JPS60180347A - Temperature compensating circuit of avalanche photo diode - Google Patents

Temperature compensating circuit of avalanche photo diode

Info

Publication number
JPS60180347A
JPS60180347A JP59036753A JP3675384A JPS60180347A JP S60180347 A JPS60180347 A JP S60180347A JP 59036753 A JP59036753 A JP 59036753A JP 3675384 A JP3675384 A JP 3675384A JP S60180347 A JPS60180347 A JP S60180347A
Authority
JP
Japan
Prior art keywords
temperature
bias voltage
apd
voltage
multiplication factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59036753A
Other languages
Japanese (ja)
Other versions
JPH0314244B2 (en
Inventor
Hiroyuki Ishikawa
浩之 石川
Kazuto Takagi
高城 一人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59036753A priority Critical patent/JPS60180347A/en
Publication of JPS60180347A publication Critical patent/JPS60180347A/en
Publication of JPH0314244B2 publication Critical patent/JPH0314244B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/691Arrangements for optimizing the photodetector in the receiver
    • H04B10/6911Photodiode bias control, e.g. for compensating temperature variations

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To attain ease of compensation to difference in temperature characteristic of individual Avalanche photo diodes (APD) by adjusting a bias voltage VB to allow a multiplication factor M to be a constant value to the APD different from a breakdown voltage VBD. CONSTITUTION:The bias voltage VB to an APD1 is applied from a dias circuit 2. A thermister Rs and a resistor R1 connected in series therewith are provided to the input side of an amplifier 4 and a feedback resistor R2 is provided to the amplifier 4. The temperature change in the breakdown voltage of the APD is shown in Fig. (a). The slope of the temperature characteristics Z1, Z2 and Z3 is expressed respectively as theta1, theta2 and theta3. When the characteristic of the APD used in this way, the bias voltage VB of the temperature characteristic in a straight line H having the angle theta1 shown in Fig. (b) is applied to the APD1, while the bias voltage VB of the temperature characteristic of a straight line J having the angle theta3 is applied to the APD1 in case of the characteristic as shown in the Z3, then the temperature characteristic of the multiplication factor M is made flat as shown in Fig. (c).

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明はAPD (アバランシェフォトダイオード: 
Avalanche Photo Diode)の温度
特性を補償する°)じ暮み値す滋書−路に関fる。
Detailed Description of the Invention (a) Technical Field of the Invention The present invention relates to an APD (avalanche photodiode).
Compensating for the temperature characteristics of the Avalanche Photo Diode).

(b) 従来技術と問題点 受光素子としてAPDを用いた光受信回路においては、
温度変化によるAPDの増倍率の変動を防止する必要が
ある。その一手段として、APDからの信号を増幅する
増幅器の出力電圧を一定とするように帰還系を通して、
APDのバイアス電圧を制御して供給する方法がある。
(b) Prior art and problems In an optical receiving circuit using an APD as a light receiving element,
It is necessary to prevent fluctuations in the APD multiplication factor due to temperature changes. One way to do this is to pass the signal from the APD through a feedback system so that the output voltage of the amplifier that amplifies it is constant.
There is a method of controlling and supplying the bias voltage of the APD.

しかしこの方法は、帰還系が在るため応答速度が遅い欠
点を有する。この他の手段としてld、APDへの供給
バイアス電圧を増幅する増幅器の入力電圧を、サーミス
タを用いて調節し、温度特性を補償する方法がある。こ
れを図によって説明する。第1図は従来方式を説明する
回路図である。第1図におけるAPD 1が光りを受光
することによシ検出信号りが得られるが、そのバイアス
電圧vBはバイアス回路2′f:経て、アンプ3から供
給される。ここで絶対温度Tにおける第1図のAPD 
1の増倍率Mは近似的に次式で表わせる。
However, this method has the disadvantage of slow response speed due to the presence of a feedback system. Another method is to use a thermistor to adjust the input voltage of an amplifier that amplifies the bias voltage supplied to the LD and APD to compensate for the temperature characteristics. This will be explained using a diagram. FIG. 1 is a circuit diagram illustrating a conventional system. When the APD 1 in FIG. 1 receives light, a detection signal is obtained, and its bias voltage vB is supplied from the amplifier 3 via the bias circuit 2'f. Here, the APD of Fig. 1 at absolute temperature T
The multiplication factor M of 1 can be approximately expressed by the following equation.

