JPH02662B2 - - Google Patents

Info

Publication number
JPH02662B2
JPH02662B2 JP5866076A JP5866076A JPH02662B2 JP H02662 B2 JPH02662 B2 JP H02662B2 JP 5866076 A JP5866076 A JP 5866076A JP 5866076 A JP5866076 A JP 5866076A JP H02662 B2 JPH02662 B2 JP H02662B2
Authority
JP
Japan
Prior art keywords
gas
perovskite
resistor
conductivity
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5866076A
Other languages
Japanese (ja)
Other versions
JPS52141699A (en
Inventor
Muneaki Nakai
Satoshi Sekido
Yoshito Ninomya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5866076A priority Critical patent/JPS52141699A/en
Publication of JPS52141699A publication Critical patent/JPS52141699A/en
Publication of JPH02662B2 publication Critical patent/JPH02662B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、窒素酸化物NOxなどの酸化性ガス、
炭化水素および一酸化炭素などの還元性ガスの区
別ができ、かつ定量が同時に可能なガス濃度計を
提供することを目的とする。
[Detailed description of the invention] The present invention provides an oxidizing gas such as nitrogen oxide NOx ,
It is an object of the present invention to provide a gas concentration meter that can distinguish between hydrocarbons and reducing gases such as carbon monoxide, and can simultaneously quantify them.

従来、還元性ガスの検出には次のような方法が
とられている。第1は反応熱法と言えるもので、
触媒による還元性ガス接触反応の生成熱を利用し
て白金抵抗線などの抵抗の温度変化に基づくもの
である。この方式では温度の正確なコントロール
が必要になる。第2は半導体の還元性ガス吸着に
よる抵抗変化を利用するものであり、感度は良好
であるが、安定性、寿命に問題がある。酸化性ガ
スであるNOxの検出には水銀ランプによる光分
解とNO- 3イオン選択電極の併用による方法が知
られているが、迅速な検出には不適当である。こ
のように酸化性ガスと還元性ガスを別々に測定す
る方法はよく知られている。しかし同一装置で簡
便に計測できるものは現在のところ見受けられな
いようである。
Conventionally, the following methods have been used to detect reducing gases. The first is the heat of reaction method,
It is based on the temperature change of a resistor such as a platinum resistance wire by using the heat generated by the catalytic reaction of a reducing gas. This method requires precise control of temperature. The second type utilizes resistance changes due to adsorption of reducing gases in semiconductors, and has good sensitivity, but has problems with stability and lifespan. A known method for detecting the oxidizing gas NO x is a combination of photolysis using a mercury lamp and a NO - 3 ion-selective electrode, but this method is unsuitable for rapid detection. This method of measuring oxidizing gas and reducing gas separately is well known. However, it seems that there is currently nothing that can be easily measured using the same device.

本発明は上記従来技術に鑑み酸化性ガスおよび
還元性ガスの両者をブリツジを用いて簡便に測定
する装置を提供するものである。
In view of the above-mentioned prior art, the present invention provides an apparatus for easily measuring both oxidizing gas and reducing gas using a bridge.

以下図面とともに本発明の詳細について述べ
る。第1図は本発明のガス濃度計の基本的構成を
示すものである。1〜4は抵抗ブリツジを構成し
ており、1はペロブスカイトを用いた抵抗体であ
り、2〜4は通常の抵抗体である。5は交流電
源、6は検出用の検流計である。1のペロブスカ
イト抵抗体の構成を第2図に示す。7は薄膜状の
ペロブスカイトで高周波スパツタ法により作製し
たものである。8は酸化還元性ガスに対し化学的
に不活性な金属で電極として用いた。使用可能な
金属は白金、金などで蒸着法又はペースト法によ
り作製した。9は基盤であり、石英ガラス、セラ
ミツクスなどである。
The details of the present invention will be described below with reference to the drawings. FIG. 1 shows the basic configuration of the gas concentration meter of the present invention. 1 to 4 constitute a resistance bridge, 1 is a resistor using perovskite, and 2 to 4 are ordinary resistors. 5 is an AC power supply, and 6 is a galvanometer for detection. The structure of the perovskite resistor No. 1 is shown in FIG. 7 is a thin film of perovskite produced by the high frequency sputtering method. No. 8 was a metal that was chemically inert to redox gas and was used as an electrode. Usable metals include platinum and gold, which were fabricated by vapor deposition or paste methods. 9 is a base made of quartz glass, ceramics, etc.

ペロブスカイトは一般にABO3(Aは価又は
価の金属イオン、Bは価又は価の金属イオ
ン)で表わされる金属酸化物でありO2-イオンと
電子の混合電導体である。A又はBの一方を低原
子価の金属イオンで置換すると酸素イオンの格子
欠陥を生じる。本発明では、ペロブスカイトとし
て、SrCo1-xTixO3-〓(0.4<x<0.6)とSrxFe1-x
CoO3-〓(0.4<x<0.6)を用いた。
Perovskite is a metal oxide generally represented by ABO 3 (A is a valence or valence metal ion, B is a valence or valence metal ion) and is a mixed conductor of O 2- ions and electrons. When either A or B is replaced with a low-valent metal ion, lattice defects of oxygen ions occur. In the present invention, perovskites include SrCo 1-x Ti x O 3- (0.4<x<0.6) and Sr x Fe 1-x
CoO 3- 〓 (0.4<x<0.6) was used.

