JPS59170738A - Temperature measuring device - Google Patents

Temperature measuring device

Info

Publication number
JPS59170738A
JPS59170738A JP4466683A JP4466683A JPS59170738A JP S59170738 A JPS59170738 A JP S59170738A JP 4466683 A JP4466683 A JP 4466683A JP 4466683 A JP4466683 A JP 4466683A JP S59170738 A JPS59170738 A JP S59170738A
Authority
JP
Japan
Prior art keywords
light
wavelength
temperature
semiconductor crystals
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4466683A
Other languages
Japanese (ja)
Inventor
Yoshiaki Ida
井田 芳明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4466683A priority Critical patent/JPS59170738A/en
Publication of JPS59170738A publication Critical patent/JPS59170738A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/12Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To measure temp. at multiple points with an inexpensive device having simple constitution by utilizing the characteristic that the energy band gap of a semiconductor crystal changes with temp. CONSTITUTION:A light emitting source 1 transmits time dividedly and periodically repetitively (n+1) kinds of light having wavelengths lambda1, lambda2-lambdan, lambdan+1. The wavelengths of the energy band gaps of semiconductor crystals 3-1-3-n are lambda1, lambda2-lambdan. The output from a photodetector 4 detecting the light of the wavelength lambda1 transmitted by an optical fiber 2-1 and the output from the photodetector 4 detecting the light of the wavelength lambda2 are compared, by which the temp. of the crystal 3-1 is known. The temps. of the semiconductor crystals 3-2, 3-3-3-n are similarly known.

Description

【発明の詳細な説明】 この発明は半導体結晶のエネルギーバンドギャップ(e
nergy band gap )が温度に依存して変
化する特性を利用して温度を測定する温度測定装置に関
するものである。
Detailed Description of the Invention This invention relates to the energy band gap (e) of semiconductor crystals.
The present invention relates to a temperature measuring device that measures temperature by utilizing the characteristic that energy band gap (energy band gap) changes depending on temperature.

従来のこの種の装置では1つの測定点に対して発光源、
受光器が各々1つ必要であったため、多点の測定に対し
て高価になるという欠点があった。
In conventional devices of this type, one measurement point requires a light emitting source,
Since one photoreceiver was required for each, there was a drawback that it was expensive for multi-point measurements.

この発明は、従来のものの上記の欠点を除去するために
なされたもので、発光源、受光器を各々1つで構成して
多点の温度が測定できる装置を提供することを目的とす
るものである。
This invention was made in order to eliminate the above-mentioned drawbacks of the conventional devices, and an object of the present invention is to provide a device that can measure temperatures at multiple points by having one light emitting source and one light receiver. It is.

以下、図面についてこの発明の詳細な説明する。図面は
この発明の一実施例を示す構成図であり、図において(
1)は発光源、(2) 、 (2−1) 、 ’(2−
2)・・・は光ファイバ、(3−1) 、 (3−2)
 、・・・(3−n)はそれぞれ半導体結晶である。温
度を測定すべき点がn点あるとすれば半導体結晶はn個
用意されて、それぞれ温度測定点へ配置されるが、その
配置の順序を図に示すように(3−1) 、 (3−2
) 、・・・(3−n)とすれば、各半導体結晶のエネ
ルギーバンドギャップの波長λ1.λ2.・・・λ。と
するときλ1〈λ2〈・・・λ となるように配置され
る。(4)は受光器、(5)は信号処理器である。発光
源(1)、各半導体結晶(3−1) 、 (3−2) 
、・・・(3−2)、及び受光器と光ファイバ(2) 
、 (2−1) 、 (2−2)とを光学的に接続する
(すなわち光ファイバへ光を入射し、又は光ファイバか
ら出射された光を入射する)光結合装置は図面には示し
てないが、従来公知の装置が設けられているものとする
。このような光結合装置と光ファイバ(2)を介して発
光源(1)→半導体結晶(3−1)→(,3−2)→・
−・→(3−n)→受光器(4)が縦続され、75)つ
半導体結晶(3−1) 、 (3−2) 、・−・(3
−(n−1))を透過した光の一部を光ファイバ(2−
1) 、 (2−2) 、・・・により受光器(4)に
導いている。
Hereinafter, the present invention will be described in detail with reference to the drawings. The drawing is a configuration diagram showing an embodiment of the present invention, and in the figure (
1) is the light source, (2) , (2-1) , '(2-
2) ... is an optical fiber, (3-1), (3-2)
, . . . (3-n) are semiconductor crystals, respectively. If there are n points at which temperature should be measured, n semiconductor crystals are prepared and placed at each temperature measurement point, but the order of placement is as shown in the figure (3-1), (3 -2
) , ... (3-n), the wavelength λ1 . of the energy band gap of each semiconductor crystal. λ2. ...λ. They are arranged so that λ1<λ2<...λ. (4) is a light receiver, and (5) is a signal processor. Light emitting source (1), each semiconductor crystal (3-1), (3-2)
,...(3-2), and receiver and optical fiber (2)
, (2-1), and (2-2) (that is, inputting light into an optical fiber or inputting light emitted from an optical fiber) is not shown in the drawing. However, it is assumed that a conventionally known device is provided. The light emitting source (1)→semiconductor crystal (3-1)→(,3-2)→・
−・→(3-n)→Photodetectors (4) are connected in cascade, and 75) semiconductor crystals (3-1), (3-2), ・−・(3
- (n-1)) is transmitted through the optical fiber (2-
1), (2-2), . . . are guided to the light receiver (4).

