JPS6197540A - Temperature measuring apparatus - Google Patents

Temperature measuring apparatus

Info

Publication number
JPS6197540A
JPS6197540A JP22012284A JP22012284A JPS6197540A JP S6197540 A JPS6197540 A JP S6197540A JP 22012284 A JP22012284 A JP 22012284A JP 22012284 A JP22012284 A JP 22012284A JP S6197540 A JPS6197540 A JP S6197540A
Authority
JP
Japan
Prior art keywords
light
temperature
wavelength
optical
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22012284A
Other languages
Japanese (ja)
Inventor
Naoyuki Konishi
小西 直行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP22012284A priority Critical patent/JPS6197540A/en
Publication of JPS6197540A publication Critical patent/JPS6197540A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/12Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To enable a stable measurement of temperature regardless of changes in the light source power and changes in the loss of an optical fiber, by receiving light with two photoelectric converters different in the wavelength sensitivity to determine the output ratio thereof. CONSTITUTION:Light from a light emitting diode 1 is introduced to a tempera ture sensor 2 with a first optical fiber 3a and the transmission light power 10 varies with the temperature sensor adapted to very in the degree of the wavelength absorption depending on the temperature. Then, the transmission light is introduced to a photo distributor 4 through a second optical fiber 3b. The light is divided in two directions and converted into light from electricity with a silicon based photodiode 5 and a germanium based photodiode 6 separate ly. In this case, outputs thereof vary with the measured temperature but the damping characteristics 11 and 12 are difference between the photodiode 5 having a characteristic 5a of lowering the output biased to the long wavelength and the photodiode 6 having a characteristic 6a of lowering it biased to the short wavelength. Thus the radio 13 of the outputs is determined with an arith metic circuit 9 to obtain the function of the temperature thereby enabling accu rate measurement of the temperature.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明/′i温度によって波長吸収増が変化すること
を利用しな温度測定器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a temperature measuring device that makes use of the fact that the wavelength absorption increase changes depending on the temperature.

〔従来の技術〕[Conventional technology]

この種の従来の温度測定器は光源からの光と温度によっ
て光波長吸収#Mが変化する半導体の吸収波長の温度依
存性と利用した温度センサに導き、その透過光の光強度
t−電気変換し、その結果に基でいて測定温度としてい
た。
This type of conventional temperature measuring device uses the temperature dependence of the absorption wavelength of a semiconductor, in which the light wavelength absorption #M changes depending on the light from the light source and the temperature. The measurement temperature was determined based on the results.

C発明が解決しようとする問題点3 しかるに、光源の光バク−や光の経路となる光ファイバ
損失などの変化がそのまま測定温度に影響を与え正確な
温度測定が雉しいという欠点があった。
Problem 3 to be Solved by the Invention C However, there is a drawback that changes in the optical backlash of the light source and the optical fiber loss serving as the optical path directly affect the measured temperature, making accurate temperature measurement difficult.

この発明はこのような従来のものの欠点t−解消するた
めKなされたもので、光源のパワー変化、光ファイバー
の損失変化に対し安定な温度測定と可能とする温度測定
器を得ることを目的とする。
This invention has been made to overcome the drawbacks of the conventional devices, and its purpose is to provide a temperature measuring device that can perform stable temperature measurements despite changes in the power of the light source and changes in the loss of the optical fiber. .

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る温度測定器は波長感度の異なる2つの光
/電気変換器で受光し、その出力比を求める演算回路を
備えたものである。
The temperature measuring device according to the present invention is equipped with an arithmetic circuit that receives light with two optical/electrical converters having different wavelength sensitivities and calculates the output ratio thereof.

〔作用〕[Effect]

この発明では温度センサを透過した光を波長感度の異な
る2つの光/電気変換器で受光してその出力比を演算す
るから、光源のパワー変化や光ファイバーの損失の変化
が相殺される。
In this invention, the light transmitted through the temperature sensor is received by two optical/electrical converters with different wavelength sensitivities and the output ratio is calculated, so that changes in the power of the light source and changes in the loss of the optical fiber are canceled out.

