4図の
(B) の点線に示すよう関係となり、また、両ホトダイオ
ードの電流I1、I2の差電流が実線に示すよう関係とな
る。従って、入射光が受光面の境界から外れない範囲で
は、電流出力の差の大きさから入射位置が求まり、ま
た、電流出力の和の大きさから入射光強度が求まる。つ
まり、第3図に示すした一実施例における半導体光位置
検出器PSDと同等の機能が2分割PDでも達成でき
る。なお、第4図の(B) において、入射光が受光面の境
界から外れるところまでくると、ホトダイオードへの入
射光が減じるので、図示されたように、検出出力は減少
する。
Further, the light deflection element 6 in the present invention is
Even if it is composed of a transmission type diffraction grating or a prism made of a material with wavelength dispersion, instead of a reflection type diffraction grating,
A change in the wavelength of the laser light 4 causes a change in the incident position of the position detection element 7, and a change in the wavelength of the laser light 4 can be detected. Further, the position detecting element 7 can be composed of not the semiconductor optical position detector PSD described in FIG. 3 but the photodiode divided into two shown in FIG. Figure 4 (A)
In, the two-divided photodiode is constructed by adjoining the light receiving surfaces 21 and 22 of the two photodiodes on a plane. The position of the incident light 23 incident on these light receiving surfaces 21 and 22 and the current outputs I1 and I2 of the two photodiodes are shown in FIG.
The relationship is as shown by the dotted line in (B), and the relationship between the currents I1 and I2 of both photodiodes is as shown by the solid line. Therefore, in a range in which the incident light does not deviate from the boundary of the light receiving surface, the incident position is obtained from the magnitude of the current output difference, and the incident light intensity is obtained from the sum of the current outputs. That is, the same function as that of the semiconductor optical position detector PSD in the embodiment shown in FIG. 3 can be achieved by the two-division PD. In FIG. 4 (B), when the incident light comes out of the boundary of the light receiving surface, the incident light to the photodiode is reduced, so that the detection output is reduced as shown in the figure.

【0015】[0015]

【発明の効果】以上述べたように本発明の構成によれ
ば、レーザ光は、入射波長により偏向角が変化する光偏
向素子を介して、位置検出素子に入射し、位置検出素子
上の入射位置から半導体レーザの発振波長を検出するこ
とができ、従来の半導体レーザに比べてわずかな部品を
追加するだけで、外部に波長測定器を用いることなく、
常時、半導体レーザの発振波長の変動を監視することが
できる。
As described above, according to the configuration of the present invention, the laser light is incident on the position detecting element via the optical deflecting element whose deflection angle changes depending on the incident wavelength, and is incident on the position detecting element. The oscillation wavelength of the semiconductor laser can be detected from the position, only a few parts are added compared to the conventional semiconductor laser, without using an external wavelength measuring device.
The fluctuation of the oscillation wavelength of the semiconductor laser can be constantly monitored.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による半導体レーザの一実施例の要部構
成図
FIG. 1 is a configuration diagram of a main part of an embodiment of a semiconductor laser according to the present invention.

【図2】半導体レーザの他の実施例の要部構成図FIG. 2 is a configuration diagram of a main part of another embodiment of a semiconductor laser.

【図3】一実施例による位置検出素子の原理説明図FIG. 3 is an explanatory view of the principle of the position detecting element according to the embodiment.

【図4】他の実施例による位置検出素子の原理説明図FIG. 4 is an explanatory view of the principle of the position detecting element according to another embodiment.

【図5】従来の技術における半導体レーザの要部構成図FIG. 5 is a configuration diagram of a main part of a semiconductor laser according to a conventional technique.

【符号の説明】[Explanation of symbols]

1 レーザダイオード 2 電極 3、4 レーザ光 5 ボールレンズ 6、6A 光偏向素子 7 位置検出素子 8 マウント 9 受光素子 10 高抵抗半導体基板 21、22 受光面 23 入射光 11 P型抵抗層 12 N型抵抗層 I0,I1,I2 光電流 P1,P2 電極 1 Laser diode 2 Electrode 3, 4 Laser light 5 Ball lens 6, 6A Optical deflection element 7 Position detection element 8 Mount 9 Light receiving element 10 High resistance semiconductor substrate 21, 22 Light receiving surface 23 Incident light 11 P type resistance layer 12 N type resistance Layer I0, I1, I2 Photocurrent P1, P2 Electrode

