JPH06340500A - Recrystallization method by irradiation with neutral particle beam - Google Patents

Recrystallization method by irradiation with neutral particle beam

Info

Publication number
JPH06340500A
JPH06340500A JP32669991A JP32669991A JPH06340500A JP H06340500 A JPH06340500 A JP H06340500A JP 32669991 A JP32669991 A JP 32669991A JP 32669991 A JP32669991 A JP 32669991A JP H06340500 A JPH06340500 A JP H06340500A
Authority
JP
Japan
Prior art keywords
amorphous
substrate
crystal
film
neutral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32669991A
Other languages
Japanese (ja)
Other versions
JP3194608B2 (en
Inventor
Toshibumi Asakawa
俊文 浅川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIYUURARU SYST KK
Original Assignee
NIYUURARU SYST KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIYUURARU SYST KK filed Critical NIYUURARU SYST KK
Priority to JP32669991A priority Critical patent/JP3194608B2/en
Publication of JPH06340500A publication Critical patent/JPH06340500A/en
Application granted granted Critical
Publication of JP3194608B2 publication Critical patent/JP3194608B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To form a single crystal film by irradiating an amorphous thin film with the beam of a low-energy inert gas, low-activity neutral atom or neutral atom at a specified temp. from the direction vertical to plural different closest- packed crystal faces. CONSTITUTION:A silane is decomposed to deposit amorphous Si 2 on a quartz substrate 1 by plasma CVD. The substrate 1 is then heated by a heater 7 and kept at a temp. where the amorphous Si 2 is not crystallized. An inert gas such as Ar is introduced into an ion source 3 from a duct 4 to form an ion beam by an electron beam in the source, the ion beam is collided with a reflex plate 5 at an incident angle of 45 deg., reflected twice, discharged as a neutral Ar atom current and projected on the amorphous Si 2 face of the substrate 1 through a collimator 6. The amorphous Si 2 is irradiated from the direction vertical to >=2 different closest-packed crystal faces, hence the Si is crystallized, and a single crystal film having a specified crystal orientation is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は液晶表示の薄膜トランジ
スタに使用する半導体薄膜、3次元LSIに使用する単
結晶薄膜等の製造に好適な中性粒子のビーム照射による
再結晶化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a recrystallization method by beam irradiation of neutral particles suitable for manufacturing a semiconductor thin film used for a thin film transistor of liquid crystal display, a single crystal thin film used for a three-dimensional LSI, and the like.

【0002】[0002]

【従来の技術】従来、多結晶半導体薄膜、アモルファス
半導体薄膜の単結晶化には溶融再結晶化法と、横方向固
相エピタキシー法が使用されて来た。
2. Description of the Related Art Conventionally, melt recrystallization and lateral solid phase epitaxy have been used for single crystallization of polycrystalline semiconductor thin films and amorphous semiconductor thin films.

【0003】[0003]

【発明が解決しようとする課題】前者の方法によれば一
般に高融点物質の場合、基板に大きい熱歪みが発生し、
利用しようとする物質の物理的、電気的特性が害なわれ
る。又溶融には電子ビーム、或いはレーザービームを使
用し、基板が全面を走査する方式を使用しているので、
非常に長い時間と大きいコストがかかる。
According to the former method, in general, in the case of a high melting point substance, a large thermal strain occurs in the substrate,
The physical and electrical properties of the substance to be used are impaired. In addition, since the electron beam or laser beam is used for melting, and the method of scanning the entire surface of the substrate is used,
It takes a very long time and costs a lot.

【0004】又、後者の方法によれば、基板の物質の結
晶方法に左右され易く、成長速度も遅く、10ミクロン
程度の成長に10時間以上を必要とし、成長がある程度
進行すると格子欠陥が発生し単結晶の成長が止まり、大
きい結晶粒が得がたい。
Further, according to the latter method, the crystal growth method of the material of the substrate is apt to be influenced, the growth rate is slow, and it takes 10 hours or more for the growth of about 10 microns, and when the growth progresses to some extent, a lattice defect occurs. However, the growth of the single crystal stops and it is difficult to obtain large crystal grains.