〔実施例〕〔Example〕

以下この発明の実i例を図面について説明する。 An example of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例における温度測定器の構成
を示すブロック図である。図において、(1)は光源と
しての発光ダイオードで、その発光波長強度分布を第2
図の特性(1a)に示す。(2)はGaAa、CdTe
、 GaPなどの光波長吸収端が変化する半導体からな
る温度センサで、その吸収#:長は第2図に示すように
低温時(2a)から高温時(2b)に変化する。(3a
)は発光ダイオード(1)の発光光を温度センサ(2)
に導く第1の光ファイバ、(3b)は温度センサ(2)
を透過した光を光分配器(4)に導く第2の光ファイバ
、(5)は光分配器(4)により分配さ2I″Lfc一
方の光を電気信号に変換する光/電気変換器で、第3図
の特性(5a)に示すように波長800〜1000 m
に対し長波長側で感度が悪(なるシリコン系フォトダイ
オードから構成される。(6)は同じく光分配器(4)
により分配された他方の光を電気信号に変換する光/電
気変換器で、第3図の特性(6a)に示すように波長8
00〜1000m に対し短波長側で感度が悪くなるゲ
ルマニウム系フォトダイオードから構成される。(7)
 (8)はそれぞれのフォトダイオード(5)及び(6
)の出力を増幅する増幅回路、(9)は増幅回路(7)
 (8)の出力の比を求める演算回路である。
FIG. 1 is a block diagram showing the configuration of a temperature measuring device in an embodiment of the present invention. In the figure, (1) is a light emitting diode as a light source, and its emission wavelength intensity distribution is
This is shown in characteristic (1a) in the figure. (2) is GaAa, CdTe
, is a temperature sensor made of a semiconductor such as GaP whose optical wavelength absorption edge changes, and its absorption #: length changes from low temperature (2a) to high temperature (2b) as shown in FIG. (3a
) is the temperature sensor (2) that uses the light emitted from the light emitting diode (1).
(3b) is the temperature sensor (2).
A second optical fiber (5) is an optical/electrical converter that converts one of the lights distributed by the optical splitter (4) into an electrical signal. , as shown in characteristic (5a) in Figure 3, the wavelength is 800 to 1000 m.
It is composed of a silicon-based photodiode, which has poor sensitivity on the long wavelength side. (6) is also an optical splitter (4).
It is an optical/electrical converter that converts the other light distributed by
It is composed of a germanium-based photodiode that has poor sensitivity on the short wavelength side for wavelengths from 00 to 1000 m. (7)
(8) are the respective photodiodes (5) and (6).
), (9) is an amplifier circuit that amplifies the output of (7)
(8) This is an arithmetic circuit that calculates the ratio of outputs.

次に動作について説明する。発光ダイオード(1)によ
って発光された光は第1の光ファイバ(3a)によって
温度センナ(2)に導かれる。ここでは、第4その透過
光を第2の光ファイバ(3b)を介して2方向に光を分
離する光分配器(4)に導く。ここで光は2方向VC9
配され、それぞれシリコン系7オトダイオード(5)及
びゲルマニクム系7オトダイオード(6)によって光/
電気変換されるか、第5図の如く、それぞれの出力は測
定温度によって変化するが、長波長帯りに低下する特性
(5a)をもつシリコン系フォトダイオード(5)と短
波長帯りに低下する特性(6a)をもつゲルマニウム系
7オトダイオード(6)とでは、それぞれの減衰特性(
11)及び(12)が異なり、これらの比(13)を演
算回路(9)で攻めることばよって湿度の関数を得るこ
とができる。そして、光源(1)のパワー変化や光ファ
イバ(3a) (3b)など光経路での損失変化は、上
記比の演算過程で相殺され最終の出力に影響を及ぼさな
い。
Next, the operation will be explained. The light emitted by the light emitting diode (1) is guided to the temperature sensor (2) by a first optical fiber (3a). Here, the fourth transmitted light is guided to a light splitter (4) that separates the light into two directions via a second optical fiber (3b). Here the light is in two directions VC9
Light/
As shown in Figure 5, the respective outputs vary depending on the measurement temperature, but there is a silicon-based photodiode (5) that has a characteristic (5a) that decreases in the long wavelength band, and a silicon photodiode (5) that decreases in the short wavelength band. The germanium-based 7-otodiode (6), which has the characteristic (6a), has the respective attenuation characteristic (
11) and (12) are different, and the humidity function can be obtained by attacking the ratio (13) of these using the arithmetic circuit (9). Changes in the power of the light source (1) and changes in loss in the optical path such as the optical fibers (3a) (3b) are canceled out during the calculation process of the ratio and do not affect the final output.

