JPS5990040A - Detector for gaseous carbon monoxide - Google Patents

Detector for gaseous carbon monoxide

Info

Publication number
JPS5990040A
JPS5990040A JP20067482A JP20067482A JPS5990040A JP S5990040 A JPS5990040 A JP S5990040A JP 20067482 A JP20067482 A JP 20067482A JP 20067482 A JP20067482 A JP 20067482A JP S5990040 A JPS5990040 A JP S5990040A
Authority
JP
Japan
Prior art keywords
tin oxide
film
gas
gaseous
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20067482A
Other languages
Japanese (ja)
Inventor
Tadashi Tonomura
外「村」 正
Satoshi Sekido
関戸 「さとし」
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20067482A priority Critical patent/JPS5990040A/en
Publication of JPS5990040A publication Critical patent/JPS5990040A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To improve the sensitivity of a gaseous CO detector using a film-like tin oxide as a gaseous carbon monoxide CO sensitive body by regulating the structure of the tin oxide film. CONSTITUTION:A film-like tin oxide having <=120 deg.crystal particle size determined by a Debye-Scherrer formula from the half-amplitude level of the diffraction peak corresponding to the 110 face appearing near 2theta=26.6 deg. (theta is a diffraction angle) in the X-ray diffraction chart of an SnO2 crystal is used as an adequate sensitive material of tin oxide. The gas detector using the tin oxide film selected in such a way exhibits the value of >=(1/3-2/3)order of reaction derived from the reaction considered for the reaction between gaseous CO and the surface of tin oxide with respect to gaseous CO thus enabling detection of gaseous CO with high sensitivity.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、膜状酸化錫を一酸化炭素(C○)ガス感応体
とするCOガス検知器に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a CO gas detector using a film of tin oxide as a carbon monoxide (CO) gas sensor.

従来例の構成とその問題点 酸化錫をガス感応体とするCOガス検知器は、n型半導
体である酸化錫に電子供与性のCOガスが吸着すること
で酸化錫の電気抵抗を、COガス濃度に比例して減少さ
せるという理化学分野において以前からよく知られてい
る現象を利用したものである。
Conventional structure and its problems A CO gas detector that uses tin oxide as a gas sensitive material has an electron-donating CO gas adsorbed to tin oxide, which is an n-type semiconductor, so that the electrical resistance of tin oxide can be changed by CO gas. This takes advantage of a phenomenon that has long been well known in the field of physics and chemistry, in which the concentration decreases in proportion to the concentration.

この、いわゆる半導体式ガス検知器は、ガス濃度に比例
して電気が増減する感応体と、この電気抵抗変化を外部
信号として取り出すための一対の電極と、感応体を適切
な温度下で働かすための加熱源とで構成され、きわめて
簡単な構造を有している。このように構造がきわめて簡
単である半導体式ガス検知器の感度、応答速度等の性能
を決定するのは、ひとつには、感応体を構成する物質の
材料物性が挙げられる。
This so-called semiconductor gas detector consists of a sensitive body whose electricity increases or decreases in proportion to the gas concentration, a pair of electrodes for extracting this electrical resistance change as an external signal, and a sensor for operating the sensitive body at an appropriate temperature. It has an extremely simple structure. One of the factors that determines the sensitivity, response speed, and other performance of a semiconductor gas detector, which has an extremely simple structure, is the physical properties of the materials that make up the sensitive body.

すなわち、今仮に同一の物質を感応体として用いブこと
しても、その形状あるいは内部構造に」、り規定される
表面のガスに対する反応性の違いという意味での材料物
性の違いdl、ガス検知器の特性の違いとなって顕著に
現れる。これを理解するのは、一般に言われているよう
に、ガス検知の機構が、感応体と被検ガスとの化学的な
相互作用を伴っていることを考えれば、難しいことでは
ない。
In other words, even if the same material were used as a sensor, there would be a difference in material properties in the sense of a difference in reactivity to gas on the surface defined by its shape or internal structure, and a gas detector. This becomes noticeable as a difference in the characteristics of the two. It is not difficult to understand this, considering that the gas detection mechanism involves a chemical interaction between the sensitive body and the gas to be detected, as is generally said.