発光源(1)はλ1.λ2.・・・λ。、λn+1の(
n+1)種類の波長の光を時分割的にかつ周期的に繰返
して送出する。但しλ。+1〉λ。であり、かつλ1.
λ2゜・・・λ。等で示す波長は先に述べたエネルギー
ノくンドギャップの波長に正確に合致しなくても近似し
たものであればよい。
The light emitting source (1) is λ1. λ2. ...λ. , λn+1 (
(n+1) types of wavelengths are repeatedly sent out in a time-division manner and periodically. However, λ. +1〉λ. and λ1.
λ2゜...λ. The wavelength indicated by etc. does not have to exactly match the wavelength of the energy gap described above as long as it approximates it.

半導体結晶(3−1)ではλ2.λ3・・・λ9.λ1
+lの波長の光は減衰を受けることなく透過し、λ1 
の波長の光だけが半導体結晶(3−1)の温度に依存す
る減衰を受ける。半導体結晶(3−2)ではλ3.・−
・λ。。
In the semiconductor crystal (3-1), λ2. λ3...λ9. λ1
Light with a wavelength of +l is transmitted without attenuation, and λ1
Only light with a wavelength of 2 is attenuated depending on the temperature of the semiconductor crystal (3-1). In the semiconductor crystal (3-2), λ3.・−
・λ. .

λ11+1  の波長の光は減衰を受けることなく透過
し、λ2 の波長の光が半導体結晶(3−2)の温度に
依存する減衰を受け、以下このようにして、半導体結晶
(3−n’)ではλ。ヤ、の波長の光は減衰を受けるこ
となく透過し、λ。の波長の光が半導体結晶(3−n、
)の温度に依存する減衰を得ける。
Light with a wavelength of λ11+1 is transmitted without being attenuated, and light with a wavelength of λ2 is attenuated depending on the temperature of the semiconductor crystal (3-2). So λ. Light with a wavelength of λ is transmitted without attenuation, and λ. Light with a wavelength of
) can be obtained with temperature-dependent damping.

また、発光源(1)において送出光の波長を変更する時
分割情報は信号処理器(5)に入力されるので信号処理
器(5)では受光器(5)からの出力がどの波長の光の
強さを表す信号であるかを弁別することができる。
In addition, the time-sharing information for changing the wavelength of the emitted light in the light emitting source (1) is input to the signal processor (5), so the signal processor (5) determines which wavelength of light is output from the light receiver (5). It is possible to distinguish whether the signal represents the strength of the signal.