【0005】そしていずれの場合も、種結晶を多結晶
膜、或いはアモルファス膜に接触さす必要があり、結晶
の成長も横方向である為、結晶成長距離が長くなり、成
長途中で各種の障害が入る。例えば、基板がガラスの様
なアモルファス状の材料の場合には格子に規則性が無い
ので、この不規則性が単結晶の成長に影響し、粒形は大
きいが多結晶が成長してしまう。
In any case, the seed crystal needs to be brought into contact with the polycrystalline film or the amorphous film, and the crystal growth is also in the lateral direction. Therefore, the crystal growth distance becomes long and various obstacles occur during the growth. enter. For example, when the substrate is an amorphous material such as glass, since the lattice has no regularity, this irregularity affects the growth of the single crystal, and the grain shape is large, but the polycrystal grows.

【0006】このように横方向固相エピタキシーの場
合、大きい結晶を得る為には長時間を要することは前に
述べたが、その改善方法として、膜の縦方向の成長を利
用し、成長距離を短くし、これによって成長時間を短く
する試みもなされた。
As described above, in the case of the lateral solid phase epitaxy, it takes a long time to obtain a large crystal, but as a method of improving it, the growth in the vertical direction of the film is used to increase the growth distance. Attempts have also been made to shorten the growth time and thereby the growth time.

【0007】即ち多結晶薄膜、或いはアモルファス薄膜
の全面に種結晶を接触させて縦方向に固相エピタキシー
成長をさす方法が試みられたが部分的に種結晶とアモル
ファス膜が接触し、この部分から横方向エピタキシー成
長が起こるだけであった。
That is, a method has been tried in which a seed crystal is brought into contact with the entire surface of a polycrystalline thin film or an amorphous thin film to carry out solid phase epitaxy growth in the vertical direction, but the seed crystal and the amorphous film are partially brought into contact with each other, and from this portion. Only lateral epitaxy growth occurred.

【0008】更に、種結晶と成長した単結晶膜とが接着
してしまうので、これを分離することが非常に困難で、
無理に離すと、時によっては成長した膜が基板から剥離
し種結晶側に付着してしまう。
Further, since the seed crystal and the grown single crystal film adhere to each other, it is very difficult to separate them,
If it is forcibly separated, the grown film may be separated from the substrate and adhere to the seed crystal side in some cases.

【0009】そこで発明者は固相エピタキシーの縦方向
成長方法において、物理的な種結晶を使用すると成長し
た単結晶薄膜と種結晶が接着し分離することが困難にな
るので、物理的な種結晶の替わりに仮想的な大面積の種
結晶を用い、種結晶が全面に密着したと同じ効果があ
り、同時に成長が終わった時点では単結晶表面に物理的
には何も付着していないと言う様な仮想種結晶を得るよ
うにすればよいことを見い出した。
In view of this, the inventor of the present invention uses a physical seed crystal in the vertical growth method of solid phase epitaxy, because it becomes difficult for the grown single crystal thin film and the seed crystal to adhere and separate. Instead of using a seed crystal with a virtual large area, it has the same effect as the seed crystal adheres to the entire surface, and at the same time it says that nothing physically adheres to the single crystal surface when the growth ends. It has been found that such a virtual seed crystal should be obtained.

【0010】本発明は、前述の種々の問題点を解消し、
基板面上に既に形成されている所定の物質のアモルファ
ス薄膜に、所望の結晶方位を持つようにその厚さ方向に
効率的に結晶化する再結晶化方法を提供することを目的
とする。
The present invention solves the above-mentioned various problems,
An object of the present invention is to provide a recrystallization method for efficiently crystallizing an amorphous thin film of a predetermined substance already formed on a substrate surface in the thickness direction so as to have a desired crystal orientation.

【0011】[0011]

【課題を解決するための手段】この目的を達成すべく本
発明は、基板上に所定の物質のアモルファス薄膜を形成
してから、該物質膜を所望の結晶方位を持った単結晶膜
に変換する為、該物質の結晶化の起こらない温度以下の
高温で前記結晶方位における2つ以上の相い異なる最稠
密結晶面に垂直な方向から比較的低いエネルギーの不活
性ガス、或いは活性度の低いガスの中性原子のビームを
照射することを特徴とする。
To achieve this object, the present invention forms an amorphous thin film of a predetermined substance on a substrate and then converts the substance film into a single crystal film having a desired crystal orientation. Therefore, an inert gas having a relatively low energy from the direction perpendicular to two or more different close-packed dense crystal planes in the crystal orientation at a high temperature not higher than the temperature at which crystallization of the substance does not occur, or a low activity It is characterized by irradiating a beam of neutral atoms of gas.

【0012】[0012]

【作用】基板面上に既に形成されている所定の物質のア
モルファス薄膜に、該物質の結晶化の起こらない温度以
下の高温で該物質の所望の結晶方位における2つ以上の
相い異なる最稠密結晶面に垂直な方向から比較的低エネ
ルギーの不活性ガス或いは活性度の低いガスの中性原子
ビームを照射すると、この照射により少なくても膜の表
面近傍は所望の結晶方位となり、更にこの結晶は内部に
向かって成長し膜の厚さ方向全部が結晶化する。
In an amorphous thin film of a predetermined substance already formed on the surface of a substrate, two or more different maximum densities in a desired crystallographic orientation of the substance at high temperatures below a temperature at which crystallization of the substance does not occur. When a neutral atom beam of a relatively low energy or a gas of low activity is irradiated from a direction perpendicular to the crystal plane, the irradiation causes at least the desired crystallographic orientation in the vicinity of the film surface, and Grows inward and crystallizes in the entire thickness direction of the film.

【0013】[0013]

【実施例】本発明の1実施例を図面に従って説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings.

【0014】1は石英基板で、2はプラズマCVD法に
より積んだアモルファスシリコンを示し、該アモルファ
スシリコン2の厚みは約2000オグストロームであ
る。
Reference numeral 1 is a quartz substrate, 2 is amorphous silicon deposited by a plasma CVD method, and the thickness of the amorphous silicon 2 is about 2000 angstroms.

【0015】3はケージ型イオンソースを示し、該イオ
ンソース3は、導管4からアルゴンガスを導入し、該イ
オンソース3の内部で電子線によってイオン化しプラズ
マにして、引き出し電極でアルゴンイオンのみを取り出
し、イオンビームを作るようにしている。そして該ケー
ジ型イオンソース3の直径は10cmで、アルゴンイオン
を200ボルト〜600ボルトに加速することが出来、
その電流密度は1〜9ma/cm2 である。
Reference numeral 3 denotes a cage-type ion source. The ion source 3 introduces argon gas from a conduit 4, ionizes the inside of the ion source 3 by an electron beam to form plasma, and only the argon ions are extracted at an extraction electrode. I take it out and make an ion beam. The cage type ion source 3 has a diameter of 10 cm and can accelerate argon ions to 200 V to 600 V.
Its current density is 1 to 9 ma / cm 2 .

