JPS5983046A - Gas sensor and preparation thereof - Google Patents

Gas sensor and preparation thereof

Info

Publication number
JPS5983046A
JPS5983046A JP19275182A JP19275182A JPS5983046A JP S5983046 A JPS5983046 A JP S5983046A JP 19275182 A JP19275182 A JP 19275182A JP 19275182 A JP19275182 A JP 19275182A JP S5983046 A JPS5983046 A JP S5983046A
Authority
JP
Japan
Prior art keywords
gas
gas sensor
particles
ultrafine
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19275182A
Other languages
Japanese (ja)
Inventor
Kenichi Kizawa
賢一 鬼沢
Masateru Suwa
正輝 諏訪
Mitsuo Taguchi
田口 三夫
Tadahiko Mitsuyoshi
忠彦 三吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19275182A priority Critical patent/JPS5983046A/en
Publication of JPS5983046A publication Critical patent/JPS5983046A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To obtain a gas sensor especially excellent in gas selectivity, by a method wherein an ultra-fine particle film comprising metal oxide of which the greater part of crystals are oriented to a specific surface direction is formed on a substrate and an electrode is formed on said film. CONSTITUTION:When the division ratio obtained by dividing the peak intensity of the diffraction surface of an X-ray chart by the relative intensity of the same surface of an ASTM card is calculated and the ratio A/B of the max. value A and the min. value B of said ratio is defined as an orientation characteristic, a sensor film 11 being an ultra-fine particle film occupied by metal oxide particles each having an average particle size of 40-200Angstrom in an amount of 95% or more by wt. of the whole film and packed in 27-74% by ratio of the theoretical density of the particle is formed on a substrate 9 made of Al2O3 having a gold comb shaped electrode 10 formed thereon under gas pressure of 8X10<-2>torr or more while adjusting the temp. of said substrate 9 to a low temp. almost equal to a liquid nitrogen temp. After the film is formed, heat treatment is performed at a temp. 100-300 deg.C higher than the operation temp. of the gas sensor. The electrode 10 may be provided on the film 11 formed on the substrate 9.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はガスセンサおよびその製造方法に係り、特にガ
ス選択性に優れた金属酸化物超微粒子膜がガス感応部分
となるガスセンサとその製造方法に関するっ 〔従来技術〕 都市ガス(CH4)用ガスセンサ素子としては、現在5
n02焼結体型の半導体式素子が市場の大半を占めてい
る。しかし主としてアルコールに対して誤動作をするこ
とが問題となっている。触媒等に種々の工夫を凝らした
素子が開発されているものの製品のバラツキが大きく、
また経時変化して特性が劣化してしまうというのが現状
である。このためメタンに対して高いガス選択性を有1
7、信頼性に優れ経時劣化のないセンサ素子が要求され
ている。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a gas sensor and a manufacturing method thereof, and more particularly to a gas sensor in which a gas-sensitive part is a metal oxide ultrafine particle film with excellent gas selectivity, and a manufacturing method thereof. [Prior art] There are currently 5 types of gas sensor elements for city gas (CH4).
N02 sintered type semiconductor devices occupy the majority of the market. However, the main problem is that they malfunction in response to alcohol. Although various devices such as catalysts have been developed, there are large variations in the products.
The current situation is that the characteristics deteriorate over time. Therefore, it has high gas selectivity for methane.
7. There is a demand for sensor elements that are highly reliable and do not deteriorate over time.

センサ素子を構成する金属酸化物粒子の粒径を極めて微
細にすることによって比衣面積を増大させ、高感度化さ
せるだめのガスセンサの製造方法として、減圧酸素雰囲
気中で金属まだはその酸化物を蒸発させる方法(ガス中
蒸発法)が知られている(特開昭55−27925ほか
)。このガス中蒸発法では蒸発した原子が基板に到達す
る間にガス分子と衝突して冷却されつつ超微粒子を形成
させている。超微粒子の集合体の形成によって高感度化
が図られているが、ガス選択性が十分でない8まだ一般
にガス選択性を制御する方法として、主に動作温度、ま
たはガス感応部分の材料組成を変えることが一般に行な
われているがガス選択性を向上させるには限度かを)つ
た。
As a manufacturing method for gas sensors, the particle size of the metal oxide particles constituting the sensor element is made extremely fine, increasing the surface area and increasing the sensitivity. A method of evaporating (evaporation in gas method) is known (Japanese Unexamined Patent Publication No. 55-27925, etc.). In this in-gas evaporation method, evaporated atoms collide with gas molecules and are cooled while reaching the substrate, forming ultrafine particles. High sensitivity has been achieved through the formation of aggregates of ultrafine particles, but gas selectivity is still insufficient.8 Generally, gas selectivity is still controlled by changing the operating temperature or the material composition of the gas-sensitive part. Although this is commonly practiced, there are limits to improving gas selectivity.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、ガス選択性に優れたガスセ/すおよび
その製造方法を提供することにある。
An object of the present invention is to provide a gas cell with excellent gas selectivity and a method for producing the same.

〔発明の概要:1 本発明者らは5nOz 、ZnQなどのn捜の金属酸化
物の半導体を用いた超微粒子ガスセンサにおいては結晶
の面方位によってその微粒子の表面におけるガスとの反
応性が異々す、そのため、超微粒子に特定の方向性を持
たせればガス選択性が改善される点に着目した。
[Summary of the invention: 1 The present inventors discovered that in an ultrafine particle gas sensor using a semiconductor of an n-metal oxide such as 5nOz or ZnQ, the reactivity of the surface of the fine particles with gas varies depending on the plane orientation of the crystal. Therefore, we focused on the point that gas selectivity could be improved by giving ultrafine particles a specific directionality.

本発明は、このような着眼点に基づいてなされたもので
あって、金属酸化物超微粒子の大部分の結晶が特定の面
方位に方向性を有した状態で集合した超微粒子膜を電極
と接触させたガスセンサであり、このようなガスセンサ
を得るために通常のスパッタリングのガス圧よりもガス
圧を高めてスパッタリングし、超微粒子膜を得るもので
ある。
The present invention has been made based on this point of view, and uses an ultrafine particle film, in which most of the crystals of ultrafine metal oxide particles are aggregated in a specific plane direction, as an electrode. In order to obtain such a gas sensor, sputtering is performed at a gas pressure higher than that of normal sputtering to obtain an ultrafine particle film.