高感度のガス検知器ケ得ようとする場合、酸化錫内での
導電に閏!iする電子のうち、酸化錫の表面層に存在す
る電子の数が、酸化錫の内部()<ルク)に存在する電
子の数より多い方が、酸化錫表面でのcoとの反応を有
効に反映することができることから、近年、比表面積の
小さな酸化錫焼結体に代わって、春光面積の比較的大き
な膜状の酸化錫を用いる試みがなされているが、検知特
性の再現が得られにくい。すなわち、膜のミツ物性とガ
ス感応性との関連が明らかにされておらず、膜状にした
ことにより期待される高感度という!14性が必ずしも
得られず、焼結体を用いた検知器に代わって実用ガス検
知器として供するのに難点かあった。
When trying to obtain a highly sensitive gas detector, it is important to consider the conductivity in tin oxide! The reaction with co on the surface of tin oxide is more effective if the number of electrons present in the surface layer of tin oxide is larger than the number of electrons present inside the tin oxide ( In recent years, attempts have been made to use tin oxide in the form of a film with a relatively large luminous area in place of the tin oxide sintered body with a small specific surface area, but it has not been possible to reproduce the detection characteristics. Hateful. In other words, the relationship between the physical properties of the film and its gas sensitivity has not been clarified, and the high sensitivity that is expected by making it into a film is not clear! 14 properties cannot necessarily be obtained, which makes it difficult to use it as a practical gas detector instead of a detector using a sintered body.

これは、Coガスと酸化錫表面との反応か複雑であるこ
とに起因している。現在考えられている反応を以下に示
す。
This is due to the complicated reaction between the Co gas and the tin oxide surface. The reactions currently being considered are shown below.

Co−+CO+e 2CO+O(酸化錫の格子内酸素) →CO2+CO+e 2CO+02− (酸化錫表面に吸着した酸素分子)→
2 CO2+ e CO+o−(酸化錫表面に吸着し/ヒ酸素原子)→CO
2+ e co+o2− (酸化錫表面に吸着した酸素原子)→C
02+ 2 e このように、COと酸化錫表面との反応は、酸化錫の表
面状態、すなわち格子内酸素の抜は易さ、表面の酸素の
吸着状態で大きく変化し、比表面積の大きな膜状の酸化
錫感応体のガス感応性は、特にこの影響を大きく被むる
ことに依っている。
Co-+CO+e 2CO+O (oxygen in the lattice of tin oxide) →CO2+CO+e 2CO+02- (oxygen molecules adsorbed on the surface of tin oxide) →
2 CO2+ e CO+o- (adsorbed on the surface of tin oxide/arsenic oxygen atom) → CO
2+ e co+o2- (oxygen atom adsorbed on the surface of tin oxide) → C
02+ 2 e In this way, the reaction between CO and the surface of tin oxide changes greatly depending on the surface condition of tin oxide, that is, the ease with which oxygen is removed from the lattice, and the adsorption state of oxygen on the surface. The gas sensitivity of the tin oxide sensitizers is particularly dependent on this influence.

発明の目的 本発明は、酸化錫膜の構造を規定することで、表面状態
を[1丁現性よくんえ、膜状酸化錫感応体本来の高感度
性を有したCOガス検知器を提供することを目的とする
OBJECTS OF THE INVENTION The present invention provides a CO gas detector that improves the surface state by defining the structure of the tin oxide film and has the high sensitivity inherent to the film-form tin oxide sensor. The purpose is to

発明の構成 本発明は、好適な酸化錫焼結体拐刺として、Sn○2結
晶のX線回折図において20==26.60(θは回折
角)付近に現れる(110)面に相当する回折ピークの
半値巾より、以下に示ずデバイ・シェーラ一式で−匂え
られる結晶粒子径が120Å以下である膜状酸化錫を用
いることを特徴とする。
Structure of the Invention The present invention corresponds to the (110) plane that appears around 20 = = 26.60 (θ is the diffraction angle) in the X-ray diffraction diagram of Sn○2 crystal as a suitable tin oxide sintered body core. Based on the half-value width of the diffraction peak, it is characterized by using a film-like tin oxide having a crystal grain size of 120 Å or less as determined by a Debye-Scherer set (not shown below).

D=にλ/βcosθ ここでDは結晶粒子径、Kは1に近い係数、λは回折測
定に用いたX線波長、βはB−bである。
D=λ/β cos θ where D is the crystal particle diameter, K is a coefficient close to 1, λ is the X-ray wavelength used for diffraction measurement, and β is B-b.

Bは被検体の半値[IJlbは回折格子に固有の値であ
り、十分結晶性の発達した例えば粒径が10〜5071
のS iO2単結晶粉末の回折ピークの半値半である。
B is the half value of the specimen [IJlb is a value specific to the diffraction grating;
This is half the value of the diffraction peak of SiO2 single crystal powder.

」二記のようにして選ばれた酸化錫膜を用いたガス検知
器は、Coガスに対して、前述のようにCoガスと酸化
錫表面との反応に対して考えられている反応から導かれ
る反応次数%〜%以上の値を示し、高感度のCoガス検
知が可能となる。乙の理由については後述する。
A gas detector using a tin oxide film selected as described in Section 2 is capable of reacting to Co gas based on the reaction that is considered to occur between Co gas and the surface of tin oxide, as described above. It shows a value of % to % or more of the reaction order, and highly sensitive Co gas detection becomes possible. Party B's reasons will be discussed later.

実施例の説明 第1図は、本発明の実施例の1つである結晶粒子径が1
20Å以下である酸化錫感応体を備えたCOガス検知器
を示す。図において、1は表面粗さが約2.5μの厚さ
0 、5mm、縦5謔、横5+nmの大きさの純度96
係のアルミナ基板である。2はこのアルミナ基板の片方
の面に酸化ルテニウムを主体とする導電ペーストを塗布
し、焼き付けて得た抵抗体より成る面状ヒータであり、
これにより検知器は定められた一定の動作温度に保持さ
れる。
DESCRIPTION OF EMBODIMENTS FIG. 1 shows one of the embodiments of the present invention, in which the crystal grain size is 1.
Figure 2 shows a CO gas detector with a tin oxide sensitizer that is less than 20 Å. In the figure, 1 has a surface roughness of approximately 2.5 μm, a thickness of 0 mm, a length of 5 mm, a width of 5 + nm, and a purity of 96 mm.
This is the related alumina substrate. 2 is a planar heater made of a resistor obtained by applying a conductive paste mainly composed of ruthenium oxide to one side of this alumina substrate and baking it;
This maintains the detector at a defined constant operating temperature.

3は面状ヒータ2の表面を覆うように塗付焼き伺けされ
たガラス層である。4は面状ヒータ2に電力を供給する
ための線径0.5mmの白金線より成るリード線である
。6は白金を主体とする導電性ペーストをアルミナ基板
1のもう一方の而に、アルミナ基板の中央部が0 、6
+n+n巾の溝で露出する形状に印刷焼き刊けられたガ
ス感応体の電気信号を外部に取り出すだめの電極である
。6は電極6とともに焼き付は固定されたクロメル−ア
ルメル線よりなるガス感応体の温度測定用の熱電対であ
る。
3 is a glass layer coated and baked to cover the surface of the sheet heater 2. 4 is a lead wire made of platinum wire with a wire diameter of 0.5 mm for supplying electric power to the planar heater 2. 6 is a conductive paste mainly composed of platinum on the other side of the alumina substrate 1, and the central part of the alumina substrate is
This is an electrode for taking out the electrical signal of the gas sensitive body, which is printed and printed in a shape exposed by a +n+n width groove. Reference numeral 6 designates a thermocouple for measuring the temperature of the gas sensitive body, which is made of a chromel-alumel wire and has a fixed seizure together with the electrode 6.

7は電極6用の線径0.6mmの白金線よりなるIJ 
−ド線である。8が本発明に従う結晶粒子径が120Å
以下である酸化錫膜より成るCoガス感応体である。
7 is an IJ made of platinum wire with a wire diameter of 0.6 mm for electrode 6.
- line. 8 has a crystal grain size of 120 Å according to the present invention.
This is a Co gas sensitive body made of a tin oxide film as shown below.

前記酸化錫膜乞J1、例えば、純度99.99係の金属
錫板より成る直径125mmのターグツl−拐料を用い
て、電極間距離60胴、アルゴンガス圧1.25Pa、
酸素カス圧1,25Pa、電流100 mAで60分間
直流スパッタリングを行うことによって得た膜厚600
0A程度寸での酸化錫薄膜を、空気中において600°
Cで2時間加熱焼成することにより4えられる。
The tin oxide film J1 is, for example, a 125 mm diameter targlow material made of a metal tin plate with a purity of 99.99, an electrode distance of 60 mm, an argon gas pressure of 1.25 Pa,
A film thickness of 600 mm obtained by performing DC sputtering for 60 minutes at an oxygen gas pressure of 1.25 Pa and a current of 100 mA.
A thin film of tin oxide with a size of about 0A is heated at 600° in air.
4 can be obtained by heating and baking at C for 2 hours.

第2図は、この」=うにして得られた酸化錫膜を管電流
20 mA 、管電圧60KVで銅を対陰極としてX線
回折により得られる20=20〜36゜の回折図である
。SnO2特有の(110)結晶面に相当する回折ピー
クが20−26.6°に141らノしる。
FIG. 2 is a diffraction pattern of 20=20 to 36° obtained by X-ray diffraction of the tin oxide film obtained in this manner at a tube current of 20 mA and a tube voltage of 60 KV using copper as an anticathode. The diffraction peak corresponding to the (110) crystal plane peculiar to SnO2 is 141 degrees at 20-26.6°.

なお、2θ=25.60付近の鋭い回折ピークは基板の
アルミナに帰属されるピークである。前記酸化錫膜の結
晶粒径りは、前述したデバイ・シェーラ一式を用いて求
められる。
Note that the sharp diffraction peak near 2θ=25.60 is a peak attributed to alumina of the substrate. The crystal grain size of the tin oxide film is determined using the Debye-Scherer set described above.

一ト記17J)Lにおいて、K−;1.0.λ=1.5
406人。
1 17J) In L, K-; 1.0. λ=1.5
406 people.

θ=26.6/2、B−1,10(第2図に示した2θ
=26.6゜の回折ピークの半値中)、b−0,13を
代入するとがる。前記酸化錫膜の結晶粒子径が105人
であることがわかる1、 以上の方法により酸化錫膜の結晶粒子径が決定されるが
、結晶粒子径の異なる酸化錫膜を感応体とした検知器に
ついて、本発明の効果を見るために、断面積が2.6c
dであるガス流路に、第1図に示したガス検知器を配置
し、毎分21の割合でCOガスを含むサンプルガス全流
して特性を評価した。
θ=26.6/2, B-1,10 (2θ shown in Figure 2
= 26.6° (during the half value of the diffraction peak), and substitute b-0,13. It can be seen that the crystal grain size of the tin oxide film is 105. The crystal grain size of the tin oxide film is determined by the above method. In order to see the effect of the present invention, the cross-sectional area is 2.6c.
The gas detector shown in FIG. 1 was placed in the gas flow path d, and the sample gas containing CO gas was completely flowed at a rate of 21 per minute to evaluate the characteristics.