光ファイバ(2−1)によって伝送されるλ1 の波長
に対する受光器(4)の出力と、同じくλ2 の波長に
対する受光器(4)の出力を比較すれば、半導体結晶(
3−1)内におけるλ1 の波長の光の減哀金算出し、
したがって半導体結晶(3−1)の温度を知ることがで
きる。同様に光ファイバ(2−2)によって伝送される
λ2 の波長に対する受光器(4)の出力とλ3の波長
に対する受光器(4)の出力を比較して半導体結晶(3
−2)の温度を知り、半導体結晶(3−n)から光ファ
イバ(2)で伝送されるλ。の波長に対する受光器(4
)の出力とλn+□の波長に対する受光器(4)の出力
を比較して半導体結晶(3−n)の温度を知ることがで
きる。
Comparing the output of the optical receiver (4) for the wavelength λ1 transmitted by the optical fiber (2-1) and the output of the optical receiver (4) for the wavelength λ2, the semiconductor crystal (
3-1) Calculate the demerit of light with wavelength λ1 in
Therefore, the temperature of the semiconductor crystal (3-1) can be known. Similarly, the output of the optical receiver (4) for the wavelength of λ2 transmitted by the optical fiber (2-2) and the output of the optical receiver (4) for the wavelength of λ3 are compared, and the output of the optical receiver (4) for the wavelength of λ3 is compared.
-2) is transmitted from the semiconductor crystal (3-n) through the optical fiber (2). receiver (4
) and the output of the photoreceiver (4) for the wavelength λn+□, the temperature of the semiconductor crystal (3-n) can be determined.

以上のようにこの発明によれば、簡単な構成の安価な装
置で多点の温度が測疋できる。また光ファイバを使って
いるため、高電位部の温度や、訪導雑音の多い所、爆発
の危険性のある所等の温度を、安全にかつ雑音妨害なく
測定することができるという効果がある。
As described above, according to the present invention, temperatures can be measured at multiple points with a simple and inexpensive device. Additionally, since optical fibers are used, the temperature of high-potential parts, areas with a lot of conduction noise, and areas with a risk of explosion can be measured safely and without interference from noise. .

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明の一実施例を示す構成図である。 (1)・・・発光源、(2) 、 (2−1) 、 (
2−2)・・・光ファイバ、(3−1) 、 (3−2
) 、・・・(3−n)・・・半導体結晶、(4)・・
・受光器、(5)・・・信号処理器。 代理人 葛 野 信 −
The drawing is a configuration diagram showing an embodiment of the present invention. (1)...Light emission source, (2), (2-1), (
2-2)...Optical fiber, (3-1), (3-2
) ,...(3-n)...semiconductor crystal, (4)...
- Light receiver, (5)...signal processor. Agent Shin Kuzuno −

Claims (1)