ただし、K+ + K2 + n tri AP Dの
特性からめられる定数、またvnnけAP’Dのブレー
クダウン電圧で、これは絶対温度Tにより変化し次式で
示される。
However, K+ + K2 + n tri is a constant determined from the characteristics of AP'D, and is a breakdown voltage of vnn times AP'D, which changes depending on the absolute temperature T and is expressed by the following equation.

但LαはA、PDのブレークダウン電圧VRDの温度係
数である。(1)式より、APDO増倍率Mを温度TK
対し一定とするには、VBD(T) ”VB(T)とす
ればよい。第1図の従来回路では、アンプ3の入力側に
サーミスタR8を設けて、温度変化に応じてアンプ3の
出力電圧V、が変動し、これに能いAPI)1に供給さ
れるバイアス電圧vBが調節されて温度変化に対する補
fiが行われる。然るに、APDのブレークダウン電圧
には個体差があり、(2)式のVBD(298)には種
々の値のものがある。この個体差に対して、VBをそれ
ぞれ調整してやらねばならない。第1図の従来回路では
、アンプ3の入力側のVlを調整することによ、り 、
Vnの異なるAP、Dに対して、増倍率Mが一定値とな
るようにしている。
However, Lα is the temperature coefficient of the breakdown voltage VRD of A and PD. From equation (1), APDO multiplication factor M is determined by temperature TK
On the other hand, to keep it constant, VBD(T) "VB(T) should be used. In the conventional circuit shown in FIG. The voltage V varies, and the bias voltage vB supplied to API)1 is adjusted to compensate for temperature changes.However, there are individual differences in the breakdown voltage of APDs, and ) has various values for VBD (298). VB must be adjusted for each individual difference. In the conventional circuit shown in Fig. 1, Vl on the input side of amplifier 3 is adjusted. By the way,
The multiplication factor M is set to be a constant value for AP and D having different Vn.

すなわち、入力電圧V、によって、VBD(298)の
異eるAPDに対しテVB (298) / VBD(
298) カある一定値になるように調整し、サーミス
タR8によって入力側の電圧Vsが温度変化に従って変
化し、VBD (T)の変化に従って、VB(T)がV
B (T)/ VBD (T)が一定値を保つように変
化するようにしている。しかしながら、VBD (T)
の温度変化の傾@は、第2図(a)のようにVED(2
98)の値によって種々異なるのに対して、VB(T)
の温度変化の傾きは、サーミスタR8によって変化する
アンプ3の入力側の電圧Vsの温度変化によって定まる
傾きとなり、たとえば第2図(a)のz2のAPDの傾
きθ2にあわせると、第2図(b)のようになる。従っ
て、VBD (298)の個体差によッテ、Ve (T
)/ VBD(T) 力変化し1.増倍率Mの温度変化
は、第2図(c)のようになり、ブレークダウン電圧の
個体差の著しいAPDに対しては、第1図に示す温度補
償回路では、その相異を補償しきれない欠点があった。
That is, depending on the input voltage V, for different APDs of VBD(298), VB(298)/VBD(
298) Thermistor R8 adjusts the input voltage Vs to a certain constant value, and as VBD (T) changes, VB (T) changes to V
B (T)/VBD (T) is changed so as to maintain a constant value. However, VBD (T)
The slope of temperature change @ is VED(2) as shown in Figure 2(a).
98), while VB(T)
The slope of the temperature change is determined by the temperature change of the voltage Vs on the input side of the amplifier 3, which is changed by the thermistor R8. For example, when matched with the slope θ2 of APD of z2 in FIG. b) Therefore, depending on the individual difference in VBD (298), Ve (T
)/VBD(T) Force changes 1. The temperature change in the multiplication factor M is as shown in Figure 2 (c), and for APDs with significant individual differences in breakdown voltage, the temperature compensation circuit shown in Figure 1 cannot fully compensate for the differences. There were no drawbacks.