サンプルガス組成は、CO濃度がO〜1500ppm 
The sample gas composition has a CO concentration of O to 1500 ppm.
.

O25,4%、残部N2である。面状ヒータ2によりガ
ス検知器を330″Cあるいは390’Cに加熱し、C
Oガス濃度をOかも1500ppmの間で変化させた。
O2 5.4%, balance N2. The gas detector is heated to 330'C or 390'C by the planar heater 2.
The O gas concentration was varied between 1500 ppm.

この際のガス検知器の電気抵抗の変化を、ガス検知器に
直列に150にΩの定抵抗をつなぎ、両端に100mV
の直流電圧を印加して、160にΩの定抵抗の両端の電
圧変化を測定することによって観測した。
To measure the change in electrical resistance of the gas detector at this time, connect a constant resistor of 150Ω to the gas detector in series, and apply 100mV to both ends.
It was observed by applying a DC voltage of 160Ω and measuring the voltage change across a constant resistance of 160Ω.

第3〜4図はこれらの結果を示すもので、ΔlogR/
Δlol/Ccoを縦軸に、結晶粒子を横軸に示してい
る。なおRはガス検知器の電気抵抗値、CCOはサンプ
ルガス中のCO濃度を表す。
Figures 3 and 4 show these results, and ΔlogR/
The vertical axis represents Δlol/Cco, and the horizontal axis represents crystal grains. Note that R represents the electrical resistance value of the gas detector, and CCO represents the CO concentration in the sample gas.

Δlo、!7R/Δdogccoの値が大きい程、CO
を高感度に検知することができる。第3図は動作温度が
330″Cのとき、第4図は390°Cのときである。
Δlo,! The larger the value of 7R/Δdogcco, the more CO
can be detected with high sensitivity. FIG. 3 shows the operating temperature at 330''C, and FIG. 4 shows the operating temperature at 390°C.

これらの図より明らかなように、本発明に従い粒子径1
20Å以下の酸化錫膜を有したCOガス検知器は、Δl
ogR/ΔlogCco値として0.75程度までの高
い値を示し、高感度にCOガスを検知できることを示し
ている。
As is clear from these figures, according to the present invention, particle size 1
A CO gas detector with a tin oxide film of 20 Å or less is Δl
The ogR/ΔlogCco value was as high as about 0.75, indicating that CO gas could be detected with high sensitivity.

なお、酸化錫焼結体についてこの結晶粒子径依存性につ
いては、例えば、電気化学Vo750.g1(1982
年)の第99〜104頁に述べられている通りで、粒径
が50〜600への範囲内でCo感度は結晶子の大きさ
にほとんど影響を受けないことが示されており、また、
発明者らが焼結体について前記の文献に述べられている
のと同様の素子を作製して、ΔlogR/Δ1o9cc
oの値を調べたところ、やはり結晶粒径に依らず、この
値は%〜只の値を示した。この値は、本発明に従7うC
Oガス検知器の0.76程度に較べはるかに小さく、本
発明の検知器がいかに優れているかを示すものである、
Regarding the crystal grain size dependence of tin oxide sintered bodies, see, for example, Electrochemistry Vol. 750. g1 (1982
As stated in pages 99 to 104 of 2007), it has been shown that Co sensitivity is hardly affected by the crystallite size within the grain size range of 50 to 600.
The inventors fabricated an element similar to that described in the above-mentioned literature for a sintered body, and obtained ΔlogR/Δ1o9cc.
When the value of o was investigated, the value showed a value of % to only, regardless of the crystal grain size. This value corresponds to C according to the present invention.
This is much smaller than the 0.76 of an O gas detector, which shows how superior the detector of the present invention is.
.

