WO1986004989A1 - Gas sensor element of tin oxide film - Google Patents

Gas sensor element of tin oxide film Download PDF

Info

Publication number
WO1986004989A1
WO1986004989A1 PCT/JP1986/000077 JP8600077W WO8604989A1 WO 1986004989 A1 WO1986004989 A1 WO 1986004989A1 JP 8600077 W JP8600077 W JP 8600077W WO 8604989 A1 WO8604989 A1 WO 8604989A1
Authority
WO
WIPO (PCT)
Prior art keywords
plane
gas sensor
tin oxide
sensor element
line
Prior art date
Application number
PCT/JP1986/000077
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Matsumoto
Osamu Okada
Yuuji Nakamura
Original Assignee
Osaka Gas Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Company Limited filed Critical Osaka Gas Company Limited
Priority to KR1019860700721A priority Critical patent/KR940002511B1/en
Publication of WO1986004989A1 publication Critical patent/WO1986004989A1/en
Priority to GB868625006A priority patent/GB8625006D0/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Definitions

  • the present invention relates to a gas sensor element provided with an oxide thin film having semiconductor characteristics.
  • thin-film semiconductor sensors are difficult to put into practical use is that thin-film semiconductor sensors are generally very good at detecting hydrogen, but hardly detect methane.
  • a method of oxidizing a substrate made of silicon to form an insulating film made of SiO 2 and then forming a Pt-doped Sn 02 film thereon see Japanese Patent Application Laid-Open No. 5 4 2 4 0 9 4 JP>, S ⁇ 0 2 method for doping ⁇ or ⁇ the silicon substrate obtained by forming an insulating film (JP 5 7 1 7 8 4 9 JP> like proposed
  • the desired effect has not been obtained because dopant atoms are difficult to dope uniformly.
  • the present inventor has conducted various experiments and studies in view of the current state of the technology as described above, and as a result, using a metal powder and at least one of tin oxide as a vapor deposition material source, a physical vapor deposition (PVD) or When a vapor deposition layer is formed on a substrate under specific conditions by chemical vapor deposition (CVD), a thin film with a specific crystal orientation is formed at the interface with the gas phase.
  • the resulting thin film was found to exhibit excellent characteristics as a sensor not only for hydrogen but also for gas phase components such as hydrocarbons such as methane, ethane, propane, and butane, and oxygen. That is, the present invention provides the following gas sensor element.
  • the crystal orientation and crystallinity of the gas detection surface are defined as I, the strongest diffraction line intensity when X-ray diffraction is performed using Cu ⁇ as the source, and the second, third, fourth, and The fifth strongest diffraction line intensities are I 2 , I 3, When 4 and 55 I2 are taken,
  • I! , I 2 and I 3 are the line intensities of the (110), (101) and (211) planes, respectively.
  • (f) 1 1 is the line intensity of the (301) plane, and 2 2 / I 1 ⁇ Or the half-value width of and I i in 0.6 is 0.60 or more, (g) E 1 (211) plane or (301) and a line intensity of surface E 2 (301) plane or (211) It is the line intensity of the surface, 2 2 / ⁇ .5, Is / 1 2 ⁇ 0.6 and 0! Has a half width of ⁇ .3 or more
  • a silicon substrate, a ceramic substrate, a glass substrate, or the like is used as a substrate of the gas sensor of the present invention.
  • an SiO 2 insulating layer is formed on the surface thereof in accordance with a conventional method.
  • a tin oxide layer is formed as a thin film semiconductor layer on a substrate. In order for tin oxide to exhibit its properties as a semiconductor, some oxygen atoms were lost from the complete oxide. That is, it is necessary to take a form having lattice defects. The presence of such lattice defects can be confirmed by measuring the conductivity.
  • the crystal in the tin oxide thin film semiconductor layer in the sensor of the present invention is
  • the half-width of the strongest diffraction line (I i) from the X-ray diffraction spectrum using Cu K rays as the source is 80% or more of the experimental value, and multiple diffraction lines appearing according to the number of plane orientations If the half-value width of (d) is less than the above-mentioned value, the crystal and the particle diameter become large, so that the sensitivity is increased. Decreases and cannot be used as a sensor.
  • the gas sensor element of the present invention is manufactured, for example, as follows. First, therefore the formation of the oxide insulating layer such as S ⁇ 0 2 in a conventional manner on the surface of the silicon of the substrate to form a tin oxide thin film semiconductor layer by PVD or CVD.
  • the conditions for the vapor deposition operation can vary widely depending on the material of the substrate, the type of tin metal and tin oxide as the source of the vapor deposition material, the vapor deposition method, and the like. ⁇
  • the sputtering method belonging to the VD method for example, at a substrate temperature of 0 to 500, the distance ⁇ ⁇ 500 thighs of target Bok and the substrate, a ', H e, an inert gas atmosphere gas pressure 1 x 1 0, such as N 2 -' ⁇ ⁇ ⁇ 1 0- 4 Bok Oxygen partial pressure in atmospheric gas: 0 to 1 X ⁇ 0 to 3 torr, applied voltage: 10 to 200 V, high frequency output: about 10 W to 10 KW
  • metal tin is used as a vapor deposition material source.
  • the oxygen partial pressure in the atmospheric gas 1 ⁇ ⁇ ⁇ - 5 ⁇ 1 ⁇ . ⁇ 0 -. and 3 Bokuru the proportion of inert gas and oxygen in the atmospheric gas, the former It is preferable that the amount of oxygen is too small, and if the proportion of oxygen is too small, the oxygen in the thin film becomes insufficient and S n 0 2 is not obtained. If the ratio is too high, the lattice defects will decrease, and the conductivity will be too low to use as a sensor.If the substrate temperature exceeds 500, the crystal grain size becomes coarse and the gas Detection The performance is reduced. Note that if the crystal grains are coarsened, the half width will decrease, so it is easily checked. If the other conditions are out of the above range, a thin film is not formed or a crystal having a specific plane orientation is not generated, so that the gas detection ability is lost.
  • Metal tin and tin oxide are used as vapor deposition material sources.
  • the gas sensor element of the present invention formed by vapor deposition can be further improved in stability and durability by annealing if necessary.
  • the annealing treatment is performed, for example, by maintaining the temperature in a dry air atmosphere at 50 ° C. for about 4 hours.
  • a platinum electrode may be formed on the thin film semiconductor layer and a predetermined lead wire may be connected according to a conventional method.
  • a thin-film semiconductor gas sensor can be obtained without a doping step.
  • the resulting gas sensor has the ability to detect not only hydrogen but also hydrocarbons such as methane and oxygen. Also, its gas sensitivity is extremely high, and it can detect even small amounts of gas.
  • the obtained device has better mechanical strength than the device manufactured by the sintering method, so that the sensor characteristics hardly change even during long-term use.
  • FIGS. 1, 4 to 9 and 25 show X-ray diffraction patterns of the tin oxide thin film semiconductor layer formed according to the embodiment of the present invention
  • FIGS. FIG. 24 shows a similar X-ray diffraction pattern according to the comparative example
  • FIG. 2 is a schematic sectional view showing an example of the gas sensor element according to the present invention.
  • FIGS. 3, 14 to 19 and 26 are graphs showing the gas detecting ability of the gas sensor element according to the embodiment of the present invention, and
  • FIGS. 20 to 23 are comparative figures.
  • 5 is a graph showing the gas detection ability of a gas sensor according to an example.
  • Each number in FIG. 2 indicates the following components.
  • a silicon wafer (2 x X 3 Restaurant) as a substrate is ripened in an atmosphere containing oxygen and water vapor for 2 hours with OOOO CTC to form a SiO 2 insulating layer on the surface, and then a parallel plate type high-frequency magnet Using a tron sputtering equipment,
  • the evaporation operation was rows summer as targets Bok material to S n 0 2 sintered body.
  • the conditions at the time of vapor deposition are as shown in Table 2 below.
  • the line diffraction diagram of the thus-obtained oxide thin film (140) is shown in Fig. 1. It is clear that the intensity of the diffraction line corresponding to the orientation plane (211) is particularly large.
  • a platinum electrode (thickness: about ⁇ ⁇ ⁇ ) was formed by sputtering on the vapor-deposited thin film formed above to obtain a gas sensor element shown in FIG. In FIG. 2, (1> silicon wafer, (3) 3! 0 2 insulating layer, (5> oxide ⁇ film layer, (7) denotes a platinum electrode.
  • the above gas sensor element is placed in a cell in an electric furnace, and is annealed while flowing at 500 ° C. for 4 hours while flowing dry air.
  • the gas sensor of the present invention only has a hydrogen detecting ability. However, it is clear that it has methane detection capability at 40 ° C or higher.
  • each curve shows the results for the following gases, respectively.
  • Curve (G) Dry air
  • Curve (E) Dry air containing 0.35% of methane
  • Curve ( ⁇ ) Dry air containing 0.3% of hydrogen
  • Curve (IV) 0.35% of hydrogen
  • a thin oxide film was formed on a substrate in the same manner as in Example 1 except that vapor deposition was performed under the conditions shown in Table 3 below, and then a gas sensor element was obtained.
  • Table 3 also shows the peak intensity of each diffraction line corresponding to each orientation plane and the intensity ratio to the highest peak intensity.
  • FIGS. 4 to 3 and 25 X-ray diffraction patterns of the obtained oxide thin films are shown in FIGS. 4 to 3 and 25.
  • the gas sensor element of the present invention is excellent in the ability to detect methane and hydrogen.
  • a gas sensor element was obtained by forming an oxide thin film on a substrate according to Comparative Example II.
  • the X-ray diffraction pattern of the obtained tin oxide thin film (using the Cu K line as the source) is as shown in Fig. 24, showing that the (200) plane has a single strong line intensity. I have.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

A gas sensor element of a tin oxide film in a gas sensor using a tin oxide film. In this element, a special relation is established between the numerical values of two or three of the highest intensity I1?, second highest intensity I2?, third highest intensity I3?, fourth highest intensity I4? and fifth highest intensity I5? of diffraction rays, which are obtained when the crystalline orientation and crystallinity of the surface of an object to be gas-detected are determined by carrying out an X-ray diffraction operation using Cuk as a ray source; and a half-value width of the highest intensity of diffraction rays is in a level not lower than a predetermined level.

Description

明 細 書  Specification
酸化錫薄膜ガスセンサ素子  Tin oxide thin film gas sensor element
技 術 分 野  Technical field
本発明は、 半導体特性を有する酸化鍚薄膜を備えたガ スセンサ素子に関する。  The present invention relates to a gas sensor element provided with an oxide thin film having semiconductor characteristics.
背 景 技 術  Background technology
現在使用されている半導体ガスセンサは、 主に焼結に より製造されている。 しかしながら、 焼結による製造方 法は、 工程が複維で、 製品の性能を左右する種々の変動 要因を含む為、 製品の信親性、 安定性、 耐久性などの点 で満足すべきものとは、 言い難い。 又、 焼結による製品 は、 寸法を一定以下とすることが出来ないので、 感度が 低いという欠点あある。 従って、 焼結製品に代わる薄膜 型の半導体センサの開発が進められているが、 焼結製品 に実用上代替し得るものは、 得られていない。  Currently used semiconductor gas sensors are mainly manufactured by sintering. However, the production method by sintering is a complex process and includes various fluctuation factors that affect the performance of the product. Therefore, it is not satisfactory in terms of product religion, stability, durability, etc. Hard to say. In addition, products obtained by sintering have a drawback of low sensitivity because their dimensions cannot be reduced below a certain level. Therefore, thin-film semiconductor sensors are being developed to replace sintered products, but no viable alternative to sintered products has been obtained.
薄膜型半導体センサが実用に供し難い一つの理由とし て、 一般に薄膜型半導体センサは水素検知能には極めて 優れているものの、 メタンはほとんど検知し得ないこと が挙げられる。 この為、 例えば、 シリコンからなる基板 を酸化して S i O 2 からなる絶縁膜を形成させ、 その上 に P tをドープした S n 0 2 膜を形成する方法 (特開昭 5 4— 2 4 0 9 4号公報〉 、 S ί 0 2 絶縁膜を形成させ たシリコン基板に ρ又は Βをドープさせる方法 (特開昭 5 7— 1 7 8 4 9号公報〉 等が提案されているが、 ドー パン卜原子が均一にドープされ難いので、 所望の効果が 得られていない。 One reason that thin-film semiconductor sensors are difficult to put into practical use is that thin-film semiconductor sensors are generally very good at detecting hydrogen, but hardly detect methane. For this reason, for example, a method of oxidizing a substrate made of silicon to form an insulating film made of SiO 2 and then forming a Pt-doped Sn 02 film thereon (see Japanese Patent Application Laid-Open No. 5 4 2 4 0 9 4 JP>, S ί 0 2 method for doping ρ or Β the silicon substrate obtained by forming an insulating film (JP 5 7 1 7 8 4 9 JP> like proposed However, the desired effect has not been obtained because dopant atoms are difficult to dope uniformly.
発 明 の 開 示  Disclosure of the invention
本発明者は、 上記の如き技術の現状に鑑みて種々実験 及び研究を重ねた結果、 蒸着材源として金属粉.及び酸化 錫の少なくとも Ί 種を使用して、 物理的蒸着法 ( P V D ) 又は化学的蒸着法 〈 C V D〉 により特定の条件下に基板 上に蒸着層を形成させる場合には、 気相と接すべき界面 に対して特定の結晶配向性を有する薄膜が形成されるこ と、 得られた薄膜は、 水素だけではなく、 メタン、 エタ ン、 プロパン、 ブタンなどの炭化水素類、 酸素等の気相 成分のセンサとして優れた特性を発揮することを見出し た。 即ち、 本発明は、 以下に示すガスセンサ素子を提供 するちのである。  The present inventor has conducted various experiments and studies in view of the current state of the technology as described above, and as a result, using a metal powder and at least one of tin oxide as a vapor deposition material source, a physical vapor deposition (PVD) or When a vapor deposition layer is formed on a substrate under specific conditions by chemical vapor deposition (CVD), a thin film with a specific crystal orientation is formed at the interface with the gas phase. The resulting thin film was found to exhibit excellent characteristics as a sensor not only for hydrogen but also for gas phase components such as hydrocarbons such as methane, ethane, propane, and butane, and oxygen. That is, the present invention provides the following gas sensor element.
「酸化鍚薄膜ガスセンサ素子において、 ガス検知表面の 結晶配向性及び結晶性を C u Κを線源として X線回折し た場合の最強回折線強度を I とし、 2番目、 3番目、 4番目及び 5番目に強い回折線強度を夫々 I 2 、 I 3 、 ェ 4 及びェ 5 I 2 とするとき、 `` In the thin-film oxide gas sensor element, the crystal orientation and crystallinity of the gas detection surface are defined as I, the strongest diffraction line intensity when X-ray diffraction is performed using Cu 線 as the source, and the second, third, fourth, and The fifth strongest diffraction line intensities are I 2 , I 3, When 4 and 55 I2 are taken,
( a ) (211) 面又は(110) 面の線強度が最強であり、 I 2 / I 1 ≤ 0. 6で且つ I〗 の半値幅が 0. 58以 上であるか、  (a) Whether the line intensity of the (211) plane or the (110) plane is the strongest, I 2 / I 1 ≤ 0.6, and the half-width of I〗 is 0.58 or more;
( b ) I! が(110) 面又は(101) 面の線強度で且つェ 2 が(101) 面又は(110) 面の線強度であり、 12 / ≥0. 5、 I 3 / I a < 0. 6で且つ h の半値幅が 0. 54以上であるか、 (b) I! There (110) plane or (101) plane is and the line strength of E 2 (101) plane or (110) plane in the line strength of, 1 2 / ≥0. 5, I 3 / I a <0. 6 And the half-value width of h is 0.54 or more,
( c ) I! が(110) 面又は(211) 面の線強度で且つ I 2 が(101) 面又は(110) 面の線強度であり、 I 2 / ≥ 0. 5、 I 3 / I a く〇 . 6で且つ Ι ι の半値幅が 0, 58以上であるか、 (c) I! Is the line intensity of the (110) plane or the (211) plane, and I 2 is the line intensity of the (101) plane or the (110) plane. I 2 / ≥ 0.5, I 3 / I a And the half-value width of ιι is 0,58 or more,
( d ) I! , I 2 及び I 3 がそれぞれ(110) 面、 (101) 面及び(211) 面のいずれかの線強度であり、 (d) I! , I 2 and I 3 are the line intensities of the (110), (101) and (211) planes, respectively.
Ι3 / ί 1 ≥ 0. 5、 ΐ 4 / I 3 く〇, 6で且つ I の半値幅が 0. 61以上であるか、 Ι 3 / ί 1 ≥ 0.5, ΐ 4 / I 3 〇, 6 and the half width of I is 0.61 or more,
( e〉 I〗 , I 2 、 I 3 及び I 4 がそれぞれ(110) 面、 (101) 面、 (211) 面及び(301) 面のいずれかの線強度 であり、 It ZI ≥0. 5、 Is /ェ 4 く 0. 6で 且つ I の半値幅が 0. 73以上であるか、 (E> I〗, I 2, I 3 and I 4 respectively (110) plane, (101) plane, is any line strength of (211) plane and (301) plane, It ZI ≥0. 5 , Is / d and 0.6, and if the half width of I is 0.73 or more,
( f ) ェ 1 が(301) 面の線強度であり、 ェ 2 / I 1 ≤ 0. 6で且つ I i の半値幅が 0. 60以上であるか、 ( g ) ェ 1 が(211) 面または(301) 面の線強度で且つ ェ 2 が(301) 面または(211) 面の線強度であり、 ェ 2 /ェ 〇 . 5、 Is /12 く 0. 6で且つェ! の半値幅が〇 . 3以上である (f) 1 1 is the line intensity of the (301) plane, and 2 2 / I 1 ≤ Or the half-value width of and I i in 0.6 is 0.60 or more, (g) E 1 (211) plane or (301) and a line intensity of surface E 2 (301) plane or (211) It is the line intensity of the surface, 2 2 / 〇 .5, Is / 1 2く 0.6 and 0! Has a half width of 〇 .3 or more
ことを特徴とする酸化錫薄膜ガスセンサ素子。 」 A tin oxide thin film gas sensor element characterized by the above-mentioned. "
本発明ガスセンサの基板としてはシリコン基板、 セラ ミック基板、 ガラス基板等が使用される。 シリコン基板 を使用する場合には、 その表面には、 常法に従って S i 02 の絶縁層を形成する。 基板上に薄膜状の半導体 層として酸化錫層を形成する。 酸化錫が半導体としての 特性を発揮する為には、 完全酸化物から一部の酸素原子 が失われた。 即ち格子欠陥を有する形態をとる必要があ る。 この様な格子欠陥の存在は、 導電率の測定によって 確認できる。 As a substrate of the gas sensor of the present invention, a silicon substrate, a ceramic substrate, a glass substrate, or the like is used. When a silicon substrate is used, an SiO 2 insulating layer is formed on the surface thereof in accordance with a conventional method. A tin oxide layer is formed as a thin film semiconductor layer on a substrate. In order for tin oxide to exhibit its properties as a semiconductor, some oxygen atoms were lost from the complete oxide. That is, it is necessary to take a form having lattice defects. The presence of such lattice defects can be confirmed by measuring the conductivity.
格子欠陥を有する S i 〇2 の場合、 ガスの検知に関与 する結晶の面配向は、 (110) 、 (101) 、 (211) 及び(30 であり、 面配向と被検知ガスの選択性の関係の若干例を 概略的に示せば第 Ί表の通りである。 第 'Ί In the case of Si 〇 2 having lattice defects, the plane orientations of the crystals involved in gas detection are (110), (101), (211) and (30). Table II shows some examples of the relationship. No. 'Ί
Figure imgf000007_0001
Figure imgf000007_0001
本発明センサにおける酸化錫薄膜半導体層中の結晶は The crystal in the tin oxide thin film semiconductor layer in the sensor of the present invention is
C u K線を線源とする X線回折スペク トラムによる最強 回折線 ( I i 〉 の半値幅が実験値の 80%以上であり、 且つ面配向の数に応じて出現する複数本の回折線の間で 前記 ( a〉 〜 ( g ) のいずれかの条件を充足するもので なければならない。 ェ の半値幅が前記の値を下回る場 合には、 結晶と粒子径が大きくなる為、 感度が低下して センサとして使用し得ない。 本発明のガスセンサ素子は、 例えば、 以下のようにし て製造される。 先ず、 基板のシリコン等の表面に常法に 従って S ί 02 等の酸化物絶縁層を形成した後、 PVD 又は CVDにより酸化錫薄膜半導体層を形成する。 蒸着 操作時の条件は、 基板の材質、 蒸看材料源としての金属 錫及び酸化錫の種類、 蒸着方法等により大巾に変り得る が、 Ρ V D法に属するスパッタ リング法の場合は、 例え ば基板温度 0〜 500で、 ターゲッ卜と基板との距離 Ί 〜 500腿、 A「, H e, N 2 等の不活性ガス雰囲気ガ ス圧 1 x 1 0 -'〜 Ί Χ 1 0— 4 卜ル、 雰囲気ガス中の酸 素分圧 0〜1 X Ί 0 -3 卜ル、 印加電圧 1 0〜200 V、 高周波出力 1 0W〜1 0KW程度である。 特に、 蒸着材 料源として金属錫を使用する場合には、 雰囲気ガス中の 酸素分圧を 1 Χ Ί Ο- 5 〜1 Χ.Ί 0 -3 卜ルとする。 又、 雰囲気ガス中の不活性ガスと酸素との割合は、 前者 1 0 モルに対し後者;! 〜 2モル程度とすることが好ましい。 酸素の割合が少な過ぎる場合には、 薄膜中の酸素が不足 して、 S n02 とならず、 一方酸素の割合が多過ぎる場 合には、 格子欠陥が少なくなる為、 導電率が低下し過ぎ てセンサとして使用し得なくなる。 基板の温度が 500 でを上回る場合には、 結晶粒径が粗大となり、 ガス検知 ? 能が低下する。 尚、 結晶粒の粗大化ば、 半値幅の減少を 生ずるので、 容易にチェックされる。 その他の条件が上 記の範囲外となる場合には、 薄膜が形成されなかったり 特定の面配向を有する結晶が生成されない為ガス検知能 を有しなくなったりする。 The half-width of the strongest diffraction line (I i) from the X-ray diffraction spectrum using Cu K rays as the source is 80% or more of the experimental value, and multiple diffraction lines appearing according to the number of plane orientations If the half-value width of (d) is less than the above-mentioned value, the crystal and the particle diameter become large, so that the sensitivity is increased. Decreases and cannot be used as a sensor. The gas sensor element of the present invention is manufactured, for example, as follows. First, therefore the formation of the oxide insulating layer such as S ί 0 2 in a conventional manner on the surface of the silicon of the substrate to form a tin oxide thin film semiconductor layer by PVD or CVD. The conditions for the vapor deposition operation can vary widely depending on the material of the substrate, the type of tin metal and tin oxide as the source of the vapor deposition material, the vapor deposition method, and the like.Ρ In the case of the sputtering method belonging to the VD method, for example, at a substrate temperature of 0 to 500, the distance Ί ~ 500 thighs of target Bok and the substrate, a ', H e, an inert gas atmosphere gas pressure 1 x 1 0, such as N 2 -'~ Ί Χ 1 0- 4 Bok Oxygen partial pressure in atmospheric gas: 0 to 1 X Ί 0 to 3 torr, applied voltage: 10 to 200 V, high frequency output: about 10 W to 10 KW In particular, metal tin is used as a vapor deposition material source. If used, the oxygen partial pressure in the atmospheric gas 1 Χ Ί Ο- 5 ~1 Χ.Ί 0 -. and 3 Bokuru the proportion of inert gas and oxygen in the atmospheric gas, the former It is preferable that the amount of oxygen is too small, and if the proportion of oxygen is too small, the oxygen in the thin film becomes insufficient and S n 0 2 is not obtained. If the ratio is too high, the lattice defects will decrease, and the conductivity will be too low to use as a sensor.If the substrate temperature exceeds 500, the crystal grain size becomes coarse and the gas Detection The performance is reduced. Note that if the crystal grains are coarsened, the half width will decrease, so it is easily checked. If the other conditions are out of the above range, a thin film is not formed or a crystal having a specific plane orientation is not generated, so that the gas detection ability is lost.
蒸着材料源としては、 金属錫及び酸化錫が使用される, 蒸着により形成された本発明ガスセンサ素子は、 必要 ならば、 更にアニーリング処理により、 その安定性及び 耐久性を高めることが出来る。 アニーリング処理は、 例 えば、 ドライエア雰囲気中 5 0〇°Cで 4時間程度保持す ることにより行なわれる。  Metal tin and tin oxide are used as vapor deposition material sources. The gas sensor element of the present invention formed by vapor deposition can be further improved in stability and durability by annealing if necessary. The annealing treatment is performed, for example, by maintaining the temperature in a dry air atmosphere at 50 ° C. for about 4 hours.
本発明素子をガスセンサとして使用する場合には、 常 法に従って薄膜半導体層上に例えば白金電極を形成する とともに所定のリ ード線を接続すれば良い。  When the device of the present invention is used as a gas sensor, for example, a platinum electrode may be formed on the thin film semiconductor layer and a predetermined lead wire may be connected according to a conventional method.
本発明によれば、 以下の如き効果が達成される。 According to the present invention, the following effects are achieved.
( 1 ) ドーピング工程を要することなく、 薄膜半導体ガ スセンサが得られる。 得られるガスセンサは、 水素の みならず、 メタン等の炭化水素類、 酸素等の検知能を も有している。 又、 そのガス感度は、 極めて高く、 微 量のガスをも検知し得る。  (1) A thin-film semiconductor gas sensor can be obtained without a doping step. The resulting gas sensor has the ability to detect not only hydrogen but also hydrocarbons such as methane and oxygen. Also, its gas sensitivity is extremely high, and it can detect even small amounts of gas.
( 2 ) 焼結による場合に比して、 製造工程が簡単である ( 3〉 焼結による場合に比して、 均一な性能を有する素 子が得られる。 (2) The manufacturing process is simpler than when sintering (3) An element with uniform performance can be obtained compared to the case of sintering.
( 4 ) 得られた素子は、 焼結法による素子に比して機械 的強度に優れているので、 長期にわたる使用中にもセ ンサ特性が変化し難い。  (4) The obtained device has better mechanical strength than the device manufactured by the sintering method, so that the sensor characteristics hardly change even during long-term use.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
第 1 図、 第 4図乃至第 9図及び第 2 5図は、 本発明実 施例により形成された酸化錫薄膜半導体層の X線回折図 を示し、 第 Ί 0図乃至第 Ί 3図及び第 2 4図は、 比較例 による同様の X線回折図を示す。 第 2図は、 本発明によ るガスセンサ素子の一例を示す概略断面図を示す。 第 3 図、 第 1 4図乃至第 1 9図及び第 2 6図は、 本発明実施 例によるガスセンサ素子のガス検知能を示すグラフであ り、 第 2 0図乃至第 2 3図は、 比較例によるガスセンサ のガス検知能を示すグラフである。 第 2図における各番 号は、 以下の構成部を示す。  FIGS. 1, 4 to 9 and 25 show X-ray diffraction patterns of the tin oxide thin film semiconductor layer formed according to the embodiment of the present invention, and FIGS. FIG. 24 shows a similar X-ray diffraction pattern according to the comparative example. FIG. 2 is a schematic sectional view showing an example of the gas sensor element according to the present invention. FIGS. 3, 14 to 19 and 26 are graphs showing the gas detecting ability of the gas sensor element according to the embodiment of the present invention, and FIGS. 20 to 23 are comparative figures. 5 is a graph showing the gas detection ability of a gas sensor according to an example. Each number in FIG. 2 indicates the following components.
( 1 ) ··,···シリコンウェハー  (1) ······· Silicon wafer
( 3 ) '·· "· S i O a 絶緣層  (3) '
( 5 ) ……酸化錫薄膜層  (5) ...... Tin oxide thin film layer
( 7 ) ··· ···白金電極  (7) Platinum electrode
実 施 —例 以下、 実施例により本発明の特徴とするところをより —層明らかにする。 Example Hereinafter, the features of the present invention will be described in more detail with reference to Examples.
実施例 1 Example 1
基板としてのシリコンウェハー ( 2膽 X 3廳〉 を酸素 及び水蒸気を含む雰囲気中で Ί O O CTCで 2時間加熟し て表面に S i 02 絶縁層を形成させた後、 平行平板型高 周波マグネ卜ロンスパッタリング装置を使用し、 A silicon wafer (2 x X 3 Restaurant) as a substrate is ripened in an atmosphere containing oxygen and water vapor for 2 hours with OOOO CTC to form a SiO 2 insulating layer on the surface, and then a parallel plate type high-frequency magnet Using a tron sputtering equipment,
S n 02 焼結体をターゲッ卜材として蒸着操作を行なつ た。 蒸着時の条件は、 下記第 2表に示す通りである。 The evaporation operation was rows summer as targets Bok material to S n 0 2 sintered body. The conditions at the time of vapor deposition are as shown in Table 2 below.
第 2 表  Table 2
高周波出力 約 300 W  High frequency output about 300 W
雰 囲 気 Α「 Ί . 8 Χ Ί 0-2 卜ル + Atmosphere Α Ί Ί. 8 Χ Ί 0 -2 Torr +
02 0. 2 X Ί 0一2 卜ル 0 2 0. 2 X Ί 0 one 2 Bokuru
暴 板 温 度 200  Assault temperature 200
基板一ター 50廳  Circuit board 50
ゲッ卜距離  Get distance
スパッタ リ 約 240 分  Approx. 240 minutes
ング速度  Speed
斯く して得られた酸化鍚薄膜 ( 1 40 〉 の 線回折 図を第 1図に示す。 配向面(211) に相当する回折線の強 度が特に大きいことが明らかである。 上記で得た蒸着薄膜形成物にスパッタリングにより白 金電極 (厚さ約 Ί ^ΓΤΊ ) を形成して、 第 2図に示すガス センサ素子を得た。 第 2図において、 ( 1 〉 はシリコン ウェハー、 ( 3 ) は3 ! 02 絶縁層、 ( 5〉 は酸化鍚薄 膜層、 ( 7 ) は白金電極を示す。 The line diffraction diagram of the thus-obtained oxide thin film (140) is shown in Fig. 1. It is clear that the intensity of the diffraction line corresponding to the orientation plane (211) is particularly large. A platinum electrode (thickness: about Ί ^ ΓΤΊ) was formed by sputtering on the vapor-deposited thin film formed above to obtain a gas sensor element shown in FIG. In FIG. 2, (1> silicon wafer, (3) 3! 0 2 insulating layer, (5> oxide鍚薄film layer, (7) denotes a platinum electrode.
次いで、 電気炉中のセル内に上記ガスセンサ素子を設 置し、 ドライエアを流しつつ 500でで 4時間保持して アニーリングを行なった後、 (ァ) ドライエア、 (ィ〉 メタン含有ドライエア又は (ゥ〉 水素含有ドライエアを 流して、 各温度における電極間の電気抵抗を測定した。 結果は、 第 3図に示す通りである。 第 3図から明らかな 如く、 本発明ガスセンサは、 水素検知能を有するのみな らず、 40〇°C以上ではメタン検知能をも有しているこ とが明らかである。  Next, the above gas sensor element is placed in a cell in an electric furnace, and is annealed while flowing at 500 ° C. for 4 hours while flowing dry air. (A) Dry air, (a) Methane-containing dry air or (又 は) The hydrogen-containing dry air was flowed, and the electrical resistance between the electrodes at each temperature was measured, and the results are as shown in Fig. 3. As is clear from Fig. 3, the gas sensor of the present invention only has a hydrogen detecting ability. However, it is clear that it has methane detection capability at 40 ° C or higher.
尚、 第 3図及び以下の各実施例の結果を示すグラフに おいて、 各曲線は、 以下のガスについての結果を夫々示 すちのである。  In FIG. 3 and the graphs showing the results of the following examples, each curve shows the results for the following gases, respectively.
曲線 ( ェ 〉 ……ドライエア、 曲線 ( E〉 ……メタン 0. 35 %を含むドライエア、 曲線 ( ΠΙ〉 ……水素 0. Ί % を含むドライエア、 曲線 ( IV ) ……水素 0. 3 5 %を含 むドライエア、 曲線 ( V ) …一メタン 0. 1 %を含むド i t ライエア。 Curve (G): Dry air, Curve (E): Dry air containing 0.35% of methane, Curve (ΠΙ): Dry air containing 0.3% of hydrogen, Curve (IV): 0.35% of hydrogen Curve (V)… dry air containing 0.1% of methane it Lyair.
実施例 2〜 8及び比較例 1 〜 4 Examples 2 to 8 and Comparative Examples 1 to 4
下記第 3表に示す条件下に蒸着を行なう以外は実施例 1 と同様にして基板上に酸化鍚薄膜を形成し、 次いでガ スセンサ素子を得た。  A thin oxide film was formed on a substrate in the same manner as in Example 1 except that vapor deposition was performed under the conditions shown in Table 3 below, and then a gas sensor element was obtained.
第 3表に各配向面に相当する各回折線のピーク強度及 び最高ピーク強度に対する強度比を併せて示す。  Table 3 also shows the peak intensity of each diffraction line corresponding to each orientation plane and the intensity ratio to the highest peak intensity.
又、 得られた各酸化鍚薄膜の X線回折図を第 4図乃至 第 Ί 3図及び第 2 5図に示す。  X-ray diffraction patterns of the obtained oxide thin films are shown in FIGS. 4 to 3 and 25.
更に又、 得られた各ガスセンサの特性を第 Ί 4図乃至 第 2 3図及び第 2 6図に示す。 Further, the characteristics of the obtained gas sensors are shown in FIGS. 4 to 23 and 26.
3 Three
Figure imgf000014_0001
Figure imgf000014_0001
第 3 表 (続き) Table 3 (continued)
Figure imgf000015_0001
Figure imgf000015_0001
第 3図、 第 Ί 4図乃至第 2 3図及び第 2 6図に示す結 果から明らかな如く、 本発明ガスセンサ素子は、 メタン 及び水素の検知能に優れている。 As is clear from the results shown in FIGS. 3, 4 to 23 and 26, the gas sensor element of the present invention is excellent in the ability to detect methane and hydrogen.
比較例 5 Comparative Example 5
比較例 Ί に準じて基板上に酸化鍚薄膜を形成し、 ガス センサ素子を得た。 得られた酸化錫薄膜の X線回折図 ( C u K線を線源とする) は、 第 2 4図に示す通りであ り、 (200) 面に単一の強い線強度を有している。  A gas sensor element was obtained by forming an oxide thin film on a substrate according to Comparative Example II. The X-ray diffraction pattern of the obtained tin oxide thin film (using the Cu K line as the source) is as shown in Fig. 24, showing that the (200) plane has a single strong line intensity. I have.
得られたガスセンサ素子を使用して、 実施例 1 と同様 にして各種のガス検知テス卜を行なったが、 ガスに対す る感度を示さず、 実用に供し得ないことが判明した。  Using the obtained gas sensor element, various gas detection tests were carried out in the same manner as in Example 1. However, it was found that the gas sensor element did not show sensitivity to gas and could not be put to practical use.

Claims

請 求 の 範 囲 The scope of the claims
酸化錫薄膜ガスセンサにおいて、 ガス検知表面の結 晶配向性及び結晶性を C u Kを線源として X線回折し た場合の最強回折線強度をェ 1 とし、 2番目、 3番目、 4番目及び 5番目に強い回折線強度を夫々 ェ 2 , I 3 、 ェ 4 及び 15 とするとき、 In the tin oxide thin film gas sensor, the crystal orientation and crystallinity of the gas detection surface are the strongest diffraction line intensity when X-ray diffraction is performed using Cu K as a source, and the second, third, fourth, and When the fifth strongest diffraction line intensities are ェ 2, I 3, 及 び 4 and 15 respectively,
( a ) (211) 面又は(110) 面の線強度が最強であり、 I 2 / I 1 ≤ 0. 6で且つ I! の半値幅が 0. 58 以上であるか、  (a) The line intensity of the (211) plane or the (110) plane is the strongest, and I 2 / I 1 ≤ 0.6 and I! Is greater than or equal to 0.58,
( b ) I 1 が(110) 面又は(101) 面の線強度で且つ ェ 2 が(101) 面又は(110) 面の線強度であり、  (b) I 1 is the linear strength of the (110) plane or the (101) plane, and E 2 is the linear strength of the (101) or (110) plane,
I 2 / I 1 ≥ 0. 5、 I 3 / I 2 く 0. 6で且つ I 1 の半値幅が〇 . 54以上であるか、  If I 2 / I 1 ≥ 0.5, I 3 / I 2 and 0.6, and if the half width of I 1 is 〇0.54 or more,
( c ) I ^ がい 10) 面又は(211) 面の線強度で且つ  (c) I ^ Intensity of the 10) or (211) plane and
I 2 が(101) 面又は(110) 面の線強度であり、  I 2 is the line intensity of the (101) plane or the (110) plane,
I 2 / I i ≥0. 5, l 3 / I 2 <0. 6で且つ I 1 の半値幅が 0. 58以上であるか、 I 2 / I i ≥0.5, l 3 / I 2 <0.6 and the half-value width of I 1 is 0.58 or more,
( d ) I! , I 2 及び I 3 がそれぞれ(110) 面、 (101) 面及び(211) 面のいずれかの線強度であり、 (d) I! , I 2 and I 3 are the line intensities of the (110), (101) and (211) planes, respectively.
I s / I 1 ≥ 0. 5、 I 4 / Ϊ 3 < 0. 6で且つ I s / I 1 ≥ 0.5, I 4 / Ϊ 3 <0.6 and
I 1 の半値幅が 0. 61以上であるか、 ( e〉 I, , I 2 、 I 3 及び I 4 がそれぞれ(110) 面 (101) 面、 (211) 面及び(301) 面のいずれかの線強 度であり、 14 ノ 11 ≥ 0. 5、 Is ェ 4 く 0. 6で且つ I i の半値幅が 0. 73以上である か、 If the half-width of I 1 is 0.61 or more, (E> I,, I 2 , I 3 and I 4 respectively (110) plane (101) plane, a (211) plane and (301) plane or the line strength of the, 14 Roh 11 ≥ 0. 5, Is ェ 4 0.6, and the half width of I i is 0.73 or more,
( ΐ ) I 1 が(301) 面の線強度であり、 12 / 1〗 ^ 0. 6で且つェ 1 の半値幅が 0. 60以上であるか (ΐ) I 1 is the line intensity of the (301) plane, 12/1 ^ 0.6 and the half-width of D 1 is 0.60 or more
( g ) I 1 が(211) 面または(301) 面の線強度で且つ ェ 2 が(301) 面または(211) 面の線強度であり、 ェ 2 ェ 1 ≥0. 5、 I3 ZI2 く 0. 6で且つ ェ 1 の半値幅が 0. 3以上である (G) I 1 is (211) plane or (301) is a line intensity of and E 2 (301) plane or (211) plane in the line strength of the surface, E 2 E 1 ≥0. 5, I 3 ZI 2 and 0.6, and the half-value width of E1 is 0.3 or more
ことを特徵とする酸化錫薄膜ガスセンサ素子。 A tin oxide thin film gas sensor element characterized in that:
PCT/JP1986/000077 1985-02-20 1986-02-19 Gas sensor element of tin oxide film WO1986004989A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1019860700721A KR940002511B1 (en) 1985-02-20 1986-02-19 Gas sensor element of tin oxide film
GB868625006A GB8625006D0 (en) 1985-02-20 1986-10-18 Gas sensor element of tin oxide film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60032228A JPS61191954A (en) 1985-02-20 1985-02-20 Metal oxide thin film gas sensor element
JP60/32228 1985-02-20

Publications (1)

Publication Number Publication Date
WO1986004989A1 true WO1986004989A1 (en) 1986-08-28

Family

ID=12353109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1986/000077 WO1986004989A1 (en) 1985-02-20 1986-02-19 Gas sensor element of tin oxide film

Country Status (4)

Country Link
JP (1) JPS61191954A (en)
KR (1) KR940002511B1 (en)
GB (2) GB2182448B (en)
WO (1) WO1986004989A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6134944A (en) * 1999-04-29 2000-10-24 The Regents Of The University Of California System and method for preconcentrating, identifying, and quantifying chemical and biological substances

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643978B2 (en) * 1986-06-27 1994-06-08 大阪瓦斯株式会社 Gas sensor and manufacturing method thereof
GB9512929D0 (en) * 1995-06-24 1995-08-30 Sun Electric Uk Ltd Multi-gas sensor systems for automatic emissions measurement
JP5350593B2 (en) 2007-01-15 2013-11-27 キャタピラー エス エー アール エル Panel manufacturing method
DE102013218840A1 (en) 2013-09-19 2015-03-19 Robert Bosch Gmbh Micro hot plate device and sensor with a micro hotplate device
CN104568002B (en) * 2014-12-26 2017-05-03 昆山工研院新型平板显示技术中心有限公司 Environmental detection device
CN107315033B (en) 2016-04-26 2021-08-06 新唐科技日本株式会社 Gas detection device and hydrogen detection method
CN107315034B (en) 2016-04-26 2021-06-08 新唐科技日本株式会社 Gas detection device and hydrogen detection method
CN106092200A (en) * 2016-07-08 2016-11-09 南京信息工程大学 A kind of environmental detection set
WO2018123673A1 (en) 2016-12-28 2018-07-05 パナソニックIpマネジメント株式会社 Gas detection device, gas detection system, fuel cell vehicle, and gas detection method
WO2018123674A1 (en) 2016-12-28 2018-07-05 パナソニックIpマネジメント株式会社 Gas detection device, gas sensor system, fuel cell vehicle, and hydrogen detection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424094A (en) * 1977-07-26 1979-02-23 Fuji Electric Co Ltd Production of gas detecting element
JPS5983046A (en) * 1982-11-02 1984-05-14 Hitachi Ltd Gas sensor and preparation thereof
JPS5990040A (en) * 1982-11-15 1984-05-24 Matsushita Electric Ind Co Ltd Detector for gaseous carbon monoxide

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811844A (en) * 1981-07-15 1983-01-22 Matsushita Electric Ind Co Ltd Gaseous no2 detector and detecting method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424094A (en) * 1977-07-26 1979-02-23 Fuji Electric Co Ltd Production of gas detecting element
JPS5983046A (en) * 1982-11-02 1984-05-14 Hitachi Ltd Gas sensor and preparation thereof
JPS5990040A (en) * 1982-11-15 1984-05-24 Matsushita Electric Ind Co Ltd Detector for gaseous carbon monoxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6134944A (en) * 1999-04-29 2000-10-24 The Regents Of The University Of California System and method for preconcentrating, identifying, and quantifying chemical and biological substances

Also Published As

Publication number Publication date
GB2182448A (en) 1987-05-13
JPS61191954A (en) 1986-08-26
GB8625006D0 (en) 1986-11-19
GB2182448B (en) 1989-01-11
KR940002511B1 (en) 1994-03-25
GB8624904D0 (en) 1986-11-19
JPH053895B2 (en) 1993-01-18
KR880700261A (en) 1988-02-22

Similar Documents

Publication Publication Date Title
JP4436064B2 (en) Thermistor material and manufacturing method thereof
Duchene Radiofrequency reactive sputtering for deposition of aluminium nitride thin films
WO1986004989A1 (en) Gas sensor element of tin oxide film
Sawatzky et al. Cation deficiencies in rf sputtered gadolinium iron garnet films
JP2007031178A (en) Cadmium-tellurium oxide thin film and its forming method
Cristea et al. Structure dependent resistivity and dielectric characteristics of tantalum oxynitride thin films produced by magnetron sputtering
Neuman et al. Structural dependence of strain gauge effect and surface resistivity for thin gold films
Gawlak et al. Stress relief of basal orientation zinc oxide thin films by isothermal annealing
JPH0995785A (en) Preparation of pyrolytically decomposed boron nitride molding with arbitrary electric resistance
Siddall et al. Vacuum-deposited metal film resistors
US3504325A (en) Beta-tungsten resistor films and method of forming
Fang et al. The effect of strain on the resistivity of indium tin oxide films prepared by pulsed laser deposition
KR100186286B1 (en) Sensor for methane gas using tin oxide and sensor for propane gas
Haddon et al. Electrical resistivity and stoichiometry of BaxC60 films
US3703456A (en) Method of making resistor thin films by reactive sputtering from a composite source
Maruyama et al. Indium nitride thin films prepared by radio‐frequency reactive sputtering
Knight Effect of structure on the piezoresistive properties of thin metal films
Meaudre et al. Influence of nitrogen incorporation on the density of gap states in amorphous hydrogenated silicon
JPH0643978B2 (en) Gas sensor and manufacturing method thereof
JPH0397846A (en) Formation of thin film of silicon compound
Chernets et al. Preparation and properties of thin films of ZnO for hypersonic transducers
Valletta et al. Preparation and characterization of manganese oxide thin films
Beynon et al. On the electrical resistivity and structural properties of evaporated manganese/silicon oxide cermet films
Schauer et al. The influence of film thickness on the formation of β-Ta and bcc-Ta
Novotny et al. Piezoelectric ZnO thin films prepared by cyclic sputtering and etching technology

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): GB KR US

CFP Corrected version of a pamphlet front page

Free format text: TITLE IN JAPANESE CORRECTED