JP2012019354A - Optical receiver - Google Patents

Optical receiver

Info

Publication number
JP2012019354A
JP2012019354A JP2010155187A JP2010155187A JP2012019354A JP 2012019354 A JP2012019354 A JP 2012019354A JP 2010155187 A JP2010155187 A JP 2010155187A JP 2010155187 A JP2010155187 A JP 2010155187A JP 2012019354 A JP2012019354 A JP 2012019354A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
optical
element
receiver
receiving
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010155187A
Other languages
Japanese (ja)
Other versions
JP5636219B2 (en )
Inventor
Kazuhiro Komatsu
Michihide Sasada
Masato Shishikura
正人 宍倉
和弘 小松
道秀 笹田
Original Assignee
Opnext Japan Inc
日本オプネクスト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate

Abstract

PROBLEM TO BE SOLVED: To provide an optical receiver capable of suppressing changes in frequency characteristics due to temperatures.SOLUTION: The optical receiver comprises: an optical element 5 that converts an optical signal into an electric signal by applying a voltage from a power supply; a TIA 7 that amplifies an electric signal output from a light receiving element 5; and a thermister 4 that is mounted on at least either one of a transmission channel from the power supply to the light receiving element 5 and a transmission channel from the light receiving element 5 to the TIA 7, the thermister 4 having a negative temperature coefficient of resistance.

Description

本発明は、光通信に用いられる光受信器に関する。 The present invention relates to an optical receiver used in optical communication.

従来、光通信に用いられる光受信器では、受光素子が搭載されるサブマウント上にダンピング抵抗が設けられることがある(特許文献1を参照)。 Conventionally, in the optical receiver used in optical communication, it may damping resistor is provided on a sub-mount the light receiving element is mounted (see Patent Document 1). ダンピング抵抗は、周波数帯域を狭めることで、ノイズ耐性を向上させる。 Damping resistor, by narrowing the frequency band, to improve the noise resistance.

特開2005−108935号公報 JP 2005-108935 JP

ところで、従来の光受信器では、一般に、高温になるほど周波数特性が劣化し、周波数帯域が狭まることが知られている。 Incidentally, in the conventional optical receiver, generally, the frequency characteristic is deteriorated as the temperature rises, it is known that the frequency band is narrowed. このため、ダンピング抵抗によって低温時に最適となるように周波数帯域を調整した場合、高温時には周波数帯域が狭まり過ぎるおそれがある。 Therefore, when adjusting the frequency band so as to optimize the time of a low temperature by the damping resistance, there is a risk that too narrow a frequency band at high temperatures.

本発明は、上記実情に鑑みて為されたものであり、温度による周波数特性の変化を抑制することが可能な光受信器を提供することを主な目的とする。 The present invention has been made in view of the above circumstances, the main object to provide an optical receiver capable of suppressing a change in the frequency characteristic due to temperature.

上記課題を解決するため、本発明の光受信器は、電源から電圧が印加される、光信号を電気信号に変換する受光素子と、前記受光素子から出力される電気信号を増幅する増幅器と、前記電源から前記受光素子に至る伝送路上及び前記受光素子から前記増幅器に至る伝送路上の少なくとも一方に設けられる、抵抗の温度係数が負の感温素子と、を備える。 To solve the above problems, an optical receiver of the present invention, the voltage from the power supply is applied, a light receiving element for converting an optical signal into an electrical signal, an amplifier for amplifying the electric signal output from the light receiving element, provided from the transmission path and the light receiving element extends from the power source to the light receiving element in at least one transmission path extending to the amplifier comprises a temperature coefficient of resistance and a negative temperature-sensitive element.

上記本発明によると、抵抗の温度係数が負の感温素子を用いることで、温度による周波数特性の変化を抑制することが可能である。 According to the present invention, the temperature coefficient of resistance by using a negative temperature-sensitive elements, it is possible to suppress a change in the frequency characteristic due to temperature.

本発明の第1実施形態に係る光受信器の回路図である。 It is a circuit diagram of an optical receiver according to a first embodiment of the present invention. 本発明の第1実施形態に係る光受信器の概略図である。 It is a schematic diagram of an optical receiver according to a first embodiment of the present invention. 本発明の第1実施形態に係る光受信器に含まれる感温素子の温度特性を表す図である。 Is a diagram representing the temperature characteristics of the temperature-sensitive element included in the optical receiver according to a first embodiment of the present invention. 本発明の第1実施形態に係る光受信器の周波数特性を表す図である。 Is a diagram illustrating the frequency characteristic of the optical receiver according to a first embodiment of the present invention. 本発明の第2実施形態に係る光受信器の回路図である。 It is a circuit diagram of an optical receiver according to a second embodiment of the present invention. 本発明の第2実施形態に係る光受信器の概略図である。 It is a schematic diagram of an optical receiver according to a second embodiment of the present invention. 感温素子の温度特性を表す図である。 Is a diagram representing the temperature characteristics of the temperature-sensitive element. 感温素子の温度特性を表す図である。 Is a diagram representing the temperature characteristics of the temperature-sensitive element.

本発明の光受信器の実施形態を、図面を参照しながら説明する。 An embodiment of the optical receiver of the present invention will be described with reference to the drawings.

[第1実施形態] First Embodiment
図1及び図2は、本発明の第1実施形態に係る光受信器の回路図及び概略図である。 1 and 2 are a circuit diagram and a schematic view of an optical receiver according to a first embodiment of the present invention. 光受信器は、CAN型の金属パッケージ筐体8を備えており、その内部に、サブマウント6と、増幅器としてのTIA(トランスインピーダンスアンプ)7と、が配置されている。 Optical receiver is provided with a metal package housing 8 of the CAN type, therein, a submount 6, a TIA (transimpedance amplifier) ​​7 as an amplifier, is arranged. サブマウント6上には、フォトダイオードからなる受光素子5と、感温素子としてのサーミスタ4と、が実装されている。 On the submount 6, the light receiving element 5 consisting of a photodiode, a thermistor 4 serving as a temperature sensing element, is mounted.

受光素子5のカソード端子には、不図示の電源に繋がる電源電圧端子9からサーミスタ4を介して電圧が供給される。 The cathode terminal of the light receiving element 5, the voltage supplied from the power supply voltage terminal 9 connected to a power supply (not shown) through the thermistor 4. すなわち、サーミスタ4は、電源電圧端子9と受光素子5の間に直列に配置されている。 That is, the thermistor 4 are arranged in series between the supply voltage terminal 9 and the light receiving element 5. また、電源電圧端子9とサーミスタ4の間には、金属パッケージ筐体8に接地されたRF(radio frequency:高周波)接地用コンデンサ1が接続されている。 Between the power supply voltage terminal 9 and the thermistor 4, RF grounded to the metal package housing 8 (radio frequency: RF) grounding capacitor 1 is connected.

サブマウント6上には、3つの端子3a〜3cが並んで配置されている。 On the submount 6 are arranged side by side three terminals 3 a to 3 c. このうち、上流側の端子3a,3bの間にはサーミスタ4が配置されており、下流側の端子3b,3cの間には受光素子5が配置されている。 Among them, the upstream side of the terminal 3a, between 3b are disposed thermistor 4, the downstream side of the terminal 3b, between 3c are arranged light-receiving element 5. なお、サーミスタ4は、サブマウント6上に薄膜蒸着によって形成されてもよい。 Incidentally, the thermistor 4 may be formed by thin film deposition on a submount 6.

サーミスタ4は、ダンピング抵抗として機能する。 Thermistor 4 serves as a damping resistor. このサーミスタ4は、抵抗の温度係数が負の、いわゆるNTC(Negative Temperature Coefficient)サーミスタである。 The thermistor 4, the temperature coefficient of resistance is negative, the so-called NTC (Negative Temperature Coefficient) thermistor. サーミスタ4の材料としては、例えば、Ge(ゲルマニウム)及びSiC(炭化珪素)などが挙げられる。 As the material of the thermistor 4, for example, Ge (germanium) and SiC (silicon carbide) and the like. サーミスタ4については、後に詳しく述べる。 The thermistor 4 will be described later in detail.

受光素子5は、光変調信号13を電気信号に変換する。 Light-receiving element 5 converts the light modulation signal 13 into an electrical signal. 受光素子5のアノード端子から出力された電気信号は、TIA7により増幅され、正相側出力端子11及び逆相側出力端子12から出力される。 Electrical signal output from the anode terminal of the light receiving element 5 is amplified by TIA7, is output from the positive phase output terminal 11 and the negative-phase output terminal 12. また、TIA7は、電源電圧端子10と、金属パッケージ筐体8と、に接続されている。 Further, TIA7 includes a power supply voltage terminal 10 is connected to the metal package housing 8.

図3は、サーミスタ4の温度特性を表す図である。 Figure 3 is a diagram showing the temperature characteristic of the thermistor 4. 同図において、横軸は温度を表し、縦軸は抵抗を表す。 In the figure, the horizontal axis represents temperature and the vertical axis represents the resistance. サーミスタ4としては、抵抗の温度係数が負の材料が用いられる。 The thermistor 4, the temperature coefficient of resistance a negative material is used. 温度係数とは、同図における曲線の傾きを指す。 And temperature coefficient refers to the slope of the curve in FIG. 抵抗の温度係数が負であるとき、曲線は右肩下がりとなる。 When the temperature coefficient of resistance is negative, the curve becomes downward-sloping. すなわち、サーミスタ4の抵抗は、温度の上昇に伴って下降する。 That is, the resistance of the thermistor 4 is lowered with increasing temperature.

また、サーミスタ4の抵抗の下降割合は、B定数によって表される。 Moreover, lowering the ratio of the resistance of the thermistor 4 is represented by the B constant. 25℃を基準とするサーミスタ4のB定数は、下記数式1で表される。 B constant of thermistor 4 relative to the 25 ° C. is expressed by Equation 1 below. 図7A及び図7Bには、B定数に応じた温度と抵抗の関係の例が表される。 FIG 7A and 7B, an example of the relationship between temperature and resistance corresponding to the B constant is expressed. B定数は、例えば2000K以上2400K以下であることが好ましい。 B constant is preferably, for example, 2000K or more 2400K or less. また、25℃でのサーミスタ4の抵抗は、例えば40Ωである。 The resistance of the thermistor 4 at 25 ° C. is, for example, 40 [Omega.

この数式1において、Tは温度を表す。 In this formula 1, T represents temperature. また、RTは温度Tのときの抵抗値を表す。 Moreover, RT denotes a resistance value when the temperature T.

図4は、本実施形態に係る光受信器の周波数特性を表す図である。 Figure 4 is a diagram showing the frequency characteristic of the optical receiver according to the present embodiment. 同図において、横軸は周波数を表し、縦軸は小信号利得を表す。 In the figure, the horizontal axis represents the frequency, and the ordinate represents the small-signal gain. また、同図中の実線I ,I は実施例の周波数特性を表し、同図中の破線C ,C は比較例の周波数特性を表す。 The solid line I L, I H in the figure represents the frequency characteristic of the embodiment, a broken line C L, C H in the figure represents the frequency characteristic of the comparative example.

比較例は、従来のようにダンピング抵抗が固定値の場合である。 Comparative Examples are damping resistor as in the prior art is a case of a fixed value. 高温時には、C のように、周波数特性が劣化し、周波数帯域が狭くなり、その結果、受信感度特性が劣化する。 During high temperature, as C H, the frequency characteristic is deteriorated, the frequency band is narrowed, so that the receiving sensitivity characteristics are deteriorated. 他方、低温時には、C のように、周波数帯域が広がりすぎ、ノイズの影響を受け易くなる。 On the other hand, at the time of a low temperature, such as the C L, the frequency band is too wide, easily affected by noise.

実施例は、上記図3に示されるサーミスタ4を用いた場合である。 Example is the case of using the thermistor 4 shown in FIG. 3. サーミスタ4の高温時(例えば90℃)の抵抗は例えば10Ω程度であり、低温時(例えば−5℃)の抵抗は例えば90Ω程度である。 Resistance at high temperature of the thermistor 4 (e.g. 90 ° C.) are, for example, about 10 [Omega, resistance at low temperatures (e.g. -5 ° C.) is, for example, about 90 ohms. このため、高温時には、サーミスタ4によるダンピング効果が比較的弱く、I のように十分な周波数帯域を確保することが可能である。 Therefore, at the time of high temperature, damping effect by the thermistor 4 is relatively weak, it is possible to secure a sufficient frequency band as I H. 他方、低温時には、サーミスタ4によるダンピング効果が比較的強く、I のように周波数帯域の過度の広がりを抑制することが可能である。 On the other hand, at the time of low temperature, damping effect by the thermistor 4 is relatively strong, it is possible to suppress excessive spreading of the frequency band as I L.

このように、本実施例では、抵抗の温度係数が負のサーミスタ4を用いることで、温度による周波数特性の変化を抑制することが可能である。 Thus, in this embodiment, the temperature coefficient of resistance by using a negative thermistor 4, it is possible to suppress a change in the frequency characteristic due to temperature.

[第2実施形態] Second Embodiment
図5及び図6は、本発明の第2実施形態に係る光受信器の回路図及び概略図である。 5 and 6 are circuit diagrams and schematic view of an optical receiver according to a second embodiment of the present invention. 上記実施形態と重複する構成については、同番号を付すことで詳細な説明を省略する。 The configuration common to those of the embodiment, and detailed description thereof will be omitted by attaching the same number.

サブマウント6上に形成された3つの端子3a〜3cのうち、上流側の端子3a,3bの間には受光素子5が配置されており、下流側の端子3b,3cの間にはサーミスタ4が配置されている。 Of the sub-mount 6 on the formed three terminals 3 a to 3 c, the upstream side of the terminal 3a, between 3b are arranged light-receiving elements 5, the thermistor 4 between the downstream side of the terminal 3b, 3c There has been placed. すなわち、サーミスタ4は、受光素子5とTIA7の間に直列に配置されている。 That is, the thermistor 4 are arranged in series between the light receiving element 5 as TIA7. なお、サーミスタ4は、受光素子5の上流と下流の両方にあってもよい。 Incidentally, the thermistor 4 may be in both the upstream and downstream of the light-receiving element 5.

以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、種々の変形実施が当業者にとって可能であるのはもちろんである。 Having described embodiments of the present invention, the present invention is not limited to the above embodiments, the various modifications are possible to those skilled in the art as a matter of course.

上記実施形態では、感温素子の例としてサーミスタ4を用いていたが、これに限られず、抵抗の温度係数が負であれば、絶対値が比較的小さい材料であってもよい。 In the above embodiment, although using a thermistor 4 as an example of the temperature-sensitive element is not limited to this, if the temperature coefficient of resistance is negative, the absolute value may be a relatively small material.

1 RF接地用コンデンサ、3a〜3c 電極、4 サーミスタ(感温素子の例)、5 受光素子、6 サブマウント、7 TIA(トランスインピーダンスアンプ:増幅器の例)、8 金属パッケージ筐体、9 電源電圧端子、10 電源電圧端子、11 正相側出力端子、12 逆相側出力端子、13 光変調信号。 1 RF grounding capacitor, 3 a to 3 c electrode, 4 (example of the temperature sensing element) thermistor, 5 light-6 submount, 7 TIA (transimpedance amplifier: example of an amplifier), 8 metal package housing, 9 supply voltage terminals, 10 a power supply voltage terminal, 11 the positive-phase output terminal, 12 reverse phase output terminal, 13 an optical modulation signal.

Claims (4)

  1. 電源から電圧が印加される、光信号を電気信号に変換する受光素子と、 A voltage is applied from a power source, a light receiving element for converting an optical signal into an electrical signal,
    前記電源と前記受光素子の間に設けられるRF接地用コンデンサと、 And RF grounding capacitor provided between said power source and the light receiving element,
    前記受光素子から出力される電気信号を増幅する増幅器と、 An amplifier for amplifying the electric signal output from the light receiving element,
    前記RF接地用コンデンサから前記受光素子に至る伝送路上及び前記受光素子から前記増幅器に至る伝送路上の少なくとも一方に設けられる、抵抗の温度係数が負の感温素子と、 Wherein provided from the transmission path and the light receiving element reaches the light receiving element from the RF grounding capacitor in at least one transmission path extending to the amplifier, and the temperature coefficient of resistance has a negative temperature-sensitive element,
    を備えることを特徴とする光受信器。 Optical receiver, characterized in that it comprises a.
  2. 前記感温素子は、前記受光素子と共にサブマウント上に実装される、 The temperature sensing element is mounted on a submount with the light receiving element,
    請求項1に記載の光受信器。 The optical receiver of claim 1.
  3. 前記感温素子は、前記受光素子が実装されるサブマウント上に薄膜蒸着によって形成される、 The temperature sensing element is formed by a thin film deposition on the submount where the light receiving element is mounted,
    請求項1に記載の光受信器。 The optical receiver of claim 1.
  4. 前記感温素子のB定数は、2000K以上2400K以下である、 B constant of the temperature sensitive device is higher 2000 K 2400K or less,
    請求項1に記載の光受信器。 The optical receiver of claim 1.
JP2010155187A 2010-07-07 2010-07-07 Optical receiver Active JP5636219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010155187A JP5636219B2 (en) 2010-07-07 2010-07-07 Optical receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010155187A JP5636219B2 (en) 2010-07-07 2010-07-07 Optical receiver

Publications (2)

Publication Number Publication Date
JP2012019354A true true JP2012019354A (en) 2012-01-26
JP5636219B2 JP5636219B2 (en) 2014-12-03

Family

ID=45604268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010155187A Active JP5636219B2 (en) 2010-07-07 2010-07-07 Optical receiver

Country Status (1)

Country Link
JP (1) JP5636219B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49122388A (en) * 1973-03-23 1974-11-22
US4438348A (en) * 1978-10-06 1984-03-20 Harris Corporation Temperature compensated avalanche photodiode optical receiver circuit
JPS5995711A (en) * 1982-11-24 1984-06-01 Yokogawa Hokushin Electric Corp Driving circuit of avalanche photodiode
JPS63187672A (en) * 1987-01-30 1988-08-03 Nippon Telegr & Teleph Corp <Ntt> Apd bias circuit
JPH05121805A (en) * 1991-10-30 1993-05-18 Nikon Corp Laser drive apparatus
JPH1168129A (en) * 1997-08-26 1999-03-09 Rohm Co Ltd Time-sharing bidirectional optical communication module and transmitting and receiving unit
JP2005108935A (en) * 2003-09-29 2005-04-21 Opnext Japan Inc Optical receiving module and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49122388A (en) * 1973-03-23 1974-11-22
US4438348A (en) * 1978-10-06 1984-03-20 Harris Corporation Temperature compensated avalanche photodiode optical receiver circuit
JPS5995711A (en) * 1982-11-24 1984-06-01 Yokogawa Hokushin Electric Corp Driving circuit of avalanche photodiode
JPS63187672A (en) * 1987-01-30 1988-08-03 Nippon Telegr & Teleph Corp <Ntt> Apd bias circuit
JPH05121805A (en) * 1991-10-30 1993-05-18 Nikon Corp Laser drive apparatus
JPH1168129A (en) * 1997-08-26 1999-03-09 Rohm Co Ltd Time-sharing bidirectional optical communication module and transmitting and receiving unit
JP2005108935A (en) * 2003-09-29 2005-04-21 Opnext Japan Inc Optical receiving module and its manufacturing method

Also Published As

Publication number Publication date Type
JP5636219B2 (en) 2014-12-03 grant

Similar Documents

Publication Publication Date Title
US6864750B2 (en) Cascode distributed amplifier
US20100007414A1 (en) Gain Control for Linear Radio Freqency Power Amplifiers
US6567600B2 (en) Optical amplifying medium component and optical fiber amplifier having the same
US5013903A (en) Lightwave receiver having differential input
US6683490B2 (en) Temperature dependent constant-current generating circuit
CN1581735A (en) Optical receiving device for realizing luminous power adaptation of different inputs
US20120141122A1 (en) Optical receiver with monolithically integrated photodetector
US20100278528A1 (en) Coherent optical receiver
US20070177884A1 (en) Optical receiver
Urick et al. Wide-band predistortion linearization for externally modulated long-haul analog fiber-optic links
JP2007067331A (en) Ultraviolet sensor
JP2008177899A (en) Amplifier circuit, and radio communication equipment
US20070212081A1 (en) Optical signal receiving circuit and optical signal receiving apparatus
JP2003168933A (en) Photoreceiving circuit
CN201178510Y (en) Optical power control APC circuit for voltage boosting driving light transmitter
US5477075A (en) Solid state photodetector with light-responsive rear face
EP1191685A2 (en) Distortion compensation apparatus
US8183927B2 (en) Power amplifier
JP2006261952A (en) Distortion compensation device and distortion compensation coefficient updating method
JPH07245540A (en) Optical receiver for optical digital communication
JP2006261866A (en) Preamplifier
US4642453A (en) Apparatus for increasing the dynamic range in an integrating optoelectric receiver
US20080267233A1 (en) Resistive heating element for enabling laser operation
CN101656511A (en) Temperature compensating circuit of radio frequency power amplifier
US7410290B2 (en) Ear-type clinical thermometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141020

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250