なお、本発明の効果を見るために結晶粒径が異なる酸化
錫膜は、先述した金属錫板をターゲットとしたスパッタ
リング法により酸化錫膜を形成し、これを大気中で加熱
焼成する工程において、スパッタリング時のアルミナ基
板温度と加熱焼成時の温度を次表の通り選ぶことによっ
て得たものである。
In order to see the effects of the present invention, tin oxide films with different crystal grain sizes were formed by forming a tin oxide film by the sputtering method using the metal tin plate as a target, and then heating and baking it in the atmosphere. The results were obtained by selecting the alumina substrate temperature during sputtering and the temperature during heating and baking as shown in the following table.

なお、いずれも膜厚みは5000〜5500人 である
、。
The thickness of each film is 5,000 to 5,500 people.

¥1:/辷、結晶粒径が、120Å以下である酸化錫膜
として、先述したスパッタリング法による膜厚Iが約1
000人の膜の他に、金属錫を酸素ガス雰囲気中で加熱
蒸発させるいわゆるガス中蒸着法で得られる膜かあるが
、ガス中蒸着法で得フヒ膜は、数10人の微粒子状で得
られ、このものは本発明と同様の効果を与えるか、CO
ガス検知器として必要な動作温度300〜400°C七
では、熱的に不安定で、経時的に粒子の再結合が起こり
、結晶粒径が120Å以下に保持できるItJ1間邑、
きわめて4(l<、本発明にQ」、適当てない。
¥1: / As a tin oxide film with a crystal grain size of 120 Å or less, the film thickness I by the sputtering method described above is about 1
In addition to the 000-layer film, there is also a film obtained by the so-called in-gas evaporation method, in which metallic tin is heated and evaporated in an oxygen gas atmosphere. This product has the same effect as the present invention, or CO
It is thermally unstable at the operating temperature of 300 to 400°C, which is required for a gas detector, and particles recombine over time, and the crystal grain size can be maintained at 120 Å or less.
Extremely 4 (l<, Q for the present invention), not applicable.

発明の効果 以上のように本発明によれCJl、高I六度のCOガス
検知器が得られる。
Effects of the Invention As described above, according to the present invention, a CO gas detector with CJl and high I 6 degrees can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のCOガス検知器の縦断面図
、第2図は酸化錫膜のX線回折図、第3図及び第4図は
酸化錫の結晶粒径とCOガス感度との関係を示す図であ
る。 1・・・・・・基板、2・・・・・・面状ヒータ、5・
・・・・・電極。 第1@ 第2図 ?θ く准) 3図 d  /#  t5θ 2ρρ ?6σ鮎品舷僅f幻 第4図
Fig. 1 is a vertical cross-sectional view of a CO gas detector according to an embodiment of the present invention, Fig. 2 is an X-ray diffraction diagram of a tin oxide film, and Figs. 3 and 4 are graphs showing the crystal grain size of tin oxide and CO gas. FIG. 3 is a diagram showing the relationship with sensitivity. 1... Substrate, 2... Planar heater, 5...
·····electrode. Figure 1 @ Figure 2? θ Kujun) 3 Figure d /# t5θ 2ρρ? Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)X線回折測定において現れるSnO2結晶の(1
1o)面に帰される回折ピークの半値l〕からデバイ・
シェーラ一式を用いて算出される結晶粒子の大きさが1
20AIJ下である膜状酸化錫を感応体としたことを特
徴とする一酸化炭素ガス検知器。 (噂 前記膜状酸化錫が、スパッタリングで与えられた
ものである特許請求の範囲第1項記載の一酸化炭素ガス
検知器。
(1) SnO2 crystals appearing in X-ray diffraction measurements (1
1o) From the half value l of the diffraction peak attributed to the surface, Debye
The crystal grain size calculated using the Scherer set is 1
A carbon monoxide gas detector characterized in that a film-form tin oxide having a temperature below 20 AIJ is used as a sensitive material. (Rumor) The carbon monoxide gas detector according to claim 1, wherein the tin oxide film is provided by sputtering.
JP20067482A 1982-11-15 1982-11-15 Detector for gaseous carbon monoxide Pending JPS5990040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20067482A JPS5990040A (en) 1982-11-15 1982-11-15 Detector for gaseous carbon monoxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20067482A JPS5990040A (en) 1982-11-15 1982-11-15 Detector for gaseous carbon monoxide