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】レーザダイオードと、 このレーザダイオードから出射するレーザ光を、このレ
ーザ光の波長に応じた偏向角で偏向する光偏向素子と、 この光偏向素子によって偏向された光の一部が入射する
位置検出素子と、を備え、 この位置検出素子は、入射光位置に対して差動的に変化
する、2組の信号を出力するものである、 ことを特徴とする半導体レーザ。
1. A laser diode, an optical deflection element for deflecting laser light emitted from the laser diode at a deflection angle according to the wavelength of the laser light, and a part of the light deflected by the optical deflection element. An incident position detecting element, and the position detecting element outputs two sets of signals that differentially change with respect to the incident light position.
【請求項2】請求項1に記載の半導体レーザにおいて、
光偏向素子は、平面状あるいは凹面状の反射型回折格子
からなる、ことを特徴とする半導体レーザ。
2. The semiconductor laser according to claim 1, wherein
The semiconductor laser is characterized in that the light deflection element comprises a planar or concave reflection diffraction grating.
【請求項3】請求項1または請求項2に記載の半導体レ
ーザにおいて、光偏向素子は、透過型回折格子からな
る、ことを特徴とする半導体レーザ。
3. The semiconductor laser according to claim 1, wherein the light deflection element is a transmission type diffraction grating.
【請求項4】請求項1ないし請求項3のいずれかの項に
記載の半導体レーザにおいて、光偏向素子は、波長分散
特性を有するプリズムからなる、ことを特徴とする半導
体レーザ。
4. The semiconductor laser according to claim 1, wherein the light deflection element comprises a prism having a wavelength dispersion characteristic.
【請求項5】請求項1ないし請求項4のいずれかの項に
記載の半導体レーザにおいて、位置検出素子は、半導体
光位置検出器(PSD)からなる、ことを特徴とする半
導体レーザ。
5. The semiconductor laser according to claim 1, wherein the position detecting element is a semiconductor optical position detector (PSD).
【請求項6】請求項1ないし請求項5のいずれかの項に
記載の半導体レーザにおいて、位置検出素子は、2分割
されたホトダイオードからなる、ことを特徴とする半導
体レーザ。
6. The semiconductor laser according to claim 1, wherein the position detecting element is a photodiode divided into two.
JP5260296A 1993-10-19 1993-10-19 Semiconductor laser Pending JPH07115248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5260296A JPH07115248A (en) 1993-10-19 1993-10-19 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5260296A JPH07115248A (en) 1993-10-19 1993-10-19 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPH07115248A true JPH07115248A (en) 1995-05-02

Family

ID=17346078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5260296A Pending JPH07115248A (en) 1993-10-19 1993-10-19 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH07115248A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1322006A1 (en) * 2001-12-21 2003-06-25 Agilent Technologies, Inc. (a Delaware corporation) Apparatus for detecting wavelength drift and method therefor
EP1345297A1 (en) * 2002-03-16 2003-09-17 Agilent Technologies, Inc. (a Delaware corporation) An arrangement for monitoring the emission wavelength and power of an optical source
JP2010008706A (en) * 2008-06-26 2010-01-14 Shimadzu Corp Diffraction grating and spectrometer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1322006A1 (en) * 2001-12-21 2003-06-25 Agilent Technologies, Inc. (a Delaware corporation) Apparatus for detecting wavelength drift and method therefor
US6919963B2 (en) 2001-12-21 2005-07-19 Agilent Technologies, Inc. Apparatus for detecting wavelength drift and method therefor
EP1345297A1 (en) * 2002-03-16 2003-09-17 Agilent Technologies, Inc. (a Delaware corporation) An arrangement for monitoring the emission wavelength and power of an optical source
JP2010008706A (en) * 2008-06-26 2010-01-14 Shimadzu Corp Diffraction grating and spectrometer

Similar Documents

Publication Publication Date Title
US7065112B2 (en) Wavelength locker
US6836330B2 (en) Optical beamsplitter for a polarization insensitive wavelength detector and a polarization sensor
US6859284B2 (en) Apparatus and method for determining wavelength from coarse and fine measurements
US4865446A (en) Laser power and energy meter
Zheng et al. Self-referenced reflective intensity modulated fiber optic displacement sensor
US6345060B1 (en) Frequency stabilized semiconductor laser
JP2007057324A (en) Fiber optic measuring system
JPS60205216A (en) Position detection apparatus using moire fringes
RU2290614C1 (en) Two-channel spectral ratio pyrometer
USH371H (en) Optical fiber interferometer
JPH07115248A (en) Semiconductor laser
US7280216B2 (en) Method and apparatus for determining the wavelength of an input light beam
US6426494B1 (en) Optical signal detector and optical signal detecting method
US5822049A (en) Optical fiber coupler type wavelength measuring apparatus
Kelly et al. Techniques for using the position sensitivity of silicon photodetectors to provide remote machine control
EP0506358B1 (en) Sampling-type optical voltage detector
US7309854B2 (en) Photo-detectors and optical devices incorporating same
JPS61112905A (en) Optical measuring apparatus
CN218297180U (en) Wavelength stabilization control circuit applied to optical fiber gyroscope light source and optical fiber gyroscope
JPS6285832A (en) Optical type thermometer
US20230375337A1 (en) Detection device, system and method for determination of incidence angle of an optical beam
JP4595697B2 (en) Reflective optical gap sensor
JPS62282474A (en) Semiconductor laser device
JP4039217B2 (en) Wavelength measuring device
JPH05264687A (en) Optical magnetic field sensor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050928

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees