JPS5994412A - Manufacture of semiconductor element - Google Patents

Manufacture of semiconductor element

Info

Publication number
JPS5994412A
JPS5994412A JP20370182A JP20370182A JPS5994412A JP S5994412 A JPS5994412 A JP S5994412A JP 20370182 A JP20370182 A JP 20370182A JP 20370182 A JP20370182 A JP 20370182A JP S5994412 A JPS5994412 A JP S5994412A
Authority
JP
Japan
Prior art keywords
substrate
film
insulating film
single crystal
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20370182A
Other languages
Japanese (ja)
Inventor
Kunihiko Takahama
高浜 圀彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP20370182A priority Critical patent/JPS5994412A/en
Publication of JPS5994412A publication Critical patent/JPS5994412A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Abstract

PURPOSE:To flatten the surface of a single crystal Si film on an insulating film while obtaining the single crystal Si film in the same orientation as an Si substrate by accelerating Si ions toward the insulating film while keeping the temperature of the Si substrate at 600 deg.C or more and evaporating the Si film on the insulating film and the exposed section of the substrate. CONSTITUTION:The single crystal Si substrate 1 with a (111) face is coated with an SiO2 film 2, and the film 2 is removed at every 4mum width at the pitches of approximately 50mum and a plurality of windows 3 are bored. The substrates 1 are arranged in a bell jar 4, an inside thereof is evacuated, while the films 2 are directed downward, and the substrates 1 are heated at 600 deg.C or more by a heater 6 connected to an AC power supply 5. Electron rays are irradiated to an Si source 8 in a crucible 7 set up to the lower section of the bell jar 4, and the Si is evaporated, and ionized by a cathode 10 and an anode 10' as thermoionic impact means. A shutter 12 is opened, Si ions are accelerated by using an accelerating means 11, and Si ions are attached on the films 2 and the exposed sections of the substrates 1. Accordingly, the Si film 13, the crystalline direction thereof is the same as the substrate 1, is obtained.

Description

【発明の詳細な説明】 この発明は、絶縁膜上に単結晶シリコン膜を形成する半
導体素子の製造方法に関し、前記絶縁膜上に全面にわた
って単結晶シリコン膜を一様に形成できるようにするこ
とを目的とするう一般に、集積回路の高集積化、高速化
を図るものとして、単結晶シリコンのチ・リプ内に絶縁
膜を介してデバイスを立体的に形成した三次元回路素子
および絶縁膜上の単結晶シリコン膜にデバイスを形成し
た所謂501素子等がそれぞれ注目されているが、前記
三次元回路素子およびSOI素子のいずれを製造する場
合も、絶縁膜上に全面にわたって単結晶シリコン膜を形
成する必要がある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device in which a single crystal silicon film is formed on an insulating film, and an object of the present invention is to make it possible to uniformly form a single crystal silicon film over the entire surface of the insulating film. In general, three-dimensional circuit elements in which devices are three-dimensionally formed within a single-crystal silicon chip via an insulating film and on an insulating film are used to increase the degree of integration and speed of integrated circuits. So-called 501 elements, in which devices are formed on single-crystal silicon films, are attracting attention, but when manufacturing either the three-dimensional circuit elements or SOI elements, it is necessary to form a single-crystal silicon film over the entire surface on an insulating film. There is a need to.

そこで、従来、絶縁膜上に全面にわたってシリコン膜を
形成したのち、前記シリコン膜のみをレーザ光により加
熱処理して結晶化する方法や、単結晶シリコン基板上の
絶縁膜の一部を除去して前記基板の露出した窓を形成し
、前記絶縁膜および露出した前記基板上にシリコン膜を
形成したのち、レーザ光により前記シリコン膜のみを溶
融し、前記窓の前記基板表面から順次前記シリコン膜を
凝固させる方法が実施されているが、前者の場合、前記
シリコン膜に約20μmピ・9チでサブグレンが生じ、
前記シリコン膜が完全な単結晶にならず、後者の場合も
同様に完全な単結晶にならないとともに、再現性か想い
という欠点がある。
Conventionally, a method has been used in which a silicon film is formed over the entire surface of the insulating film and then only the silicon film is crystallized by heat treatment with laser light, or by removing a part of the insulating film on a single crystal silicon substrate. After forming an exposed window on the substrate and forming a silicon film on the insulating film and the exposed substrate, only the silicon film is melted by a laser beam, and the silicon film is sequentially removed from the substrate surface of the window. A solidification method has been implemented, but in the former case, sub-grains are formed in the silicon film at about 20 μm by 9 inches,
The silicon film does not become a perfect single crystal, and in the latter case, it also does not become a perfect single crystal, and there is a drawback of poor reproducibility.

また、単結晶シリコン基板」二に二酸化ケイ素からなる
絶縁膜を形成し、前記絶縁膜の一部を除去して前記基板
を露出させ、気相成長工程あるいは蒸着工程により、前
記絶縁膜および露出した前記基板上に単結晶シリコン膜
を形成し、露出した前記基板上のシリコン膜を前記絶縁
膜表面に平行な方向に成長させる方法が実施されている
が、前記絶縁膜上のシリコン膜がたとえば厚さ2μmu
であると、気相成長工程あるいは蒸着工程では、露出し
た前記基板上からの絶縁膜上の前記シリコン膜の横方向
の単結晶成長も2μm程度である為前記絶縁膜上に全面
にわた〕で単結晶シリコン膜を一様に形成丈るごとは実
用的でない。
Further, an insulating film made of silicon dioxide is formed on a single crystal silicon substrate, a part of the insulating film is removed to expose the substrate, and the insulating film and the exposed A method has been implemented in which a single crystal silicon film is formed on the substrate and the exposed silicon film on the substrate is grown in a direction parallel to the surface of the insulating film. 2 μmu
Then, in the vapor phase growth process or the evaporation process, the lateral single crystal growth of the silicon film on the insulating film from the exposed substrate is also about 2 μm; It is not practical to form a single crystal silicon film to a uniform length.

この発明は、前記の点に留意してなされたものであり、
シリコン基板上に絶縁膜を形成し、前記絶縁膜の一部を
除去して前記基板表面が露出した窓を形成するとともに
、前記基板の温度を600℃以上に保持し、加速手段に
よりシリコンイオンを前記絶縁膜に向って加速して前記
絶縁膜および露出した前記基板上に単結晶シリコン膜を
蒸着するとともに、前記窓上のシリコン膜の前記絶縁膜
表面に平行な方向への10μm以上の単結晶成長を用い
ることを特徴とする半導体素子の製造方法を提供するも
のである。
This invention was made with the above points in mind,
An insulating film is formed on a silicon substrate, a part of the insulating film is removed to form a window in which the surface of the substrate is exposed, the temperature of the substrate is maintained at 600° C. or higher, and silicon ions are generated by an accelerating means. A single crystal silicon film is deposited on the insulating film and the exposed substrate by accelerating toward the insulating film, and a single crystal of 10 μm or more is deposited on the silicon film on the window in a direction parallel to the surface of the insulating film. The present invention provides a method for manufacturing a semiconductor device characterized by using growth.

したがって、この発明の半導体素子の製造方法によると
、シリコン基板の温度を600℃以上に保持するととも
に、シリコンイオンを絶縁膜に向って加速して前記絶縁
膜および露出した前記基板上に単結晶シリコン膜を蒸着
することにより、前記絶縁膜上のシリコン膜の表面をほ
ぼ平坦にすることができ、前記絶縁膜上に全面にわたっ
て基板と同じ方位の単結晶シリコン膜を形成することが
できる。
Therefore, according to the method for manufacturing a semiconductor device of the present invention, the temperature of the silicon substrate is maintained at 600° C. or higher, silicon ions are accelerated toward the insulating film, and single crystal silicon is deposited on the insulating film and the exposed substrate. By depositing the film, the surface of the silicon film on the insulating film can be made substantially flat, and a single crystal silicon film having the same orientation as the substrate can be formed over the entire surface of the insulating film.

つぎに、この発明を、その1実施例を示した図面ととも
に詳細に説明する。
Next, the present invention will be described in detail with reference to drawings showing one embodiment thereof.

いま、製造工程について説明すると、単結晶シリコン基
板(1)のミラー指数(111) の面である上面を熱
酸化して前記上面に厚さ1μmの二酸化ケイ素からなる
絶縁膜(2)を形成し、前記絶縁膜(2)を50μmの
ピ・リチで幅4μmずつ除去して基板(1)の露出した
複数個の窓(3)を形成するとともに、内部が真空に保
持されたベルジャ(4)内の上部に絶縁膜(2)を下に
して基板(1)を配設し、交流電源(5)に接続された
ヒータ(6)により基板(1)を加熱して800℃に保
持する。
Now, to explain the manufacturing process, the upper surface of the single-crystal silicon substrate (1), which is a surface with a Miller index of (111), is thermally oxidized to form an insulating film (2) made of silicon dioxide with a thickness of 1 μm on the upper surface. , the insulating film (2) is removed with a 50-μm pitch at a width of 4 μm to form a plurality of exposed windows (3) on the substrate (1), and a bell jar (4) whose interior is kept in a vacuum is formed. A substrate (1) is placed in the upper part of the chamber with the insulating film (2) facing down, and the substrate (1) is heated and maintained at 800° C. by a heater (6) connected to an AC power source (5).

そして、ベルジャ(4)内の下部に配設されたるつぼ(
7)内のシリコンソース(8)に電子線を照射して蒸発
させ、ベルジャ(4)内のるつぼ(7)の上方に設けら
れた熱電子衝撃手段(9)の陰極(10)、陽極αα間
に300mAのイオン化電流を通流して前記シリコンの
蒸気をイオン化し、ベルジャ(4)内の熱電子衝撃手段
(9)の上方に設けられた加速手段αυの加速電極に、
マイナス7KVの電圧を印加して前記シリコンイオンを
上方に加速するとともに、加速手段αDと基板(1)と
の間に設けられたシャッタ■を開き、加速された前記シ
リコンイオンを絶縁膜(2)および露出した基板(1)
の表面に付着させ、これらの所謂イオン蒸着工程【こよ
り、0.3μm/分の蒸着速度で厚さ2μmの東結晶シ
リコン膜αJを蒸着する。
The crucible (
7) is irradiated with an electron beam to evaporate it, and the cathode (10) and anode αα of the thermionic impact means (9) provided above the crucible (7) in the bell jar (4) are evaporated. An ionizing current of 300 mA is passed between the two to ionize the silicon vapor, and the accelerating electrode of the accelerating means αυ provided above the thermionic bombarding means (9) in the bell jar (4) is
A voltage of minus 7 KV is applied to accelerate the silicon ions upward, and a shutter (2) provided between the acceleration means αD and the substrate (1) is opened, and the accelerated silicon ions are transferred to the insulating film (2). and exposed substrate (1)
In this so-called ion deposition process, an east crystal silicon film αJ having a thickness of 2 μm is deposited at a deposition rate of 0.3 μm/min.

このとき、絶縁膜(2)表面に付着するシリコンイオン
が大きなエネルギーを有するため、前記シリコンイオン
が絶縁膜(2)に付着して屯気的に中性のシリコン原子
となったのちも、前記シリコン原子が絶縁膜(2)上を
移動して窓(3)に露出した基板(1)上に達し、窓(
3)の基板(1)の表面から絶縁膜(2)の表面に平行
な方向に絶縁膜(2)上に単結晶シリコンが成長し10
μ!n以上に及ぶ。
At this time, since the silicon ions that adhere to the surface of the insulating film (2) have large energy, even after the silicon ions adhere to the insulating film (2) and become atmospherically neutral silicon atoms, the Silicon atoms move on the insulating film (2) and reach the substrate (1) exposed in the window (3),
Single crystal silicon grows on the insulating film (2) from the surface of the substrate (1) in 3) in a direction parallel to the surface of the insulating film (2).
μ! n or more.

また、絶縁膜(2)上のシリコン膜03)の電子線回折
像に基つき、結晶性を実験的に解析したところ、菊池ラ
インの見られるミラー指数(111)の単一結晶粒から
なる基板(1)と同じ結晶方位の完全な単結晶であると
いう結果が得られた。
In addition, when we experimentally analyzed the crystallinity based on the electron beam diffraction image of the silicon film 03) on the insulating film (2), we found that the substrate consists of a single crystal grain with a Miller index of (111) where Kikuchi lines can be seen. The result was that it was a perfect single crystal with the same crystal orientation as (1).

したかつて、前記実施例によると、シリコン基板(1)
の温度を600℃以上の800℃に保持するとともに、
シリコンイオンを絶縁膜(2)に向って加速して絶縁膜
(2)および露出した基板(1)上に単結晶シリコン膜
(13)を蒸着することにより、絶縁膜(2)上のシリ
コン膜αJの表面をほぼ平坦にすることができ、絶縁膜
(2)上に全面iCわたって単結晶シリコン膜(2)を
一様に形成することができ、三次元素子およびSOI素
子の形成に非常に有用である。
According to the embodiment, the silicon substrate (1)
While maintaining the temperature at 800°C, which is higher than 600°C,
By accelerating silicon ions toward the insulating film (2) and depositing a single crystal silicon film (13) on the insulating film (2) and the exposed substrate (1), a silicon film on the insulating film (2) is formed. The surface of αJ can be made almost flat, and the single crystal silicon film (2) can be uniformly formed over the entire iC surface on the insulating film (2), making it extremely suitable for the formation of tertiary element elements and SOI elements. It is useful for

さらに、シリコン膜(13)の表面が鏡面であるため、
非常に実用性が高いとともに、制御性、再現性に優れた
半導体素子を提供することができる。
Furthermore, since the surface of the silicon film (13) is a mirror surface,
It is possible to provide a semiconductor element which is extremely practical and has excellent controllability and reproducibility.

また、基板(1)の温度を800℃に保持したため、オ
ートドーピングの発生を防止することができる。
Furthermore, since the temperature of the substrate (1) was maintained at 800° C., autodoping can be prevented from occurring.

なお、前記実施例では、絶縁膜(2)を二酸化ケイ素に
より構成したが、窒化ケイ素、酸化アルミニウム等の非
晶質絶縁材により構成してもこの発明を同様に実施する
ことかできる。
In the above embodiments, the insulating film (2) is made of silicon dioxide, but the present invention can be implemented in the same manner even if it is made of an amorphous insulating material such as silicon nitride or aluminum oxide.

また、基板(1)の温度およびシリコンのイオン化条件
を適宜変更することにより、単結晶シリコンを50μI
n T−ピクキシャル成長させることができる。
In addition, by appropriately changing the temperature of the substrate (1) and the ionization conditions of silicon, single crystal silicon was
n T-pixel growth can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、この発明の半導体素子の製造方法の1実施例を
示し、第1図は単結晶シリコン膜を製造する装置の切断
正面図、第2図は製造された半導体素子の一部の切断正
面図である。
The drawings show one embodiment of the method for manufacturing a semiconductor device of the present invention, in which FIG. 1 is a cutaway front view of an apparatus for manufacturing a single crystal silicon film, and FIG. 2 is a cutaway front view of a part of the manufactured semiconductor device. It is a diagram.

Claims (1)

【特許請求の範囲】[Claims] ■ シリコン基板上に絶縁膜を形成し、前記絶膜の一部
を除去して前記基板表面が露出した窓を形成するととも
に、前記基板の温度を600℃以上に保持し、電界によ
る加速手段によりシリコンイオンを前記絶縁膜に向って
加速して前記絶縁膜および露出した前記基板上に単結晶
シリコン膜を蒸着することにより、前記窓からのシリコ
ンのエピタキシャル成長が前記絶縁膜表面に平行な方向
が垂直方向より5倍以上優勢である事を利用し、前記絶
縁膜上に基板と同じ結晶方位を有する単結晶シリコン膜
を形成することを特徴とする半導体素子の製造方法っ
(2) An insulating film is formed on a silicon substrate, a part of the insulating film is removed to form a window in which the surface of the substrate is exposed, and the temperature of the substrate is maintained at 600°C or higher, and an electric field is used to accelerate the process. By accelerating silicon ions toward the insulating film and depositing a single crystal silicon film on the insulating film and the exposed substrate, the epitaxial growth of silicon from the window is such that the direction parallel to the surface of the insulating film is perpendicular. A method for manufacturing a semiconductor device, characterized in that a single crystal silicon film having the same crystal orientation as that of the substrate is formed on the insulating film by taking advantage of the fact that the direction is more than 5 times more dominant than that of the substrate.
JP20370182A 1982-11-22 1982-11-22 Manufacture of semiconductor element Pending JPS5994412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20370182A JPS5994412A (en) 1982-11-22 1982-11-22 Manufacture of semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20370182A JPS5994412A (en) 1982-11-22 1982-11-22 Manufacture of semiconductor element

Publications (1)

Publication Number Publication Date
JPS5994412A true JPS5994412A (en) 1984-05-31

Family

ID=16478413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20370182A Pending JPS5994412A (en) 1982-11-22 1982-11-22 Manufacture of semiconductor element

Country Status (1)

Country Link
JP (1) JPS5994412A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169320A (en) * 1986-01-21 1987-07-25 Sharp Corp Manufacture of thin film
JPS62277718A (en) * 1986-05-27 1987-12-02 Sharp Corp Formation of polycrystalline silicon thin-film
US7411232B2 (en) 2004-07-16 2008-08-12 Matsushita Electric Industrial Co., Ltd. Semiconductor photodetecting device and method of manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918196A (en) * 1982-07-21 1984-01-30 Hitachi Ltd Preparation of thin film of single crystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918196A (en) * 1982-07-21 1984-01-30 Hitachi Ltd Preparation of thin film of single crystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169320A (en) * 1986-01-21 1987-07-25 Sharp Corp Manufacture of thin film
JPS62277718A (en) * 1986-05-27 1987-12-02 Sharp Corp Formation of polycrystalline silicon thin-film
US7411232B2 (en) 2004-07-16 2008-08-12 Matsushita Electric Industrial Co., Ltd. Semiconductor photodetecting device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US5248630A (en) Thin film silicon semiconductor device and process for producing thereof
US5132754A (en) Thin film silicon semiconductor device and process for producing thereof
JP3817206B2 (en) Semiconductor device having highly insulating single crystal gallium nitride thin film
CA1093216A (en) Silicon device with uniformly thick polysilicon
JPS61244020A (en) Oriented monocrystalline silicon film with restricted defecton insulation support
JPS5919190B2 (en) Manufacturing method of lead film
JPS5994412A (en) Manufacture of semiconductor element
JP2985472B2 (en) Method of forming silicon film
JP3163773B2 (en) Thin film manufacturing method
JPS5975619A (en) Manufacture of semiconductor circuit element
JPS63283013A (en) Forming method for polycrystalline silicon thin film
JP3291149B2 (en) Method for producing crystalline thin film
JPS60180142A (en) Manufacture of semiconductor thin film
JPS5912015B2 (en) semiconductor equipment
JPS5856317A (en) Manufacture of semiconductor thin film
JP3102540B2 (en) Method for forming low hydrogen content amorphous silicon semiconductor thin film
JPS6091625A (en) Manufacture of thin film
JPH06340500A (en) Recrystallization method by irradiation with neutral particle beam
JPH02180793A (en) Production of thin film
SU561331A1 (en) Method of obtaining silicon carbide layers
JPH048506B2 (en)
JPH022612A (en) Manufacture of polycrystalline silicon
JPS5948939A (en) Method and apparatus for forming film
JPH04314325A (en) Manufacture of semiconductor device
JPH0755879B2 (en) Thin film manufacturing method