酸素分圧がある程度これらのペロブスカイトは
P型半導体になる。このときNOxなど酸化性ガ
スはペロブスカイト表面に吸着してペロブスカイ
トの電導度を上げ、炭化水素、一酸化炭素など還
元性ガスは吸着によりペロブスカイトの電導度を
下げる。第1図のブリツジにおいてこれらガスの
通過により電導度に変化が起きるため平衡からず
れが生じる。
At a certain oxygen partial pressure, these perovskites become P-type semiconductors. At this time, oxidizing gases such as NO x are adsorbed on the perovskite surface and increase the electrical conductivity of the perovskite, while reducing gases such as hydrocarbons and carbon monoxide are adsorbed and lower the electrical conductivity of the perovskite. In the bridge of FIG. 1, the passage of these gases causes a change in conductivity, causing a deviation from equilibrium.

このとき酸化性ガスと還元性ガスの相違により
電導度の増減の方向が異なるためブリツジ検出用
の検流計に流れる電流の方向が異つてくる。これ
よよりガスの酸化還元性の相違が区別できる。
At this time, the direction of increase and decrease in conductivity differs depending on the difference between the oxidizing gas and the reducing gas, so the direction of the current flowing through the galvanometer for bridge detection differs. From this, the difference in redox properties of gases can be distinguished.

又、気相のガス分圧をP、吸着量をθ、吸着指
数をm(mは定数)とするとフロイントリツヒの
吸着等温式が成立しθ=KPm、(Kは定数)の関
係がある。一方酸化性ガスの場合、吸着により前
記ペロブスカイトのキヤリヤは増加し電導度は吸
着量に比例し増加する。従つて電導度Vとすると logV=定数+mlogP となる。還元性ガスの場合、吸着によりキヤリヤ
は減少し、電導度は吸着量に反比例する。
Also, if the gas partial pressure in the gas phase is P, the amount of adsorption is θ, and the adsorption index is m (m is a constant), Freundlich's adsorption isotherm is established, and the relationship θ=KP m (K is a constant) is established. . On the other hand, in the case of an oxidizing gas, the carrier of the perovskite increases due to adsorption, and the electrical conductivity increases in proportion to the amount of adsorption. Therefore, if the conductivity is V, then logV=constant+mlogP. In the case of reducing gases, the carrier is reduced by adsorption, and the conductivity is inversely proportional to the amount adsorbed.

従つて、 logV=定数−mlogP となる。 Therefore, logV = constant − mlogP becomes.

第3図にSrCo1-xTixO3-〓(0.4<x<0.6)とSrx
Fe1-xCoO3-〓(0.4<x<0.6)の場合について、
NOxおよびイソブタンの分圧に対する比電導度
の変化を示した。
Figure 3 shows SrCo 1-x Ti x O 3- 〓 (0.4<x<0.6) and Sr x
For the case of Fe 1-x CoO 3- 〓(0.4<x<0.6),
The changes in specific conductivity with respect to the partial pressure of NO x and isobutane are shown.

なお、非化学量論的パラメータδの変化にした
がつて、ガス濃度に対する比電導度変化の一番大
きな組成となるxの値が0.4<x<0.6の間で変化
し、第3図に示す特性A,Bとなる。このxの値
がx≦0.4又はx≧0.6の場合には、ガス濃度に対
する比電導変化が小さくなり、第3図に示す特性
C、Dとなる。
Furthermore, as the non-stoichiometric parameter δ changes, the value of x, which is the composition with the largest change in specific conductivity with respect to gas concentration, changes between 0.4<x<0.6, as shown in Figure 3. Characteristics A and B will be obtained. When the value of x is x≦0.4 or x≧0.6, the change in specific conductivity with respect to gas concentration becomes small, resulting in characteristics C and D shown in FIG. 3.

以上のように本発明はペロブスカイト抵抗体を
抵抗ブリツジの一辺に挿入し、ペロブスカイトが
酸化性ガスおよび還元性ガスに対して逆の反応を
示すことに鑑み、前記ペロブスカイトに前記ガス
を接触させることによる、前記ブリツジの平衡状
態からのずれの方向によりガスの酸化還元の区別
を、そしてずれの大きさによりそのガス量を簡単
に測定することができ、また装置としての構成も
簡単でよいという特長を有するものである。
As described above, the present invention inserts a perovskite resistor on one side of a resistance bridge, and in view of the fact that perovskite exhibits opposite reactions to oxidizing gas and reducing gas, the perovskite is brought into contact with the gas. The present invention has the advantage that the oxidation/reduction of the gas can be distinguished by the direction of the deviation from the equilibrium state of the bridge, and the amount of the gas can be easily measured by the size of the deviation, and the configuration of the device is simple. It is something that you have.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のガス濃度計の回路の原理図、
第2図はペロブスカイト素子の構成図、第3図は
ペロブスカイトに対する酸化還元ガス分圧と比電
導度の関係図である。 1……ペロブスカイト抵抗体、2,3,4……
抵抗、5……電源、6……検流計。
FIG. 1 is a principle diagram of the circuit of the gas concentration meter of the present invention.
FIG. 2 is a configuration diagram of a perovskite element, and FIG. 3 is a diagram showing the relationship between redox gas partial pressure and specific conductivity for perovskite. 1... Perovskite resistor, 2, 3, 4...
Resistor, 5...power supply, 6...galvanometer.