(c) 発明の目的 本発明は上記の欠点を解決するためになされた提供を目
的とする。
(c) Object of the invention The present invention aims to provide an solution to the above-mentioned drawbacks.

(d) 発明の構成 本発明は、電子増倍率が温度特性を呈するアバランシエ
フ埼トダイオードと、該アバランシェフォトダイオード
用のバイアス電圧を供給する手段とを有する回路におい
て、ブレークダウン電圧Vll+)の畳なるAPD K
:対して、増倍率Mが一定値になるようにバイアス電圧
Vnを調整することにより、同時にVRI3の温度変化
の傾きに対してバイアス電圧VBの温度変化の傾きが調
節されて、′異なる特性を呈するAPD′f!:用いて
も、温度による電子増倍率の変動を僅少とするように図
ったものである。
(d) Structure of the Invention The present invention provides a circuit including an avalanche photodiode whose electron multiplication factor exhibits temperature characteristics and means for supplying a bias voltage for the avalanche photodiode, in which the breakdown voltage Vll+) is APDK
:On the other hand, by adjusting the bias voltage Vn so that the multiplication factor M becomes a constant value, the slope of the temperature change of the bias voltage VB is simultaneously adjusted with respect to the slope of the temperature change of the VRI3, resulting in different characteristics. APD′f! : Even when used, the electron multiplication factor is designed to have little variation due to temperature.

(e) 発明の実7Ifli例 以下、本発明を図面によって説明する。第3図は本発明
の一実施例全説明する回路図である。第3図におけるA
PI)1に対するバイアス電圧vBはバイアス回路5か
ら供給きれる。アンプ4の入力側にサーミスタR8と、
これに直列の抵抗R7を設け、またアンプ4に帰還用の
抵抗R2を設けたものである。この第3図の入力端子P
Ki圧VIを与えたとき、出力端子Qの電圧■、は、絶
対温度Tに対して近似的に次式の如き関数となるOV 
2(T) −(AT + B)V+ ’ −−−−−(
3)−上記(3)式の定数A及びBは以下のようにして
められる。
(e) 7 Ifli Examples of the Invention The present invention will be explained below with reference to the drawings. FIG. 3 is a circuit diagram completely illustrating one embodiment of the present invention. A in Figure 3
The bias voltage vB for PI) 1 can be supplied from the bias circuit 5. Thermistor R8 is installed on the input side of amplifier 4,
A resistor R7 is provided in series with this, and the amplifier 4 is provided with a feedback resistor R2. Input terminal P in this figure 3
When the Ki pressure VI is applied, the voltage at the output terminal Q, OV, is approximately a function of the following equation with respect to the absolute temperature T.
2(T) −(AT + B)V+ ' −−−−−(
3)-The constants A and B in the above equation (3) can be determined as follows.

(4)式におけるGはアンプ4の利得である。またRs
(T)I′i絶対温度TにおけるサーミスタR8の抵抗
値であシ、これは次式で表わせる。
G in equation (4) is the gain of the amplifier 4. Also Rs.
(T)I'i is the resistance value of the thermistor R8 at the absolute temperature T, which can be expressed by the following equation.

なおFはサーミスタR8の温度係数である。(4)式に
対して直線的に変化するように抵抗R1の値を決定する
と、近似的に の如く表わせる。従って電圧v2は、 となり、前記(3)式における定数A及びBはA=aG
R4 となる。第3図における出力端子Qの電圧V2はバイア
ス回路2により高電圧て変換されてバイアス電圧VBと
なるが、これは次式で表わせる。
Note that F is the temperature coefficient of the thermistor R8. If the value of the resistor R1 is determined so as to vary linearly with respect to equation (4), it can be approximately expressed as shown below. Therefore, the voltage v2 is as follows, and the constants A and B in the above equation (3) are A=aG
It becomes R4. The voltage V2 at the output terminal Q in FIG. 3 is converted to a high voltage by the bias circuit 2 to become the bias voltage VB, which can be expressed by the following equation.

VB(T) −V 2 (T) X C=CCAT十B
)Vl −−(8) なおCは定数である。一方、第3図におけるAPI)1
の増倍率Mは、前記(1)式とな9、APDO増倍率M
を温度Tに対し一定とするためには、■BD(T)”V
B(T) となればよいo−c’、前記(8)及び(2
)式rcヨ9、(3)式の定数A及びBと、(8)式の
定数C〃s決定される。前記(8)式及び(2)式とに
より、APDlのバイアス電圧VBの温度特性は、第4
図の如く得られる。なおパラメータは、ブレークダウン
電圧vBD(130ホルト、160ホルト、180ホル
ト)テある。第4図において温度が5℃〜35℃の範囲
ではその特性は殆ど直線性が保たれる○しかもそれぞれ
のパラメータによって、その傾斜角(θ)が異なる。第
5図は第4図の特性をや\強調したものである0APD
のブレークダウン電圧vBの温度変化は、図(2) a
 Ic 示f ヨうになシ、Z+ 、 Z2 、 Zs
ノ温度変化の傾きはそれぞれθ1.θ2.θ3となる。
VB(T) −V 2 (T) X C=CCAT1B
)Vl --(8) Note that C is a constant. On the other hand, API) 1 in Figure 3
The multiplication factor M is given by the equation (1) above.9, APDO multiplication factor M
In order to keep constant with respect to temperature T, ■BD(T)”V
B(T) oc', the above (8) and (2
) Equation rcY9, constants A and B in equation (3), and constant C〃s in equation (8) are determined. According to the above equations (8) and (2), the temperature characteristic of the bias voltage VB of APDl is expressed as the fourth
Obtained as shown in the figure. The parameters include breakdown voltage vBD (130 holts, 160 holts, 180 holts). In FIG. 4, in the temperature range of 5 DEG C. to 35 DEG C., the characteristics maintain almost linearity.Moreover, the angle of inclination (.theta.) differs depending on each parameter. Figure 5 shows 0APD, which emphasizes the characteristics of Figure 4.
The temperature change in the breakdown voltage vB of is shown in Figure (2) a
Ic
The slope of the temperature change is θ1. θ2. It becomes θ3.

このように使用するAPDの特性が異なる場合、zlの
如き%注の場合には、第4図(又は第5図)における角
度θ、を有する直線Hの温度特性のバイアス電圧V’B
 、k APD 1に供給し、一方2.の如き特性の場
合には角度θ3を有する直線Jの温度特性のバイアス電
圧VBを、APDlに供給することによシ、その増倍率
Mの温度特性を、第6図に示す如く平担化することが可
能となる。
When the characteristics of the APDs used are different in this way, in the case of %Note such as zl, the bias voltage V'B of the temperature characteristic of the straight line H having the angle θ in FIG. 4 (or FIG. 5)
, k APD 1, while 2. In the case of such a characteristic, by supplying the bias voltage VB of the temperature characteristic of the straight line J having the angle θ3 to the APD1, the temperature characteristic of the multiplication factor M is flattened as shown in FIG. becomes possible.