以F1更に本発明の詳細な説明する。Hereinafter, F1 will further explain the present invention in detail.

本発明において、金属酸化物超微粒子の結晶の面方位が
ランダムの場合、種々のガスが反応し、てガス選択性が
小さいのに対し、金属酸化物超微粒子犬部分の結晶が特
定の面方位に方向性を有していると、その面に反応し易
いガスが優先的に超微粒子表面で反応し、検知されるだ
めガス選択性が高′まる。超微粒子の面方位として、全
ての超微粒子が同じ方向性を示せば最も望ましいが、実
用的には後記のように定義される配向性が2υ上であれ
ばよい。
In the present invention, when the crystals of ultrafine metal oxide particles have random plane orientations, various gases react with each other and the gas selectivity is low. If the nanoparticles have directionality, gases that are likely to react on that surface will preferentially react on the surface of the ultrafine particles, increasing the selectivity of detected gases. It is most desirable that all the ultrafine particles exhibit the same orientation, but in practice, it is sufficient if the orientation defined as described later is above 2υ.

ここで配向性とは、X線チャートの回折面ピーク強度を
AsTMカードの同一面の相対強度で割り比を求め、こ
の比の値の最大値Aと最小値Bとの比(A/B )で定
義される。
Here, orientation refers to the ratio of the peak intensity of the diffraction surface of the X-ray chart divided by the relative intensity of the same side of the AsTM card, and the ratio of the maximum value A to the minimum value B of this ratio value (A/B). Defined by

即ち、金属酸化物超微粒子の結晶の方向性を調べるだめ
に感応体の結晶の方向性を調べるためX線回折によって
1.−1nOzでは(iio)、Dot)。
That is, in order to examine the crystal orientation of the ultrafine metal oxide particles, X-ray diffraction is used to examine the crystal orientation of the sensitive material. -1 nOz (iio), Dot).

ZnOでは(100) 、 (1,01)の回折面を選
んだ。
For ZnO, (100) and (1,01) diffraction planes were selected.

これらの回折面はA S i’ Mカードによって比較
的回折強度の強い面である。結晶の方向性がランダムな
ときの各回折面のXKQ回折ピーク強度はASTMカー
ドの相対強朕で表わされる。そこで結晶の方向性が各面
において、ランダムな結晶からどれだけずれ−Cいるか
をみるため、測定されるX線チャートの回折面のピーク
強度をA S T Mカードの同一面の相対強度で割り
比を求める。このようにして求めた割り比の最大値衣と
最小値Bとの比(A/B)を配向性とし、ガス選4ノ〈
性との関係をみた。なおガス選択性は450tl;、ガ
ス1% eo、5係でメタンとエタノールとのガス選択
性を調べた。
These diffraction surfaces are surfaces with relatively strong diffraction intensity depending on the ASI'M card. The XKQ diffraction peak intensity of each diffraction plane when the orientation of the crystal is random is expressed by the relative intensity of the ASTM card. Therefore, in order to see how far the orientation of the crystal deviates from a random crystal on each surface, the peak intensity of the diffraction surface of the measured X-ray chart was divided by the relative intensity of the same surface of the ASTM card. Find the ratio. The ratio (A/B) between the maximum value and the minimum value B of the split ratio obtained in this way is defined as the orientation, and gas selection 4.
I looked at the relationship with sex. The gas selectivity between methane and ethanol was investigated using 450 tl, gas 1% eo, and 5th gear.

金属酸化物超微粒子の膜をスパッタリングによつ−C作
成する際、ガス圧によって微粒子の結晶の配向性が変化
する。そこでガス圧を変化させて配向性とガス選択性と
の関係をみると、第1図(a)(SnO2il、:a敵
粒子膜)および第1図(1)) (Z n Q超微オ)
2子膜)から明らかなように配向性が2以上でガス選択
性が改善された。
When a -C film of ultrafine metal oxide particles is formed by sputtering, the crystal orientation of the fine particles changes depending on the gas pressure. Therefore, when we look at the relationship between orientation and gas selectivity by changing the gas pressure, we find that Fig. 1(a) (SnO2il, :a enemy particle film) and Fig. 1(1)) (Z n Q ultrafine particle film). )
As is clear from the 2-layer film), gas selectivity was improved when the orientation was 2 or more.

なお、この例ではS 1102が(101)方向に強く
配向しでいるためにメタンやCOに高いガス選択性が得
ら2tだが、製法によっては他の面方位に強く配向させ
て、I■2やアルコールに高いガス選択性を持たせるこ
ともできる。この場合にも配向性は2μ上であることが
好寸しい。
In this example, S 1102 is strongly oriented in the (101) direction, resulting in high gas selectivity for methane and CO. However, depending on the manufacturing method, it may be strongly oriented in other plane directions, resulting in I It is also possible to provide high gas selectivity to alcohols and alcohols. In this case as well, the orientation is preferably 2μ or higher.

仄に本発明において、金属酸化物超微粒−丘の平均粒径
が40〜200人であることが望ましい。
In the present invention, it is preferable that the average particle diameter of the ultrafine metal oxide particles is 40 to 200 particles.

jii微粒子の粒径が40人より大きくなると超微粒子
の特徴である、6いガス感度とガス選択性が著しく損わ
れるため好ましくない。また、超微粒子の粒径が71・
さくなり過ぎると、粒子間の間隙が被検知ガス分子や酸
素分子の実効的大きさよシも小さくなり、ガスが超微粒
子集合体内部に で侵入しなく・・ンる。この結果、集
合体内部の゛粒子では1!(抗変化が起こらなかったり
(被検知ガス分子の太さ声〉粒子間の間隙)、特性が窒
気中で几へ戻ら・:!、<ナラ九り(酸;;ζ分子の犬
e: ”a ;)A、′7.’−f−間の間+p;v 
)しで、センサの特性が著しく損われる。−υ口η子同
志のバッキングでは粒子間の間1iλはA:* (−半
径の約10〜15 (1)であるだめ、分子半径()、
J” :’ 、/−ルワールズ半径)が4.0人(l\
り7性)、2.4人(メタン)、3.9人(j@J、z
化炭素)、6.0ノ、([タノール)程度のガスを通ノ
1うず、りためにtよ、超微:Ir1−?の粒径は約4
0八以上が望゛ましい。
If the particle size of the fine particles exceeds 40, it is not preferable because the gas sensitivity and gas selectivity, which are characteristics of ultrafine particles, will be significantly impaired. In addition, the particle size of the ultrafine particles is 71.
If it becomes too small, the gaps between the particles will be smaller than the effective size of the detected gas molecules and oxygen molecules, and the gas will not be able to penetrate into the ultrafine particle aggregate. As a result, the particles inside the aggregate are 1! (If no change occurs (the thickness of the detected gas molecule), the gap between the particles), the characteristics will return to normal in nitrogen. ``a;)A, ``7.''-f- +p;v
), the characteristics of the sensor will be significantly impaired. In the backing of -υ mouth η particles, the distance 1iλ between particles is A: * (-about 10 to 15 of the radius (1), but the molecular radius (),
J” :' , /- Lewars radius) is 4.0 people (l\
7 sex), 2.4 people (methane), 3.9 people (j@J, z
Ir1-? The particle size is about 4
08 or higher is desirable.

次に超微粒子の充填密度はその1位子の理論密度の27
〜74チが望ましい。
Next, the packing density of ultrafine particles is 27
~74chi is desirable.

一般に超微粒子Vよほぼ球形であり、こJしもの誤合は
球の充填ど同様に考えられる。−)/′ξ1.J1直:
l/。
In general, the ultrafine particles V are approximately spherical, and this error can be considered in the same way as when filling a sphere. −)/′ξ1. J1 shift:
l/.

子同志の結合はA)″1.重量子接触部Cl?こるプし
め、1′1粒子ができるだけ数多くのれ子と接触した状
態が安定であシ、機械的強度が大きい。でらに、超微粒
子集合体中を流れる−[L流も上記接触部を介して流れ
るため、各粒子ができる7’Lけ数多くのi51子と筬
)独した犬態でガスセンサの特性が安定であり、かつ、
ガス感度が高くなる。
The bond between the particles is A) ``1. The contact part of the weight particle Cl?Cut, 1' The state in which the 1 particle is in contact with as many bars as possible is stable and has high mechanical strength.In addition, Flowing through the ultrafine particle aggregate - [Since the L flow also flows through the contact part, each particle has as many i51 particles and reeds) The characteristics of the gas sensor are stable in an independent state, and ,
Gas sensitivity increases.

ガス中蒸発法やスパッタ法で作製した・頃微粒子15a
体のR’7造を詳#[Iに観察した結果、場所による7
&千〇夏動を無視すると、平均的には超微粒子が立方最
密充填構造、 方最密充填構造、単純立方119造など
のように充填したもの、または、こ・υように充填して
出来だ2次粒子がさらに同様な方法で充填したもの、ま
たは、2次粒子が充填して出来た3次粒子がさらに充填
したもの、などに分類されることがわかった。さらに、
機械的強度が元分大ぎく、ガスセンナの特性が安定とな
るためには、超微粒子の集合状態は2次粒子の充填構造
ま−ごてあり、これよシ充填密度の低い2次粒子の不完
全な充填や3次粒子の充填はガスセンサとしては好まし
くないことがわかった。すなわち、充填密度としては平
均的に見て超微粒子が単純立方構造(6)に充填して形
成された2次粒子同志が同じく単純立方構造に充填した
場合の27係(まったく空隙無く充填した理論密度を1
00チとする)が下限であり、これより充填t〔度が低
い場合、充填が不充分で好′ましくないことがわかった
Fine particles 15a produced by evaporation in gas or sputtering
Details of the R'7 structure of the body.
Ignoring the & 〇 summer movement, on average, the ultrafine particles are packed in a cubic close-packed structure, a square close-packed structure, a simple cubic structure, etc., or packed in this way. It has been found that the resulting secondary particles can be further classified into those that are filled in the same way, and those that are filled with tertiary particles that are filled with secondary particles. moreover,
In order for the mechanical strength to be as large as possible and the properties of the gas senna to be stable, the aggregation state of the ultrafine particles must have a mixed packing structure of secondary particles. It was found that complete filling or filling with tertiary particles is not preferable for a gas sensor. In other words, on average, the packing density is 27 times the case where ultrafine particles are packed into a simple cubic structure (6) and the secondary particles are also packed into a simple cubic structure (the theory where they are packed without any voids). density to 1
It was found that if the filling degree is lower than this, the filling is insufficient and undesirable.

一方、超微粒子が最ど充填密度を越えて光」倶した場合
には、オ\1子同志が一部融合した状態になり、得られ
るガスセンサには超微粒子集合体の特徴である高いガス
i・6度やガス選択性が期待できなくなるため好ましく
ない。しだがって、充填密度は理論密度の74裂以下で
あることが必要である。スパッタリング法において、ス
パッタ時の圧力が8X 10−2Tor+以−ヒであれ
ば充填密度が74多以下の超微粒子膜が得られる2、 超微粒子化の効果は、配向性1粒径、密度および組成が
適正なものとなったとき元揮孕れる。このだめにはスパ
ッタリング法において、ガス圧とともに基板温度、基板
距離を適当に制酉1することが望ましい。ガス圧を尚く
基板距離を長く、かつ基板温度な低くすると密度は低く
なり、その逆の場合76度は低くなる。
On the other hand, when ultrafine particles exceed the maximum packing density and fall into a state of fusion, some of the particles become fused, and the resulting gas sensor contains a high gas i, which is a characteristic of ultrafine particle aggregates.・It is not preferable because 6 degrees and gas selectivity cannot be expected. Therefore, it is necessary that the packing density is 74 times less than the theoretical density. In the sputtering method, if the pressure during sputtering is 8X 10-2 Tor+ or higher, an ultrafine particle film with a packing density of 74 or less can be obtained2. When it becomes appropriate, it becomes pregnant. To prevent this, it is desirable to appropriately control the gas pressure, substrate temperature, and substrate distance in the sputtering method. If the gas pressure is increased, the substrate distance is increased, and the substrate temperature is decreased, the density decreases, and vice versa, 76 degrees decreases.

またスパッタリング法による超微粒子ガス−1こン−リ
゛素子には長時間の使用によって次のよう々現象がみら
れる、メタンに対するガス感度はほとんど変わらないが
、エタノールに対するガス感度がわずかずつ高くなって
ゆきガス選択性が多少悪化することである。この現象は
詳細な検討の結果、使用中に粒径が徐々に増大していく
だめに生ずることがわかったっ400[で約1000時
間使用後には粒径は約50チ増犬する。
In addition, the following phenomena are observed in the ultrafine particle gas-1 conductor produced by the sputtering method after long-term use: The gas sensitivity to methane remains almost the same, but the gas sensitivity to ethanol gradually increases. However, gas selectivity deteriorates to some extent. As a result of detailed study, it was found that this phenomenon occurs because the particle size gradually increases during use.

超微粒子の粒径変化の原因について検討l−だ結果、主
にイ鵞子衣簡の拡散によって(l成長がおこること、と
の粒径変化の速度をアレニウスプロットすると約85[
ぐJとなり、この値は検討しだ7. n O+(、:r
、、03 、 SnO2,Fe2O31Ti0z iど
の金属酸化物ではほぼ一定の値を持つことがわかつ/こ
。ま/ヒ、粒径の変化はほぼ熱処理時間の平方根に比例
することが知られている。
We investigated the causes of particle size changes in ultrafine particles.As a result, we found that growth occurs mainly due to the diffusion of the ultrafine particles.The Arrhenius plot of the rate of particle size change shows that the rate of particle size change is approximately 85[
This value will be considered.7. n O+(,:r
,,03, It was found that metal oxides such as SnO2 and Fe2O31TiOz i have almost constant values. It is known that the change in particle size is approximately proportional to the square root of the heat treatment time.

このような点から、基板上にスパッタリングにより金属
Ff化物超微粒子膜を形成後、そのガスセンザの動作温
度よりも100〜300C高い温度で熱処理することが
望ましい。例えば、ガス毛ンサの動作温度がL 50 
’Cのり1合、この温度より本100C高い温度(zs
Oc)で1時間熱処理し、ガスセンザの動作温度が4 
(l OCの場合、この温度より300r高い温度(7
00C)で】一時間熱処理すれば、それぞれ常時使用湿
度(動作温度の約100倍の速度で粒成長1゛るが、そ
の後それぞれの動作温度で10000時間連続使用して
もλ)“l成長に基づく特性変化は実用上け、とんと問
題とならない。
From this point of view, after forming a metal Ffide ultrafine particle film on a substrate by sputtering, it is desirable to perform heat treatment at a temperature 100 to 300 C higher than the operating temperature of the gas sensor. For example, the operating temperature of a gas hair sensor is L 50
'C glue 1 cup, temperature 100C higher than this temperature (zs
The operating temperature of the gas sensor is 4.
(In the case of l OC, the temperature is 300 r higher than this temperature (7
00C), grains grow at a rate of 100 times faster than the operating temperature, but even after continuous use for 10,000 hours at each operating temperature, the grains grow at Changes in characteristics based on this do not pose any problem in practical use.

またスパッタリング時において、基板の冷却を水冷より
も低い温度、望才し7く←に液体穿素温度畔で冷却する
ことによって超微粒子のA′q径を適正な範囲に維持し
、ガス感度を高めることもできる1、〔発明の実施例コ 以下、図面に基ついで不発明の詳細な説明する。
In addition, during sputtering, by cooling the substrate at a temperature lower than water cooling, near the liquid perforation temperature, the A′q diameter of the ultrafine particles can be maintained within an appropriate range, and gas sensitivity can be improved. 1. [Embodiments of the invention] Hereinafter, the invention will be described in detail based on the drawings.

第2図に使用した)L Pスパッタリング装置の概略図
を示す。1がターゲット(ここではS n O2焼結体
)、2が電極、3が基板ホルダである(dOwn方式)
。高ガス圧中でも正常にグロー放電する。(、うにクー
ゲットまわりに少し工夫がh(αされている以外は通常
の装置と変わりない。5のバリアプルリークパルプを通
してガス(一般にA、 r )を流し、6のメインバル
ブで紋って5Aベルジヤ内のノjス王をコント「1−ル
する。8はRF % # 、7はマツブ−ング7Iζツ
クスである。It Fを印加した後はシリア4バツタを
行ない、続いて4のシャッタをMlいて基板ホルダの上
にセットされた基板上へスパッタリングするものである
A schematic diagram of the LP sputtering apparatus (used in FIG. 2) is shown. 1 is a target (S n O2 sintered body here), 2 is an electrode, and 3 is a substrate holder (dOwn method)
. Glow discharges normally even under high gas pressure. (It is the same as a normal device except that there is a slight twist around the sea urchin cuguette. Gas (generally A, r) is passed through the barrier pull leak pulp in 5, Control the Nose King in Belgia. 8 is RF % #, 7 is Matsuboung 7 Iζtux. After applying It F, perform Syria 4 bats, followed by 4 shutter. Sputtering is performed on a substrate set on a substrate holder using M1.

超微粒子はスパッタリング原子とガス分子との衝突にと
って生成すると考えているが、詳細な生成U’(’Iは
現在のところ明らかでない。実鹸の結果1、L F 重
力100W、基板距離40胡の場合には0、1 ’I’
Orr以上のガス圧でS n O2超徹柁子膜を生成で
きることが判明した。X線回折、ト流仔顕微鏡観察、密
度測定及び電気抵抗測定等を行なって確認した。生成し
た超微粒子の粒径はX線回折パターンの回折線の広がり
から推定した。それによると粒径ンま約90八であった
。第3図にこの超微粒子膜の密度を求めた結果を示す。
It is believed that ultrafine particles are generated due to collisions between sputtering atoms and gas molecules, but the detailed formation U'('I is not clear at present.Results of actual research 1, L F gravity 100W, substrate distance 40H) 0, 1 'I' if
It has been found that an S n O 2 super-permeable silica film can be produced at a gas pressure of Orr or higher. This was confirmed by X-ray diffraction, microscopic observation, density measurement, electrical resistance measurement, etc. The particle size of the produced ultrafine particles was estimated from the spread of diffraction lines in the X-ray diffraction pattern. According to this, the particle size was approximately 908 mm. FIG. 3 shows the results of determining the density of this ultrafine particle film.

横軸にスパッタリング時のArガス圧を、縦軸に)くツ
キング密H13のS II 02  の真密度(6,7
g/cm3)に対する上ヒ率をとっである。0.1’F
or+−以上のガス圧に〆するど密度比が60%す、F
となり、球の最奮光填(74チ)の場舒よシわす〃痕小
さい。後述j−るようにスパンクリング法による超微わ
/−(−:’l’cは粒径が極めて小さいだけでなく、
膜の密度が適当であるためにガスW度が優れる。第3図
中には)jス中蒸発法によって製造したS n 02超
微粒子膜に)・“:ノキング密度比も示した。梨造法は
償属Snf:減圧0□中で蒸発させるもので、その時の
02圧を・1負軸にとってあ7.)。スノきツクリング
法に比1「スし−C著しく密度が小さいことがわかる。
The true density of S II 02 (6,7
g/cm3). 0.1'F
When the gas pressure reaches or+- or higher, the density ratio becomes 60%, F
As a result, there is only a small trace of the maximum light loading (74 cm) of the ball. As described below, ultra-fine particles produced by the spankling method not only have an extremely small particle size, but also
Since the film density is appropriate, the gas W degree is excellent. Figure 3 also shows the knocking density ratio of the S n 02 ultrafine particle film produced by the evaporation method in a vacuum cleaner. , taking the 02 pressure at that time as the negative axis of 7.).It can be seen that the density of 1"C is significantly lower than that of the Snoki Tsukling method.

なおこの場合の粒径はI To r r (−)20時
約80人+ 0−1 ’J、” r rO□O時約50
人である。さしにガス圧が低くなれば蒸発したSnと0
2との反応が十分に進まなくなる。実際、ガス中蒸発法
では、仮に02にプラズマをかけるなどして励起して反
応性を高めても02圧が0.1 ’in rr以下にな
るとSnoが50重量%以ド含まれてしまい、更に02
圧が低く々ると金属S nが含まれてくる。超微粒子膜
(b中には少なくとも95重歇チ以上のS n 02が
;苛まれないと良好外ガス感度がイー:)られない、、
このことVJ、超(□“4粒子膜の組成の95重[η、
係以上がスパッタリングターゲット(例えば5no2)
の組成ど同一で、トることかガス感度の点から望ましい
ことになろっCのだめには、蒸発源を8110あるいは
S n O2とする方法もあるが、0. ]Torr以
下の02圧では分解して5nOzの含まれる比率を上げ
ることはできない。スパッタリング法でdここの7しつ
な3nO?の化学量論組成からのずれはほとんど見【っ
れ−す、95係しソ、上の含有率に容易に制御できろ2
、次にイ↓)られた超微粒子膜についての配向ゼ1ユと
!ブス選択性を調べた。
In addition, the particle size in this case is I To r r (-) about 80 people + 0-1 'J at 20 hours, about 50 hours at `` r rO□O
It's a person. If the gas pressure becomes low, the evaporated Sn and 0
The reaction with 2 will not proceed sufficiently. In fact, in the in-gas evaporation method, even if 02 is excited by applying plasma to increase its reactivity, if the 02 pressure becomes 0.1'in rr or less, more than 50% by weight of Sno will be contained. Further 02
When the pressure is low, metal Sn is included. The ultrafine particle film (b contains at least 95 or more S n 02; good external gas sensitivity cannot be achieved unless it is irritated.)
This means that VJ, super(□“95 times [η,
Sputtering target (e.g. 5no2)
If the composition of C is the same, which is desirable from the viewpoint of gas sensitivity, there is also a method of using 8110 or S n O2 as the evaporation source, ] At 02 pressure below Torr, it is impossible to decompose and increase the proportion of 5 nOz contained. 7 continuous 3nO here by sputtering method? There is almost no deviation from the stoichiometric composition of 95%, and the content can be easily controlled to the above 2%.
, then ↓) the orientation of the ultrafine particle film! The bus selectivity was investigated.

第4図にガス感度測定用のR微粒子センサの惜造を示す
。(a)上面、(b)断面である。、A /403χシ
板9上へNu厚膜印刷によるくし状電極10を設け、そ
の上に5nozs微粒子膜11をスパッタリングしたも
のである。
Figure 4 shows the construction of the R particulate sensor for measuring gas sensitivity. (a) Top view, (b) cross section. , A/403χ A comb-shaped electrode 10 is provided on a plate 9 by thick Nu film printing, and a 5nozs fine particle film 11 is sputtered thereon.

SnO・では、ガス中蒸発法の従来法による超微粒子ガ
ス感応体の各回折面のX線回折強度(第5図)をS n
 02 (Ctl i< α)のASTMカードの相対
強度(第6図)で割った値に余り差がつかず、その最大
値を最小値で割っだ配向性も大概1に近い値となる。こ
のときのノブス選択性(Rエタノ−ル/几メタン)は1
.4である。
For SnO, the X-ray diffraction intensity (Fig. 5) of each diffraction surface of the ultrafine particle gas sensitive material obtained by the conventional method of evaporation in gas is
02 (Ctl i < α) divided by the relative strength of the ASTM card (FIG. 6), there is not much difference, and the orientation, which is the maximum value divided by the minimum value, is almost a value close to 1. At this time, the Nobbs selectivity (R ethanol/methane) is 1
.. It is 4.

一方、本実施例による感応体(3n02)の各回J)′
i′面のX線回折強度(第7図)を、S n O2(C
11Ktx )のAS’rMカードの相対強度(第6図
)で割った値のうち、最大値および最小値はそれぞれ(
iol、)面および(110)而となる。この最大値を
〒[)小値で割って配向性を求めると3.8となる。こ
のときのガス選択性は11.7となる。
On the other hand, each time J)' of the sensitive body (3n02) according to this embodiment
The X-ray diffraction intensity of the i′ plane (Fig. 7) is calculated using S n O2 (C
11Ktx ) divided by the relative strength of the AS'rM card (Figure 6), the maximum and minimum values are (
iol,) surface and (110). The orientation is calculated by dividing this maximum value by the small value of 〒[), and the result is 3.8. The gas selectivity at this time is 11.7.

次にZnOではSnO□と同じく、ガス蒸発法の従来法
による感応体は、第8図および第9図かi二。
Next, in the case of ZnO, as with SnO□, the sensitizer made by the conventional gas evaporation method is as shown in FIGS. 8 and 9.

5nOzの場合同様に配向性を求めると1に近く、ガス
選択性も2以下である。一方、本実施例による感応体(
ZnO)では、X線回折強度(第10図)を、ASTM
カードの相対強度(第9図)で割った値の最大値を(1
00)面が、最小値を(1,[l]、)面がとる。この
ときの配向性は5であり、ガス選択性は12となる。し
だがってZnOの場合も、ガス選択性が改善されている
In the case of 5 nOz, when the orientation is similarly determined, it is close to 1, and the gas selectivity is also 2 or less. On the other hand, the sensitive body (
For ZnO), the X-ray diffraction intensity (Fig. 10) is
The maximum value divided by the relative strength of the card (Figure 9) is (1
00) plane takes the minimum value, and the (1, [l],) plane takes the minimum value. At this time, the orientation is 5, and the gas selectivity is 12. Therefore, gas selectivity is also improved in the case of ZnO.

第11図は、メタンどエタノールに対するガス感度の測
定結果を示す、第11図中、(a)はスパッタリング条
件としてArガス圧0. I Torr 、基板距離3
0闘、l(、F電力120Wで、基板水冷で行なったも
のである。膜厚は約8000人、密度比約55係、粒径
は約90人でおる。図の横軸はガス濃度(嗟)、縦軸は
ガス感度としてガス中の膜の電気抵抗を空気中の電気抵
抗で割った値を示す。この値が小さいほどガス感度が高
いといえる。測定温度は450Cである。エタノール1
2に対する感度はほとんどないがメタン13に対して感
度が高い。すなわちメタンに対するガス選択性の良いセ
ンサ素子が得られた。
FIG. 11 shows the measurement results of gas sensitivity to methane and ethanol. In FIG. 11, (a) shows the sputtering conditions as Ar gas pressure 0. I Torr, substrate distance 3
The film thickness was approximately 8,000 mm, the density ratio was approximately 55 mm, and the particle size was approximately 90 mm. The horizontal axis of the figure is the gas concentration ( The vertical axis shows the gas sensitivity, which is the value obtained by dividing the electrical resistance of the membrane in the gas by the electrical resistance in the air.The smaller this value is, the higher the gas sensitivity is.The measurement temperature is 450C.Ethanol 1
It has little sensitivity to 2, but high sensitivity to methane 13. In other words, a sensor element with good gas selectivity for methane was obtained.

なお第11図(b)に、ガス中蒸発法で製造したS n
 02超微粒子膜のガス感度を示した。ITOrrの0
2中で金属SnをAt20s皮覆Wボー・トを用いて抵
抗加熱、蒸発させて得だものである。基板、測定午件等
は(a)の、場合と同様である。この図から。
In addition, FIG. 11(b) shows S n produced by the in-gas evaporation method.
The gas sensitivity of the 02 ultrafine particle film is shown. 0 of ITOrr
This is obtained by resistively heating and evaporating the metal Sn using an At20s coated W boat in No. 2. The substrate, measurement conditions, etc. are the same as in case (a). From this diagram.

メタンに対す感度は本発明の、場合と大差ないが、エタ
ノールに対する感度が高くメタンに対ず、もフiス選」
1<性が悪いことがわかる。
The sensitivity to methane is not much different from the case of the present invention, but the sensitivity to ethanol is high and the sensitivity to methane is also high.
1<I can see that the quality is bad.

またスパッタリング中に、/I5板を酸体窒素で冷ノ1
)したところ、S n 02 ;a ;故粒子の粒径は
50人で(2つ′C1非常に活性である。メタンに対す
るガス感度も高く、基板水冷の、場合と同一のガス感度
71′!1.j′1゜は350C程度でイrすられるっ
次に長時間の使用に耐えるようにこの素子に熱処理を加
える。りこCは500tTで1時間の熱処理を行なつ/
ζo350Cでのガス感度測定を続けた場合、30 O
n時間昏゛度ではほとんど′)i化せず、良好なガス選
択性が伊持きれているという結果が得ら1tでいる。
Also, during sputtering, the /I5 plate was cooled with acid nitrogen.
), the particle size of the deceased particles was 50 (2'C1 is very active. The gas sensitivity to methane was also high, and the gas sensitivity was 71', the same as in the case of water cooling of the substrate! 1.j'1° is irradiated at about 350C, then heat treatment is applied to this element so that it can withstand long-term use. Riko C is heat treated at 500tT for 1 hour.
If gas sensitivity measurement is continued at ζo350C, 30 O
The result was that there was almost no i-conversion at n-hour stability, and good gas selectivity was maintained at 1 t.

なお実施例CはAl−203基板−ヒー密:i’+f 
L−て設りたAl製くし犬j7.4龜−、L ヘ、″−
31021Pl’i微粒子膜を((11成したが、この
出、極は超微粒子膜の「IL気抵抗’I: j”jlj
 j録するだめのものであるので、j4微;粒子>+U
内部または超微粒子膜上面へ電應を設りても差支えない
Note that Example C has an Al-203 substrate-heat density: i'+f
Al-made comb dog j7.4 installed in L-, L-,''-
31021Pl'i fine particle film ((11) was formed, but the pole is the ultrafine particle film's "IL resistance 'I: j"jlj
Since it is useless to record, j4 fine; particle>+U
There is no problem in providing an electric heater inside or on the top of the ultrafine particle membrane.

壕だ超微粒子を旨成づ゛る6肩4酸化物は8 n 02
の111シに二るIIO、Cr2O3、Fe2O3、T
j04  でも良−好なガス感既が得られる。まだこれ
らのる2属酸化物超微粒子集合体中に白金、パラジウム
などの貴金属を含有させてもよい。特にSnO□の場合
、150程度の動作温度ではエタノールに対し jfス
、1択怜二が良好であり、−アルコールセンサとしても
使用できる。
The 6-shoulder 4-oxide that forms the ultrafine particles is 8 n 02
IIO, Cr2O3, Fe2O3, T
A good gas sensation can be obtained even at j04. However, noble metals such as platinum and palladium may be contained in these group 2 oxide ultrafine particle aggregates. In particular, in the case of SnO□, at an operating temperature of about 150°C, 1 or 2 is good for ethanol, and it can also be used as an -alcohol sensor.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、ガス選択性に優れたガス
センサを提供することができる。
As described above, according to the present invention, a gas sensor with excellent gas selectivity can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)ばS n Oz超#FL子膜の配向性、゛
ニガス選択註どの関係図、第1図(b)は4口0超e、
81′17子ル′・\の配向性とガス選択性との関係図
、第2図は本発明を実施するためのスパックリング装置
の一例を示す構成図、第3図はスパッタ時のガス圧とバ
ッキング密度比との関係図、第4図(a) r、l゛超
微粒子ガスセンサの平面図、第4図(I))は第4図(
a)の要部断面図、第5図はVt来法によるS n O
2超微粒子膜のX線回折強度、ら1″!6図は   に
よるS n O2(0,I Kα)のA S T’ M
カード相対強度、第7図は本発明に上る5noz超微わ
″を子膜のX線回折強度、第8図はVC来法によるZn
O超微杓子膜のX線回折強度、第9邸)はZ r+ 0
 (C旧ぐα)のA ST Mカーじの用苅づう)度、
81’:](lしI r、を本発明に+C−’、r ”
’S tI O超微粒イ1)(覧のX線1月折強度、第
111閉に1)は本発明のガスセンサによるツタ/とエ
タノールに対す7:)>ブス感歴を示す図、第11図(
b)は従来例のガスーレ/りに1 、?、メタンとエタ
ノールに対するガス感度を/j1ず]ツ1てを)る。 1・・・ターゲット、2・・・電極、:3・・・基板ホ
ルダ、・1・・・−/ヤツタ、5・・・バリアブルリー
クハルマ°、6・メ・fンバルブ、7・・・マノチンク
゛ボックス、8・・f(、F 1に源、9・・・A 1
203基板、1(J・・・l(【+ −d襲(,11・
・・+lfl微粒子膜1.12・・・エクノ−ル、13
・・・/茅l 凹 (沫) 配 1)己1−1 ノ):1Il− fL舶(生 茅2目 茅3 目 力゛ス圧 (Ton−ジ 芹4目 (cL) ZO 茅5 目 茅を目 20       30       40     
  .5′t)       60       ′7
/y       zO(+ +3 /、5 第7 区 芽 ■ ZO3t)      (to      50   
  60     76     80$ヲ 図 茅rr  図 (jC) θ          ρ、S          /
刀ス直崖(%)
Figure 1 (a) shows the relationship between the orientation of the S n Oz super #FL child film and the gas selection notes; Figure 1 (b) shows the relationships between
A diagram showing the relationship between the orientation of 81'17' and gas selectivity, Figure 2 is a block diagram showing an example of a sputtering apparatus for carrying out the present invention, and Figure 3 is a diagram showing the gas pressure during sputtering. Figure 4 (a) shows the relationship between the backing density ratio and the backing density ratio, Figure 4 (a) r, l.
Figure 5 is a sectional view of the main part of a).
2 X-ray diffraction intensity of ultrafine particle film, et al.
Figure 7 shows the relative strength of the card, and Figure 7 shows the X-ray diffraction intensity of the Zn membrane using the 5noz ultra-fine intensity according to the present invention.
The X-ray diffraction intensity of the O ultrafine ladle film (9th house) is Z r+ 0
(C old α) A ST M card usage) degree,
81': ](I r, to the present invention +C-', r ”
'S tI O ultrafine particles 1) (See the X-ray monthly folding intensity, 1 at the 111th close. figure(
b) is the conventional example of Gassure/Rini1,? , the gas sensitivity to methane and ethanol. 1...Target, 2...Electrode, :3...Substrate holder, 1...-/Yatsuta, 5...Variable leak harmonization, 6.M/F valve, 7...Mano Cinque box, 8...f (, source to F 1, 9...A 1
203 board, 1(J...l([+ -d attack(,11・
...+lfl fine particle film 1.12...Eknor, 13
... / Chill concave (drop) distribution 1) Self 1-1 ノ): 1Il- fL vessel (Raw grass 2 eyes Kaya 3 eyes force pressure (Ton-jisei 4 eyes (cL) ZO Kaya 5 eyes Eyes 20 30 40
.. 5't) 60'7
/y zO(+ +3 /, 5 7th ward bud ■ ZO3t) (to 50
60 76 80$ wo Figure (jC) θ ρ, S /
Sword straight cliff (%)

Claims (1)

【特許請求の範囲】 1、金属酸化物超微粒子の大部分の結晶75−1特定の
面方位に方向性を有した状態で集合した超微粒子膜を電
極と接触さ4づ−たことを特徴とするガスl=ンナ。 2、X紐チー)・−トの回折面のピーク強度をA S 
T f〜・1カードの同一面の相対強度で割り比を求め
、この比の値の最大値へと最小値Bとの比(A/B)を
配向性と定義したとき、金属酸化物超微粒子の結晶の配
向性が2以−ヒであることを特徴とする特許請求の範囲
第1項記載のガスセンサ。 3、金属酸化物超微粒子の平均粒径が40〜200人で
ある特許請求の範囲第1項または第2項記載のガス−1
ニンサ。 4、金属酸化物超微粒子が、その粒子の理論密度の27
〜74チで充填集合されていることを特徴とする特許請
求の範囲第1項乃至第3項のいずれかに記載のガスセン
サ。 5、超微粒子膜は、その集合体全体の95重量係以上が
その全屈酸化物から成ることを特徴とする特許請求の範
囲第1項乃至第4項のいずれかに記載のガスセンタ。 6 、8 X 10−”frHr以」−ノガス圧で金属
酸化物を基板上にスパッタリングして、全屈酸化物の超
微粒子を前記基板上に集合させることを特徴とするガス
センサの製造方法。 7、スパッタリング中に基板を水冷よりも低い温度で冷
却することを特徴とする特許請求の範囲第6項記載のガ
スセンサの製造方法。 8゜水冷よりも低い温度が液体窒素温度であることを特
徴とする特許請求の範囲第7項記載のガスセンサの製造
方法。 9、基板上にスパッタリングより金属酸化物超微粒子の
集合体を形成後、そのガスセンサの動作温度よりも10
0〜300C高い温度で熱処理することを特徴とする特
許請求の範囲第6項乃至第8項のいずれかに記載のガス
センサの呉造方法。
[Scope of Claims] 1. The ultrafine particle film, which is made up of most of the crystals 75-1 of ultrafine metal oxide particles and is oriented in a specific plane direction, is brought into contact with an electrode. The gas l=nna. 2. The peak intensity of the diffraction surface of
T f~・1 When dividing the ratio by the relative strength of the same side of the card and defining the ratio (A/B) between the maximum value and the minimum value B of this ratio value as the orientation, the metal oxide super 2. The gas sensor according to claim 1, wherein the crystal orientation of the fine particles is 2 or more. 3. Gas-1 according to claim 1 or 2, wherein the metal oxide ultrafine particles have an average particle size of 40 to 200 particles.
Ninsa. 4. Ultrafine metal oxide particles have a theoretical density of 27
The gas sensor according to any one of claims 1 to 3, characterized in that the gas sensor is packed and assembled in 74 units. 5. The gas center according to any one of claims 1 to 4, characterized in that the ultrafine particle film is composed of a totally bent oxide with a total weight of 95% or more of the entire aggregate. 6. A method for producing a gas sensor, comprising sputtering a metal oxide onto a substrate at a gas pressure of 6,8 x 10-"frHr or more, to collect ultrafine particles of a fully bent oxide on the substrate. 7. The method of manufacturing a gas sensor according to claim 6, wherein the substrate is cooled at a lower temperature than water cooling during sputtering. 8. The method of manufacturing a gas sensor according to claim 7, wherein the temperature lower than 8° water cooling is liquid nitrogen temperature. 9. After forming an aggregate of ultrafine metal oxide particles on the substrate by sputtering, the temperature is 10% higher than the operating temperature of the gas sensor.
The method for manufacturing a gas sensor according to any one of claims 6 to 8, characterized in that the heat treatment is performed at a temperature 0 to 300C higher.
JP19275182A 1982-11-02 1982-11-02 Gas sensor and preparation thereof Pending JPS5983046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19275182A JPS5983046A (en) 1982-11-02 1982-11-02 Gas sensor and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19275182A JPS5983046A (en) 1982-11-02 1982-11-02 Gas sensor and preparation thereof

Publications (1)

Publication Number Publication Date
JPS5983046A true JPS5983046A (en) 1984-05-14

Family

ID=16296442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19275182A Pending JPS5983046A (en) 1982-11-02 1982-11-02 Gas sensor and preparation thereof

Country Status (1)

Country Link
JP (1) JPS5983046A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986004989A1 (en) * 1985-02-20 1986-08-28 Osaka Gas Company Limited Gas sensor element of tin oxide film
JPS63200050A (en) * 1987-02-16 1988-08-18 Osaka Gas Co Ltd Gas sensor
JPH02193051A (en) * 1989-01-20 1990-07-30 Stanley Electric Co Ltd Gas sensor using organic semiconductor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986004989A1 (en) * 1985-02-20 1986-08-28 Osaka Gas Company Limited Gas sensor element of tin oxide film
JPS63200050A (en) * 1987-02-16 1988-08-18 Osaka Gas Co Ltd Gas sensor
JPH02193051A (en) * 1989-01-20 1990-07-30 Stanley Electric Co Ltd Gas sensor using organic semiconductor

Similar Documents

Publication Publication Date Title
Chethan et al. Nickel substituted cadmium ferrite as room temperature operable humidity sensor
Baik et al. Preparation of stabilized nanosized tin oxide particles by hydrothermal treatment
Tai et al. Fabrication and humidity sensing properties of nanostructured TiO2–SnO2 thin films
Liangyuan et al. Synthesis of ZnO–SnO2 nanocomposites by microemulsion and sensing properties for NO2
Tlili et al. Influence of the interfacial pH on electrochemical CaCO3 precipitation
Higuchi et al. Microstructure and electrical characteristics of sputtered indium tin oxide films
Pendery et al. Gold nanoparticle self-assembly moderated by a cholesteric liquid crystal
Morcillo et al. On the mechanism of rust exfoliation in marine environments
Jin et al. Dependence of NO2 gas sensitivity of WO3 sputtered films on film density
Chen et al. Sodium alginate assisted hydrothermal method to prepare praseodymium and cerium co-doped ZnSn (OH) 6 hollow microspheres and synergistically enhanced ethanol sensing performance
US20090013824A1 (en) Binary alloy single-crystalline metal nanostructures and fabrication method thereof
Yang et al. Structural, optical and electrical properties of CeO2 thin films simultaneously prepared by anodic and cathodic electrodeposition
Wang et al. Sensing performance for ethylene glycol of hydrothermally self-assembled 3D WO3
JPS5983046A (en) Gas sensor and preparation thereof
Simonenko et al. Preparation of ZnS Nanopowders and Their Use in the Additive Production of Thick-Film Structures
Şahin et al. A novel amperometric sweat sensor approach through characterization of Hausmannite (Mn3O4) thin films
Wolf et al. Anodic oxide films at nickel electrodes in alkaline solutions—II. pH dependence and rate determining step
Maghiani et al. Application of NiFe2O4 nanoparticles towards the detection of ovarian cancer marker
Yuan et al. ppb-level 2-butanone gas sensor based on CTAB-assisted synthesis of small-size ZnSnO nano cube
Joshi et al. Morphological transformation in the supramolecular assembly of discotic liquid crystal molecules using silver nanoparticles and its sensing application
Shao et al. Deposition and characterization of Fe0. 55Co0. 45 nanowires
JP4714825B2 (en) Dissolved hydrogen sensor using metal thin film
Yang et al. Fabrication of ITO/SnO2 two-layer thin films and their gas sensing properties
JPS5840140B2 (en) Kanenseigaskenchisoshi
Tadanaga et al. Conductivity Enhancement and Thermal Properties of AgI MO 2 (M= Zr, Si) Composites Using Sol-Gel Derived Aerogels