Publications (1)

Publication Number Publication Date
JPS5990040A true JPS5990040A (en) 1984-05-24

Family

ID=16428348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20067482A Pending JPS5990040A (en) 1982-11-15 1982-11-15 Detector for gaseous carbon monoxide

Country Status (1)

Country Link
JP (1) JPS5990040A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986004989A1 (en) * 1985-02-20 1986-08-28 Osaka Gas Company Limited Gas sensor element of tin oxide film
US5879630A (en) * 1996-03-04 1999-03-09 Motorola, Inc. Semiconductor chemical sensor device and method of forming a thermocouple for a semiconductor chemical sensor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910092A (en) * 1972-05-19 1974-01-29
JPS5529758A (en) * 1978-08-23 1980-03-03 Matsushita Electric Ind Co Ltd Detector employing extremely-fine corpuscule resist film
JPS5578235A (en) * 1978-12-08 1980-06-12 Matsushita Electric Ind Co Ltd Sensor and its manufacture
JPS55158549A (en) * 1979-05-29 1980-12-10 Matsushita Electric Ind Co Ltd Production of sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910092A (en) * 1972-05-19 1974-01-29
JPS5529758A (en) * 1978-08-23 1980-03-03 Matsushita Electric Ind Co Ltd Detector employing extremely-fine corpuscule resist film
JPS5578235A (en) * 1978-12-08 1980-06-12 Matsushita Electric Ind Co Ltd Sensor and its manufacture
JPS55158549A (en) * 1979-05-29 1980-12-10 Matsushita Electric Ind Co Ltd Production of sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986004989A1 (en) * 1985-02-20 1986-08-28 Osaka Gas Company Limited Gas sensor element of tin oxide film
US5879630A (en) * 1996-03-04 1999-03-09 Motorola, Inc. Semiconductor chemical sensor device and method of forming a thermocouple for a semiconductor chemical sensor device

Similar Documents

Publication Publication Date Title
Ryu et al. ZnO sol–gel derived porous film for CO gas sensing
US4276535A (en) Thermistor
JPS6351501B2 (en)
Wang et al. Solid-state potentiometric CO 2 sensor combining Li 3 PO 4 with MoO 3-doped Li 2 CO 3 sensing electrode
Bakha et al. Development of new co-planar platform configuration of MOX gas sensor
CN110849941B (en) Preparation method of resistance-type humidity sensing device based on loose carbon structure and hydrophilic polymer material composition
JPS5990040A (en) Detector for gaseous carbon monoxide
US4198850A (en) Gas sensors
JPH053895B2 (en)
JPH10267720A (en) Sensor with thin film element
RU2546849C2 (en) Semiconductor oxygen sensor
EP0023216B1 (en) An oxygen-sensitive element and a method of detecting oxygen concentration
JPH02662B2 (en)
SU989422A1 (en) Humidity and temperature pickup
JPS6152420B2 (en)
Samarasekara et al. Temperature dependence of gas sensitivity of ferric oxide thin films in CO2 gas, acetone, ethanol and methanol vapors
JPH038507B2 (en)
JP2849588B2 (en) Thin film gas sensor and method of manufacturing the same
RU2684429C1 (en) Titanium sulfide whiskers based chemoresistive type gas sensor and its manufacturing method
JPS63736B2 (en)
JPS5840140B2 (en) Kanenseigaskenchisoshi
JPH06118042A (en) Gas sensor element
JPS5883245A (en) Ultrafine particle gas-sensitive membrane
JPS5811846A (en) Preparation of gaseous no2 detector and its detecting method
JP3919307B2 (en) Hot wire semiconductor gas detector for air pollution detection