【特許請求の範囲】[Claims] 半導体結晶のエネルギーバンドギャップが温度に依存し
て変化する特性を利用して温度を測定する温度測定装置
において、温度を測定すべき点がn点(nは任意の正の
整数)あるとき、n個のそれぞれエネルギーバンドギャ
ップの異なる半導体結晶を用意し、上記n点の温度測定
点に、上記n個の半導体結晶をエネルギーバンドギャッ
プの波長の短い順に1個ずつそれぞれ配置し、発光源か
らの光ファイバをエネルギーバンドギャップの波長の最
短の半導体結晶に光学的に接続し、以下順に配置された
n個の半導体結晶を光ファイバにより光学的に縦続する
手段と、上記縦続の終端の半導体結晶からの出力光を、
光ファイバによシ受光器に導き、その他の半導体結晶か
らの出力光の一部をそれぞれ別の光ファイバにより上記
受光器に導く手段と、上記発光源から上記n個の半導体
結晶のエネルギーバンドギャップに近似値のエネルギー
を有する波長の光を各波長ごとに順次発生し、最後に発
生した光の波長よりも更に長い波長の光を次に発生し、
このようにして発生する(n+1)種の波長の光を時分
割的に繰返して上記発光源に接続された光ファイバに送
出する手段と、上記受光器においては上記発光源の時分
割に同期した時分割でそれぞれの入力光の強さを測定し
、当該エネルギーバンドギャップの波長の光の強さと、
その光よシ1段困エネルギーバンドギャップの波長の長
い光の強さの比較から当該半導体結晶の温度を算出する
手段とを備えたことを特徴とする温度測定装置。
In a temperature measuring device that measures temperature using the property that the energy bandgap of a semiconductor crystal changes depending on temperature, when there are n points (n is any positive integer) at which temperature should be measured, n Prepare semiconductor crystals each having a different energy band gap, and place the n semiconductor crystals one by one at the n temperature measurement points in order of the wavelength of the energy band gap, and light from the light emitting source. means for optically connecting a fiber to a semiconductor crystal having the shortest energy bandgap wavelength, optically cascading n semiconductor crystals arranged in the following order by means of an optical fiber; output light,
means for guiding the output light from the other semiconductor crystals to the light receiver through optical fibers, and guiding a portion of the output light from the other semiconductor crystals to the light receiver through separate optical fibers; and an energy band gap between the n semiconductor crystals from the light emitting source. Sequentially generates light with a wavelength having an energy approximate to , for each wavelength, and then generates light with a longer wavelength than the last generated light,
means for repeating the light of (n+1) wavelengths generated in this manner in a time-division manner and sending it out to an optical fiber connected to the light emitting source; The intensity of each input light is measured in a time-division manner, and the intensity of the light at the wavelength of the energy band gap,
A temperature measuring device comprising means for calculating the temperature of the semiconductor crystal from a comparison of the intensities of the light having a longer wavelength with an energy bandgap that is one step lower than that of the light.
JP4466683A 1983-03-16 1983-03-16 Temperature measuring device Pending JPS59170738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4466683A JPS59170738A (en) 1983-03-16 1983-03-16 Temperature measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4466683A JPS59170738A (en) 1983-03-16 1983-03-16 Temperature measuring device

Publications (1)

Publication Number Publication Date
JPS59170738A true JPS59170738A (en) 1984-09-27

Family

ID=12697767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4466683A Pending JPS59170738A (en) 1983-03-16 1983-03-16 Temperature measuring device

Country Status (1)

Country Link
JP (1) JPS59170738A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0329447A2 (en) * 1988-02-17 1989-08-23 International Standard Electric Corporation Apparatus for determining the temperature of wafers or thin layers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0329447A2 (en) * 1988-02-17 1989-08-23 International Standard Electric Corporation Apparatus for determining the temperature of wafers or thin layers

Similar Documents

Publication Publication Date Title
US5318362A (en) Non-contact techniques for measuring temperature of radiation-heated objects
US4941747A (en) Optical sensing arrangements
ATE101715T1 (en) FIBEROPTIC SENSOR.
CN108663138A (en) A kind of distributed fiber optic temperature and the sensor-based system and method for vibration
ATE64456T1 (en) OPTICAL MEASUREMENT DEVICE USING A SPECTRAL MODULATING SENSOR WITH OPTICALLY RESONANT STRUCTURE.
GB2202324A (en) Optical fibre sensing system
RU102256U1 (en) DEVICE FOR MEASURING PHYSICAL FIELD PARAMETERS
US4727254A (en) Dual wavelength microbend sensor
ATE340352T1 (en) DIFFERENTIAL MEASUREMENT SYSTEM BASED ON THE USE OF PAIRS OF BRAGG GRIDS
US4865416A (en) Optical sensing arrangements
CN107436201A (en) Distributed fiber optic temperature strain sensing system and method based on Brillouin scattering
JPS5478156A (en) Detector of break point of optical fibers
RU2512616C2 (en) Method of measuring parameters of physical fields and device for realising said method
RU2608394C1 (en) Device for measuring parameters of physical fields
JPS59170738A (en) Temperature measuring device
JP2540670B2 (en) Multi-type gas detector using optical fiber
JPH0354292B2 (en)
RU161644U1 (en) DEVICE FOR MEASURING PHYSICAL FIELD PARAMETERS
GB2138936A (en) Optical sensor systems
JPS5915841A (en) Refractive index measuring apparatus
JPS59226832A (en) Optical ic sensor
JPS61213738A (en) Optical fiber temperature measuring sensor
JPS587530A (en) Optical temperature measuring device
JPS6144334A (en) Temperature measuring device
JPS6114528A (en) Measuring method of temperature using optical fiber