【0016】5は反射減速板、6はコリメータを示し、
該反射減速板5は、直径15cmの(1,0,0)面のシ
リコン単結晶板2枚から構成され、又、前記コリメータ
6は、中性原子流で衝撃されスパッターされても異種の
原子が基板に到達しないように図2(c)の如くアルミ
ニューム板6aの両面にシリコン6bが蒸着されてアル
ミニュームが露出してない波形と平形のアルミニューム
板を図2(b)の如く交互に重ね全体として図2(a)
の如く波形と平形のアルミニューム板を30枚重ね合わ
せ、これらのアルミニューム板の間を通過した原子の流
れは±0.5度の範囲の方向が揃えられ荷電粒子が除か
れる。尚、7は基板を加熱するヒータで基板温度を60
0℃まで上げることができる。
Reference numeral 5 is a reflection reduction plate, 6 is a collimator,
The reflection reduction plate 5 is composed of two (1, 0, 0) plane silicon single crystal plates having a diameter of 15 cm, and the collimator 6 has different atoms even if it is sputtered by a neutral atomic flow. 2c, silicon 6b is vapor-deposited on both sides of the aluminum plate 6a so that the aluminum does not reach the substrate and the aluminum is not exposed. The corrugated and flat aluminum plates are alternated as shown in FIG. 2b. Figure 2 (a)
As described above, thirty corrugated and flat aluminum plates are superposed, and the flow of atoms passing between these aluminum plates is aligned in the range of ± 0.5 degrees to remove charged particles. In addition, 7 is a heater for heating the substrate, and the substrate temperature is 60
Can be raised to 0 ° C.

【0017】次に上記装置による単結晶化について説明
する。
Next, the single crystallization by the above apparatus will be described.

【0018】先ず、1.5mmの厚さの石英基板2に、シ
ランをプラズマCVDを使用して分解し、アモルファス
シリコンを折出させたものを基板2に装着する。そして
加熱ヒータ7により基板2は550度の温度に保持す
る。この温度ではアモルファスシリコンが結晶化するこ
とがない。
First, a quartz substrate 2 having a thickness of 1.5 mm is decomposed from silane using plasma CVD, and amorphous silicon is broken out and mounted on the substrate 2. Then, the substrate 2 is maintained at a temperature of 550 degrees by the heater 7. Amorphous silicon does not crystallize at this temperature.

【0019】次に、導管4からアルゴンガスをイオンソ
ース3に導入して該イオンソース3の内部において前述
の如くイオンビームを作り、該イオンビームは反射減速
板5に入射角45度で当てられ、これらの反射板で2回
反射された後、中性アルゴン原子流となって出て行き、
コリメータ6を通り基板2の面に到達する。
Next, argon gas is introduced into the ion source 3 from the conduit 4 to form an ion beam inside the ion source 3 as described above, and the ion beam is applied to the reflection reduction plate 5 at an incident angle of 45 degrees. , After being reflected twice by these reflectors, it becomes a neutral argon atomic flow and goes out,
It passes through the collimator 6 and reaches the surface of the substrate 2.

【0020】ここで、一方の中性アルゴン原子流は、基
板2の法線に対し35度の角度即ち単結晶の最稠密結晶
軸の方向からアモルファスシリコン面を照射すると共
に、他方つの中性原子流も法線に対し同様に35度の角
度で、両ビームの照射方向が同一平面上に来るような方
向からアモルファスシリコン面を照射する。
Here, one neutral argon atom flow irradiates the amorphous silicon surface from the angle of 35 degrees with respect to the normal line of the substrate 2, that is, the direction of the densest crystal axis of the single crystal, and the other neutral atom. The flow is also at an angle of 35 degrees with respect to the normal, and the amorphous silicon surface is irradiated from a direction such that the irradiation directions of both beams are on the same plane.

【0021】その結果第一段階では図3(a)に示す様
に表面近傍だけが単結晶8であるが、第二段階ではこの
単結晶8が内部に向かって成長し図3(b)の様に膜全
体が単結晶8になる。
As a result, in the first stage, as shown in FIG. 3 (a), only the vicinity of the surface is the single crystal 8, but in the second stage, this single crystal 8 grows toward the inside, and as shown in FIG. 3 (b). Similarly, the entire film becomes the single crystal 8.

【0022】発明者の実験によれば、イオンソースの加
速電圧が2000ボルト、電流密度が2ma/cm2 で約2
0秒間照射したところ照射された中央部はアモルファス
シリコン特有の暗茶褐色の色が消滅し、透明の心持ち黄
色を帯びた色に変わった。その内、約1cm2 の部分をX
線、及び指向性のエッチングで調べたところ、(1,
1,0)軸を基板法線方向に持つ単結晶になっているこ
とが判明した。
According to the experiments conducted by the inventor, the acceleration voltage of the ion source is 2000 V, and the current density is about 2 ma / cm 2 , about 2
When it was irradiated for 0 seconds, the dark brown color peculiar to amorphous silicon disappeared in the irradiated central part, and it changed to a transparent yellowish color. Among them, about 1 cm 2 is X
The line and directional etching revealed that (1,
It was found to be a single crystal having the (1,0) axis in the substrate normal direction.

【0023】結晶方位の決定には、結晶面を二酸化シリ
コン膜で被覆し、この酸化膜に小さい穴を開け、水酸化
カリュームでエッチングし、エッチングピットが六角形
であることで、(1,1,0)軸を持った単結晶である
ことを確認した。
To determine the crystal orientation, the crystal plane is covered with a silicon dioxide film, a small hole is formed in this oxide film, and etching is performed with potassium hydroxide, and the etching pits are hexagonal. , 0) axis was confirmed to be a single crystal.

【0024】尚、前述した物質の結晶化の起こらない温
度以下の高温で、結晶方位における2つ以上の相い異な
る最稠密結晶面に垂直の方向から中性原子を照射するの
は以下の理由による。
The reason for irradiating neutral atoms from a direction perpendicular to two or more different close-packed crystal planes in different crystal orientations at a temperature not higher than the above-mentioned temperature at which crystallization of the substance does not occur is as follows. by.

【0025】即ち、基板面上に既に形成されている所望
のアモルファス薄膜は、結晶化温度の直下では結晶化は
起こらないが、非常に不安定で、何らかの擾乱が与えら
れると結晶化が始まり、連鎖反応的に進行する。この温
度で、比較的低エネルギー、例えば、数十電子ボルトの
イオンビーム、或いは中性原子ビームを一方向より照射
すると、表面近傍では、この照射方向に垂直な面を最稠
密結晶面とする多結晶化が進行する。これはBravais の
法則として知られている。
That is, the desired amorphous thin film already formed on the surface of the substrate does not crystallize immediately below the crystallization temperature, but is very unstable and starts to crystallize when some disturbance is given. It proceeds in a chain reaction. When a relatively low energy, for example, an ion beam of several tens of electron volts or a neutral atom beam is irradiated from one direction at this temperature, in the vicinity of the surface, a plane perpendicular to this irradiation direction is regarded as a densest crystal plane. Crystallization proceeds. This is known as Bravais's law.

【0026】単結晶を得る為に、該物質の結晶状態に於
る相い異なる2つ以上の最稠密結晶面に垂直な方向から
照射すると、結晶化時の照射方向を軸とする結晶の回転
の自由度は消滅し、一義的に結晶方位が定まり所望の結
晶方位を持った結晶が得られる。
Irradiation from a direction perpendicular to two or more close-packed dense crystal planes in different crystal states of the substance to obtain a single crystal causes rotation of the crystal around the irradiation direction during crystallization. The degree of freedom disappears, the crystal orientation is uniquely determined, and a crystal having a desired crystal orientation is obtained.

【0027】この場合、帯電粒子ビームを使用すると、
粒子間の静電気による反発力の為、ビームが広がり指向
性が無くなったり、絶縁基板を使用したり、物質の抵抗
率が大きい場合には膜面に電荷が蓄積し、蓄積電荷の反
発力の為、ビームはある量以上は膜面に到達しなくな
る。然し、中性原子ビームの場合にはこの様な反発力を
受けず、平行ビームが膜面に到達し、結晶化がスムーズ
に進行する。
In this case, if a charged particle beam is used,
Due to the repulsive force due to static electricity between particles, the beam spreads and the directivity is lost, an insulating substrate is used, and when the resistivity of the substance is high, charges accumulate on the film surface, which is due to the repulsive force of the accumulated charges. The beam does not reach the film surface more than a certain amount. However, in the case of the neutral atom beam, such a repulsive force is not received, the parallel beam reaches the film surface, and crystallization proceeds smoothly.

【0028】尚、照射するビームとして例えばN2 の如
く中性分子ビームを用いてもよい。
A neutral molecular beam such as N 2 may be used as the irradiation beam.

【0029】[0029]

【発明の効果】このように本発明によると基板面上に既
に形成されている所定の物質のアモルファス薄膜に、該
物質の結晶化の起こらない温度以下の高温で該物質の結
晶方位における2つ以上の相い異なる最稠密結晶面に垂
直な方向から比較的低エネルギーの中性原子ビームを照
射するようにしたので、液晶表示の薄膜トランジスタに
使用する半導体薄膜、或いは3次元LSIに使用する単
結晶薄膜等の広範囲のものを基板の温度をそれ程上げる
ことなく容易に得ることができ、更に従来公知の金属蒸
着膜によれば一般に空格子点が多くて膜の質が悪く、電
子回路の配線に使用した時、マイグレーション現象を起
こし、断線することが多いが、本発明によればこのよう
な障害を防止することが可能である効果を有する。
As described above, according to the present invention, an amorphous thin film of a predetermined substance already formed on the surface of a substrate has two crystal orientations of the substance at a temperature not higher than a temperature at which crystallization of the substance does not occur. Since the neutral atom beam having relatively low energy is irradiated from the directions perpendicular to the different closest dense crystal planes, a semiconductor thin film used for a thin film transistor of liquid crystal display or a single crystal used for a three-dimensional LSI A wide range of thin films, etc. can be easily obtained without raising the temperature of the substrate so much. Further, conventionally known metal vapor deposition films generally have many vacancy points and the quality of the film is poor, so that it is suitable for wiring of electronic circuits. When it is used, it often causes a migration phenomenon and breaks. However, the present invention has an effect of preventing such a failure.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の装置の説明図である。FIG. 1 is an explanatory diagram of a device according to a first embodiment of the present invention.

【図2(a)】コリメータの構造を示す斜視図である。FIG. 2A is a perspective view showing the structure of a collimator.

【図2(b)】その1部の拡大斜視図である。FIG. 2 (b) is an enlarged perspective view of a part thereof.

【図2(c)】更にその1部の拡大斜視図である。FIG. 2 (c) is an enlarged perspective view of a part thereof.

【図3(a)】イオンビーム照射開始の状態の膜の拡大
断面図である。
FIG. 3A is an enlarged cross-sectional view of the film in a state where the ion beam irradiation is started.

【図3(b)】イオンビーム照射後の状態の膜の拡大断
面図である。
FIG. 3B is an enlarged cross-sectional view of the film after the ion beam irradiation.

【符号の説明】[Explanation of symbols]

1 基板 2 アモルファス薄膜 3 イオンソース 5 反射減速板 6 コリメータ 7 ヒータ 1 Substrate 2 Amorphous thin film 3 Ion source 5 Reflection reduction plate 6 Collimator 7 Heater

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板上に所定の物質のアモルファス薄膜
を形成してから、該物質膜を所望の結晶方位を持った単
結晶膜に変換する為、該物質の結晶化の起こらない温度
以下の高温で前記結晶方位における2つ以上の相い異な
る最稠密結晶面に垂直な方向から比較的低いエネルギー
の不活性ガス、或いは活性度の低いガスの中性原子、或
いは中性分子のビームを照射することを特徴とする中性
粒子のビーム照射による再結晶化方法。
1. Since an amorphous thin film of a predetermined substance is formed on a substrate and then the substance film is converted into a single crystal film having a desired crystal orientation, a temperature below a temperature at which crystallization of the substance does not occur. Irradiation with a beam of neutral gas or neutral molecule of relatively low energy inert gas or low activity gas from a direction perpendicular to two or more different close-packed crystal planes in the crystal orientation at high temperature. A method for recrystallizing neutral particles by beam irradiation.
JP32669991A 1991-11-15 1991-11-15 Recrystallization method by beam irradiation of neutral particles Expired - Lifetime JP3194608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32669991A JP3194608B2 (en) 1991-11-15 1991-11-15 Recrystallization method by beam irradiation of neutral particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32669991A JP3194608B2 (en) 1991-11-15 1991-11-15 Recrystallization method by beam irradiation of neutral particles