(f> 発明の効果 以上のように本発明は、APDの特性のバラツキに対し
て容易に温度補償しうる利点を有する0
(f> Effects of the Invention As described above, the present invention has the advantage of easily temperature-compensating for variations in APD characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来方式を説明する回路図、第2図(a)はA
PDのブレークダウン電圧の温度特性図、(b)は従来
方式によるバイアス電圧の温度特性図、(C)は従来方
式による増倍率の温度特性図、第3図は本発明の一実施
例を説明する回路図、第4図は本発明の場合のAPDの
バイアス電圧VBの温度特性図、第5図は第4図の簡略
図、第6図はAPDO増倍率Mの補償効果を説明する温
度特性図であり、図中に用いた符号は次の通シである。 IJ−jAPD(アバランシェ・フォトダイオード)、
2はバイアス回路、3,4はアンプ、Dは検出信号、H
,I、Jはバイアス電圧vBの温度特性(計算値)、G
はアンプの利得、Lは光、Pは入力端子、Qは出力端子
、R,、R2,R,は抵抗、R8はサーミスタ、tit
温度、v、 l Vl + vsは電圧、vnはバイア
ス電圧、θ1.θ2.θ3は温度特性を示す傾斜角を示
す。 第1 口 cC 斗 2 口 ((2) 5Bケズー (わ) 5戦生 ニー (C) 、1 界ぼ 2 茎4 目 □を 茅5 図 □J 第6 口 □χ
Figure 1 is a circuit diagram explaining the conventional method, Figure 2 (a) is A
A temperature characteristic diagram of the breakdown voltage of a PD, (b) a temperature characteristic diagram of the bias voltage according to the conventional method, (C) a temperature characteristic diagram of the multiplication factor according to the conventional method, and FIG. 3 explains one embodiment of the present invention. 4 is a temperature characteristic diagram of the APD bias voltage VB in the case of the present invention, FIG. 5 is a simplified diagram of FIG. 4, and FIG. 6 is a temperature characteristic diagram explaining the compensation effect of the APDO multiplication factor M. The reference numerals used in the figure are as follows. IJ-jAPD (avalanche photodiode),
2 is a bias circuit, 3 and 4 are amplifiers, D is a detection signal, H
, I, J are temperature characteristics (calculated values) of bias voltage vB, G
is the gain of the amplifier, L is the light, P is the input terminal, Q is the output terminal, R,, R2, R, are the resistors, R8 is the thermistor, tit
temperature, v, l Vl + vs is voltage, vn is bias voltage, θ1. θ2. θ3 indicates an angle of inclination indicating temperature characteristics. 1st Mouth cC Dou 2 Mouth ((2) 5B Kezu (wa) 5 Senshu Knee (C), 1 Kaibo 2 Stalk 4 Eye □ to Chi 5 Figure □J 6th Mouth □χ

Claims (1)

【特許請求の範囲】[Claims] 電子増倍率が温度に応じ変化するアバランシエフ吋トダ
イオードと、該アバランシェフォトダイオードのバイア
ス電圧を供給する手段とを有する回路において、温度変
化に伴いバイアス電圧をり:化させる手段と、ブレーク
ダウン電圧の異なるアバランシェフォトダイオードに対
して増倍率が特定の値となるようにバイアス電圧を調整
しバイアス電圧の温度変化の傾きをブレークダウン電圧
の温度変化の傾きと一致するように調整する手段を設け
たことを特徴とするアバランシェフォトダイオードの温
度ネm償回路。
In a circuit including an avalanche photodiode whose electron multiplication factor changes according to temperature, and means for supplying a bias voltage to the avalanche photodiode, the circuit includes a means for changing the bias voltage as the temperature changes, and a breakdown voltage of the avalanche photodiode. A means is provided for adjusting the bias voltage so that the multiplication factor becomes a specific value for different avalanche photodiodes, and adjusting the slope of the temperature change of the bias voltage to match the slope of the temperature change of the breakdown voltage. A temperature compensation circuit for an avalanche photodiode characterized by:
JP59036753A 1984-02-28 1984-02-28 Temperature compensating circuit of avalanche photo diode Granted JPS60180347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59036753A JPS60180347A (en) 1984-02-28 1984-02-28 Temperature compensating circuit of avalanche photo diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59036753A JPS60180347A (en) 1984-02-28 1984-02-28 Temperature compensating circuit of avalanche photo diode

Publications (2)

Publication Number Publication Date
JPS60180347A true JPS60180347A (en) 1985-09-14
JPH0314244B2 JPH0314244B2 (en) 1991-02-26

Family

ID=12478494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59036753A Granted JPS60180347A (en) 1984-02-28 1984-02-28 Temperature compensating circuit of avalanche photo diode

Country Status (1)