上記では光!(1)として発光ダイオードとしたが白熱
電球など波長分布をもつ光源としてもよい。
Above is light! Although a light emitting diode is used as (1), a light source with a wavelength distribution such as an incandescent bulb may also be used.

また光/電気変換器(5) (6)としてシリコン系フ
ォトダイオードとゲルマニウム系フォトダイオードを使
用したが、波長特性の異なる光/電気変換器なら同様の
効果を奏する。また演算回路出力と温度の関数までとし
たが、アナログ/ディジクル変換、ROM(リードオン
リメモリ)、ディジタル/アナログ変換により温度と出
力の関係を比例、直線とすることができる。
Furthermore, although silicon-based photodiodes and germanium-based photodiodes were used as the optical/electrical converters (5) and (6), similar effects can be achieved if optical/electrical converters with different wavelength characteristics are used. Furthermore, although the function of the arithmetic circuit output and temperature has been described, the relationship between temperature and output can be made proportional and linear by analog/digital conversion, ROM (read only memory), and digital/analog conversion.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したように温度センサの透過光を波
長特性の異なる光/電気変換器で電気変換し、その比を
求めることによって”光源のレベル変化、光ファイバな
ど光経路での損失変化などに影響されることなく温度が
正確に測定できるという効果を奏でる。
As explained above, this invention converts the transmitted light of a temperature sensor into electricity using an optical/electrical converter with different wavelength characteristics, and calculates the ratio. This has the effect that temperature can be measured accurately without being influenced by

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による温度測定器の構成を
示すグロック図、第2図は光源の光パワー及び温度セン
ナの光波長吸収端の波長特性図、第3図はフォトダイオ
ードの受光感度−波長特性図、第4図は透過光パワーの
温度特性図、第5図は各受光及び演算出力の温度特性図
である。 図において、(1)は光源としての発光ダイオード、(
2)は温度センサ、(3a) (3b)はそれぞれ第1
及び第2の光7アイ/イ、(4)は光分配器、(5)(
6ンは光/電気変換器としてのそれぞれシリコン糸及び
ゲルマニクム系のフォトダイオード、(9)は演算回路
である。 なお、各図中同一符号は同−又は相当部分を示す。 代 理 人  大  岩   増  雄第1図 Ja、Jh  ヤ11ひ゛オフ0光フフイハ゛。 4、九分配五 j、lr:’/リコンf−4L)−ケ)レマニクム系、
フォト2゛イ才−ド 9゛ 儂漠1回港 第2図     第4図 第3図     第5図
Fig. 1 is a Glock diagram showing the configuration of a temperature measuring instrument according to an embodiment of the present invention, Fig. 2 is a diagram of the optical power of the light source and the wavelength characteristics of the optical wavelength absorption edge of the temperature sensor, and Fig. 3 is a photodetection diagram of the photodiode. FIG. 4 is a sensitivity-wavelength characteristic diagram, FIG. 4 is a temperature characteristic diagram of transmitted light power, and FIG. 5 is a temperature characteristic diagram of each light reception and calculation output. In the figure, (1) is a light emitting diode as a light source, (
2) is the temperature sensor, (3a) and (3b) are the first
and second light 7I/I, (4) is a light distributor, (5) (
6 is a silicon thread and a germanium-based photodiode as a light/electrical converter, respectively, and (9) is an arithmetic circuit. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Masuo Oiwa Figure 1 Ja, Jh Ya 11 off 0 lights off hi. 4, nine distribution five j, lr:'/licon f-4L)-ke) Remanicum series,
Photo 2゛Sai-do 9゛ Desert 1st Port Figure 2 Figure 4 Figure 3 Figure 5