Publications (2)

Publication Number Publication Date
JPH06340500A true JPH06340500A (en) 1994-12-13
JP3194608B2 JP3194608B2 (en) 2001-07-30

Family

ID=18190683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32669991A Expired - Lifetime JP3194608B2 (en) 1991-11-15 1991-11-15 Recrystallization method by beam irradiation of neutral particles

Country Status (1)

Country Link
JP (1) JP3194608B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0652308A2 (en) * 1993-10-14 1995-05-10 Neuralsystems Corporation Method of and apparatus for forming single-crystalline thin film
WO2001073821A3 (en) * 2000-03-27 2002-07-04 Ultratech Stepper Inc Methods for annealing a substrate and article produced by such methods
JP2011505685A (en) * 2007-11-13 2011-02-24 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド Improvement of thin film materials with particle beam assistance

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0652308A2 (en) * 1993-10-14 1995-05-10 Neuralsystems Corporation Method of and apparatus for forming single-crystalline thin film
EP0652308A3 (en) * 1993-10-14 1997-12-17 Neuralsystems Corporation Method of and apparatus for forming single-crystalline thin film
WO2001073821A3 (en) * 2000-03-27 2002-07-04 Ultratech Stepper Inc Methods for annealing a substrate and article produced by such methods
US6825101B1 (en) * 2000-03-27 2004-11-30 Ultratech, Inc. Methods for annealing a substrate and article produced by such methods
JP2011505685A (en) * 2007-11-13 2011-02-24 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド Improvement of thin film materials with particle beam assistance

Also Published As

Publication number Publication date
JP3194608B2 (en) 2001-07-30

Similar Documents

Publication Publication Date Title
JPH084067B2 (en) Method for manufacturing semiconductor device
JPS61244020A (en) Oriented monocrystalline silicon film with restricted defecton insulation support
JPH06340500A (en) Recrystallization method by irradiation with neutral particle beam
EP0020134A1 (en) Method of enhancing epitaxy and preferred orientation in films deposited on solid substrates
JPS5918196A (en) Preparation of thin film of single crystal
JPS6115319A (en) Manufacture of semiconductor device
EP0275075B1 (en) Thin film transistor and method of making the same
JPH0692280B2 (en) Crystal thin film manufacturing method
JP2706770B2 (en) Semiconductor substrate manufacturing method
JP2660044B2 (en) Manufacturing method of evaporated thin film
JPS6347256B2 (en)
JP3332645B2 (en) Method for manufacturing polycrystalline semiconductor
JPS6147627A (en) Manufacture of semiconductor device
JPH0810669B2 (en) Method of forming SOI film
JP3291149B2 (en) Method for producing crystalline thin film
JPH0442358B2 (en)
JP2704403B2 (en) Semiconductor thin film manufacturing method
JPH0517693B2 (en)
JPS5994412A (en) Manufacture of semiconductor element
JP2699608B2 (en) Single crystal thin film forming method
JPS61179523A (en) Formation of single crystal thin film
JP3545061B2 (en) Method for forming orientation film
JPS60164316A (en) Formation of semiconductor thin film
JP2566663B2 (en) Method for manufacturing semiconductor single crystal film
JPH02184594A (en) Production of single crystal thin film

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090601

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 11