Country Link
JP (1) JPS60180347A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6422122A (en) * 1987-07-17 1989-01-25 Fujitsu Ltd Light reception circuit
EP0633517A2 (en) * 1993-07-09 1995-01-11 Hamamatsu Photonics K.K. Bias circuit for avalanche photodiode
US7427741B2 (en) 2006-12-11 2008-09-23 Fujitsu Limited Bias control apparatus for avalanche photodiode and optical apparatus utilizing the bias control apparatus
JP2020096170A (en) * 2018-12-12 2020-06-18 浜松ホトニクス株式会社 Determination method and light detection device
US11513002B2 (en) 2018-12-12 2022-11-29 Hamamatsu Photonics K.K. Light detection device having temperature compensated gain in avalanche photodiode
US11901379B2 (en) 2018-12-12 2024-02-13 Hamamatsu Photonics K.K. Photodetector
US12080822B2 (en) 2018-12-12 2024-09-03 Hamamatsu Photonics K.K. Photodetector and method for manufacturing photodetector
US12113088B2 (en) 2018-12-12 2024-10-08 Hamamatsu Photonics K.K. Light detection device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6422122A (en) * 1987-07-17 1989-01-25 Fujitsu Ltd Light reception circuit
EP0633517A2 (en) * 1993-07-09 1995-01-11 Hamamatsu Photonics K.K. Bias circuit for avalanche photodiode
US5578815A (en) * 1993-07-09 1996-11-26 Hamamatsu Photonics K.K. Bias circuit for maintaining a constant potential difference between respective terminals of more than one avalanche photodiode
EP0633517A3 (en) * 1993-07-09 1996-11-27 Hamamatsu Photonics Kk Bias circuit for avalanche photodiode.
US7427741B2 (en) 2006-12-11 2008-09-23 Fujitsu Limited Bias control apparatus for avalanche photodiode and optical apparatus utilizing the bias control apparatus
JP2020096170A (en) * 2018-12-12 2020-06-18 浜松ホトニクス株式会社 Determination method and light detection device
WO2020121855A1 (en) * 2018-12-12 2020-06-18 浜松ホトニクス株式会社 Determination method and light detection device
US11513002B2 (en) 2018-12-12 2022-11-29 Hamamatsu Photonics K.K. Light detection device having temperature compensated gain in avalanche photodiode
US11561131B2 (en) 2018-12-12 2023-01-24 Hamamatsu Photonics K.K. Determination method and light detection device
US11901379B2 (en) 2018-12-12 2024-02-13 Hamamatsu Photonics K.K. Photodetector
US11927478B2 (en) 2018-12-12 2024-03-12 Hamamatsu Photonics K.K. Light detection device
US12080822B2 (en) 2018-12-12 2024-09-03 Hamamatsu Photonics K.K. Photodetector and method for manufacturing photodetector
US12113088B2 (en) 2018-12-12 2024-10-08 Hamamatsu Photonics K.K. Light detection device

Also Published As

Publication number Publication date
JPH0314244B2 (en) 1991-02-26

Similar Documents

Publication Publication Date Title
EP0633517B1 (en) Bias circuit for avalanche photodiode
EP0177166A2 (en) Apparatus and circuitry for stablizing laser diode output for analog modulation
JPS60180347A (en) Temperature compensating circuit of avalanche photo diode
US4088962A (en) Self biasing differential amplifier
CN108808437A (en) A kind of driving circuit and the optical module using the driving circuit
JP3999325B2 (en) Photodetection circuit
FR2737777A1 (en) SENSOR MODULE
EP1341276B1 (en) Semiconductor laser module
EP0504974B1 (en) Electrical supply circuit, in particular for APDs
JPS5995711A (en) Driving circuit of avalanche photodiode
JPH0315859B2 (en)
JPH03270504A (en) Equivalent amplifier circuit for optical receiver
US11280674B1 (en) Differential trans-impedance amplifier receiver using counter-offset circuitry
JP2621299B2 (en) Optical receiver
JP2536412B2 (en) Optical AGC circuit
JPS6014293B2 (en) optical receiver circuit
JPH05191355A (en) Optical reception amplifier
JPS6145420B2 (en)
JPS63108808A (en) Preamplifier incorporating photodetector
JPS61145424A (en) Temperature measurement
JPH04264807A (en) Equivalent amplifier circuit with high-speed agc circuit
JPH03195107A (en) Preamplifier with automatic feedback resistance control function
JPH05249128A (en) Wind velocity sensor
JPS6447109A (en) Agc control system for optical reception circuit
JPH0712131B2 (en) Electronic volume circuit