Claims (3)

【特許請求の範囲】[Claims] (1)単一の光源、温度によつて光波長吸収端が変化す
る半導体からなる温度センサ、上記光源からの光を上記
温度センサに導く第1の光ファイバ、上記温度センサの
透過光を第2の光ファイバを介して受光し2つの光に分
配する光分配器、上記2つの光をそれぞれ電気信号に変
換する相互に波長感度が異なる光/電気変換器、変換さ
れた上記電気信号の比を求める演算回路を備え、上記比
から温度を算出することを特徴とする温度測定器。
(1) A single light source, a temperature sensor made of a semiconductor whose optical wavelength absorption edge changes depending on temperature, a first optical fiber that guides the light from the light source to the temperature sensor, and a first optical fiber that guides the light transmitted from the temperature sensor to the temperature sensor. an optical splitter that receives light through two optical fibers and divides it into two lights; an optical/electrical converter with mutually different wavelength sensitivities that converts the two lights into electrical signals; and a ratio of the converted electrical signals. What is claimed is: 1. A temperature measuring device comprising an arithmetic circuit for calculating the temperature from the ratio.
(2)光源は発光ダイオード又は波長強度が安定な白熱
電球であることを特徴とする特許請求の範囲第1項記載
の温度測定器。
(2) The temperature measuring device according to claim 1, wherein the light source is a light emitting diode or an incandescent light bulb with stable wavelength intensity.
(3)光/電気変換器として波長800〜1000mm
に対し、長波長側で感度の悪くなるシリコン系フォトダ
イオードと、逆に短波長側で感度の悪くなるゲルマニウ
ム系フォトダイオードとをペアで用いることを特徴とす
る特許請求の範囲第1項又は第2項記載の温度測定器。
(3) Wavelength 800-1000mm as a light/electrical converter
In contrast, a silicon-based photodiode whose sensitivity deteriorates on the long wavelength side and a germanium-based photodiode whose sensitivity deteriorates on the short wavelength side are used in pairs. Temperature measuring device according to item 2.
JP22012284A 1984-10-18 1984-10-18 Temperature measuring apparatus Pending JPS6197540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22012284A JPS6197540A (en) 1984-10-18 1984-10-18 Temperature measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22012284A JPS6197540A (en) 1984-10-18 1984-10-18 Temperature measuring apparatus

Publications (1)

Publication Number Publication Date
JPS6197540A true JPS6197540A (en) 1986-05-16

Family

ID=16746256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22012284A Pending JPS6197540A (en) 1984-10-18 1984-10-18 Temperature measuring apparatus

Country Status (1)

Country Link
JP (1) JPS6197540A (en)

Similar Documents

Publication Publication Date Title
US7060967B2 (en) Optical wavelength interrogator
EP0111853B1 (en) Temperature measuring apparatus
KR950033445A (en) Temperature measuring method and apparatus using optical fiber
CN106017533B (en) A kind of quick tuning real time calibration fiber grating demodulation device and method of work
RU2290614C1 (en) Two-channel spectral ratio pyrometer
JPS6197540A (en) Temperature measuring apparatus
JPH0354292B2 (en)
JPS6285832A (en) Optical type thermometer
JPS63127127A (en) Light power measuring device
JPS6217621A (en) Optical power meter
JPS6144334A (en) Temperature measuring device
RU2094757C1 (en) Method of determination of ultraviolet radiation intensity
JPH01201123A (en) Method and device for irradiation intensity of bactericidal rays
SU1141576A1 (en) Photoelectric displacement encoder
JPS63127128A (en) Light power measuring device
SU572660A1 (en) Automatic photometer
SU1684609A1 (en) Method of measuring ultra-small optical losses
JPS59170738A (en) Temperature measuring device
SU1747949A1 (en) Temperature measuring device
RU2313770C1 (en) Method of stabilizing operation of photoreceiving unit of hydro-optic measuring channel
JPH03165226A (en) Light radiation measuring device
JPS6122250Y2 (en)
RU2245568C2 (en) Automatic refraction meter
JPS61225626A (en) Photometer
SU1420483A1 (en) Humidity meter