Claims (1)

【特許請求の範囲】[Claims] 1 抵抗ブリツジの一辺にSrCo1-xTixO3-〓(0.4<
x<0.6、δは非化学量論的パラメータ)または
SrxFe1-xCoO3-〓(0.4<x<0.6、δは非化学量論
的パラメータ)からなるペロブスカイト複合酸化
物を主成分とする抵抗体を用い、酸化性または還
元性のガスを前記抵抗体に接触させ、ブリツジ平
衡からのずれの電流方向により前記ガスの区別を
することを特徴とする酸化還元性ガス濃度計。
1 SrCo 1-x Ti x O 3- 〓(0.4<
x<0.6, δ is a non-stoichiometric parameter) or
Using a resistor whose main component is a perovskite composite oxide consisting of Sr x Fe 1 -x CoO 3- A redox gas concentration meter that is brought into contact with the resistor and distinguishes between the gases based on the current direction of deviation from bridge equilibrium.
JP5866076A 1976-05-20 1976-05-20 Densitometer of oxidizing and reducing gas Granted JPS52141699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5866076A JPS52141699A (en) 1976-05-20 1976-05-20 Densitometer of oxidizing and reducing gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5866076A JPS52141699A (en) 1976-05-20 1976-05-20 Densitometer of oxidizing and reducing gas

Publications (2)

Publication Number Publication Date
JPS52141699A JPS52141699A (en) 1977-11-26
JPH02662B2 true JPH02662B2 (en) 1990-01-09

Family

ID=13090736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5866076A Granted JPS52141699A (en) 1976-05-20 1976-05-20 Densitometer of oxidizing and reducing gas

Country Status (1)

Country Link
JP (1) JPS52141699A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0897902A1 (en) * 1997-08-11 1999-02-24 Kao Corporation Process for preparing alkylene oxide adducts

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633533A (en) * 1979-08-27 1981-04-04 Matsushita Electric Ind Co Ltd Gas sensor
EP0062994B1 (en) * 1981-04-07 1985-08-28 LUCAS INDUSTRIES public limited company Oxygen sensors
JPS61137053A (en) * 1984-12-06 1986-06-24 Fuigaro Giken Kk Lambda sensor
JPS61147150A (en) * 1984-12-20 1986-07-04 Fuigaro Giken Kk Waste gas sensor
US7900501B2 (en) * 2005-12-20 2011-03-08 Atmospheric Sensors Ltd. Air quality monitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0897902A1 (en) * 1997-08-11 1999-02-24 Kao Corporation Process for preparing alkylene oxide adducts

Also Published As

Publication number Publication date
JPS52141699A (en) 1977-11-26

Similar Documents

Publication Publication Date Title
JP4162262B2 (en) Sensor for measuring the concentration of oxidizable components in a gas mixture
Nitta et al. Multifunctional ceramic sensors: Humidity-gas sensor and temperature-humidity sensor
CA1095989A (en) Solid electrolyte sensor for monitoring combustibles in an oxygen containing environment
US4138881A (en) Resistor-type solid electrolyte oxygen sensor
JPH02662B2 (en)
WO1998032007A1 (en) Nitrogen oxides detection method, and sensor element for detection of nitrogen oxides
EP4166940A1 (en) Gas sensor, method of making the sensor and method of using the sensor
JP2920109B2 (en) Nitrogen oxide sensor and method of manufacturing the same
JP4010738B2 (en) Gas sensor, gas detector and gas detection method
JP4315992B2 (en) Gas sensor, gas detector and gas detection method
JP2000028573A (en) Hydrocarbon gas sensor
JP4002969B2 (en) Combustible gas sensor
JPH0711497B2 (en) Gas detection method and gas sensor
JPH04269648A (en) Gas sensor
JP3669807B2 (en) Carbon monoxide detection sensor
JP3953175B2 (en) Nitrogen oxide concentration measuring apparatus and nitrogen oxide concentration measuring method
JPH11337518A (en) Hydrocarbon sensor
TWI295371B (en) Stabilization method for signal of resistive oxygen sensor using cerium oxide
JPS6326335B2 (en)
JPH01321348A (en) Hydrogen gas sensor
RU2096774C1 (en) Sensor determining concentration of gases
JPH0320659A (en) Gas sensor element
JPS5811844A (en) Gaseous no2 detector and detecting method
JPS5811846A (en) Preparation of gaseous no2 detector and its detecting method
JP2918390B2 (en) Nitrogen oxide detection sensor