JPS5988623A - Flow rate signal smoothing apparatus for engine - Google Patents

Flow rate signal smoothing apparatus for engine

Info

Publication number
JPS5988623A
JPS5988623A JP57197812A JP19781282A JPS5988623A JP S5988623 A JPS5988623 A JP S5988623A JP 57197812 A JP57197812 A JP 57197812A JP 19781282 A JP19781282 A JP 19781282A JP S5988623 A JPS5988623 A JP S5988623A
Authority
JP
Japan
Prior art keywords
engine
smoothing
flow rate
air flow
full operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57197812A
Other languages
Japanese (ja)
Inventor
Hatsuo Nagaishi
初雄 永石
Kimitake Sone
曽根 公毅
Takeshi Kitahara
剛 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP57197812A priority Critical patent/JPS5988623A/en
Publication of JPS5988623A publication Critical patent/JPS5988623A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/72Devices for measuring pulsing fluid flows

Abstract

PURPOSE:To stabilize the control at a high accuracy based on a signal free from the effect of intake pulsation without impairing response by switching the smoothing of an intake air flow rate signal or a control signal based thereon over to the level appropriate for the full operation of the engine delayed by a specified time detecting the vicinity of the full operation of the engine. CONSTITUTION:When a full operation detector 2 detects the vicinity of the full operation of the engine based on an intake air flow rate signal provided from an air flow rate sensor, the level of smoothing with a smoothing switch gear 1 is changed over through a switching delay adjustor 3 to performing a smoothing adapted to the intake pulsation in the vicinity of the full operation of the engine. After the intake air flow rate Q is smoothed to a certain extent S1, a basic injection pulse width Tp is calculated by Q/NXK (where, N is engine revolutions and K constant) S2 and stored into a memory S3. Then, it is determined whether the Tp determined previously, namely, the Tp 10msec before is above 5msec or not S4 and when it is below 5msec, the new Tp is read out of the memory S5. A fuel injection level is computed with Tp= new Tp as basic injection level subsequently subject to due correction thereof.

Description

【発明の詳細な説明】 本発明はエンジンの吸入空気流量信号又は吸入空気流量
に基づく制御信号を平滑化する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for smoothing an engine intake air flow rate signal or a control signal based on the intake air flow rate.

電子制御式燃料噴射装置を備えたエンジンの燃料噴射制
御は、吸気通路を流れる吸入空気流量に応じて燃料噴射
時間を定めるため、空気流量センサを用いて吸入空気流
量を測定する。空気流量センサとしては種々のものがあ
るが、応答速度で分けるとフラッパ式エアフロメータの
ような応答の遅いものと、カルマン渦流量センサやポッ
トワイヤ式流量センサのような応答の速いものとがある
Fuel injection control of an engine equipped with an electronically controlled fuel injection device uses an air flow sensor to measure the intake air flow rate in order to determine the fuel injection time according to the intake air flow rate flowing through the intake passage. There are various types of air flow sensors, but when divided by response speed, there are slow response types such as flapper type air flow meters, and fast response types such as Karman vortex flow rate sensors and pot wire type flow rate sensors. .

このうち前者は応答性(感度)が不良であるため、吸気
脈動による影響は受けにくいものの加減速時の噴射制御
過渡特性に劣る。一方後者は応答性に優れ、噴射制御過
渡特性は良好であるが、吸気脈動を高感度に検出してし
まうため、その検出信号を平滑化処理して燃料噴射制御
に用いている。
Among these, the former has poor responsiveness (sensitivity) and is therefore less susceptible to the influence of intake pulsation, but is inferior in injection control transient characteristics during acceleration and deceleration. On the other hand, the latter has excellent responsiveness and good injection control transient characteristics, but because it detects intake pulsation with high sensitivity, the detection signal is smoothed and used for fuel injection control.

しかしながら、前記従来の信号平滑化処理装置では吸気
脈動を大きく発生するエンジン全開近傍(全負荷又はこ
れに近い運転時)においても吸気脈動の小さい部分負荷
運転時と同程度の平滑化処理しか行わない構成となって
いるため、エンジン全開近傍においては燃料噴射量の1
回毎のばらつきが大きくなり、運転性や排気性能に悪影
響を及はすごとがある。
However, the conventional signal smoothing processing device described above only performs the same level of smoothing processing even when the engine is operating at full throttle (at or near full load), where intake pulsation is large, as during partial load operation where intake pulsation is small. Because of this, when the engine is near full throttle, the fuel injection amount is reduced to 1
The variation from run to run becomes large, which can adversely affect driveability and exhaust performance.

このためエンジン全開近傍で平滑化を進めるべく切換え
を行うために絞り弁の開度信号を用い1、絞り弁の所定
開度以上で平滑化を進めるようにしたものもある(特開
昭56−32047号)。しかしながら、このものは第
5図に示すように絞り弁の等開度曲線が低速域から高速
域になるにつれてエンジン全開状態から離間するため、
低速域では全開近傍の出力変動が大きい領域と重なる領
域が大きくなって平滑化を充分行えず、一方、高速域で
は平滑化が進められる領域が拡がりすぎて応答性に劣る
領域が大きく残されてしまい、前記難点を充分に解決で
きるものではなかった。
For this reason, some devices use the opening signal of the throttle valve to switch to proceed with smoothing when the engine is close to full throttle. No. 32047). However, as shown in Fig. 5, in this case, the constant opening curve of the throttle valve moves away from the engine fully open state as the speed range changes from the low speed range to the high speed range.
In the low-speed range, the area that overlaps with the area with large output fluctuations near full throttle becomes large, making it impossible to perform sufficient smoothing.On the other hand, in the high-speed range, the area where smoothing progresses becomes too wide, leaving a large area with poor responsiveness. However, the above-mentioned difficulties could not be sufficiently solved.

本発明はこのよ・うな従来の問題点に漸みなされたもの
で、エンジン全開近傍を例えば1回転当りの吸入空気量
に基づいて良好に検出する手段を設け、該全開近傍では
平滑化の程度を高めるよ・うにすると共に、全開近傍突
入時には所定時間遅らせて平滑化の程度を高めるように
して、過渡応答性が良好でしかも吸気脈動に影響されず
に吸入空気流量又はこれに基づく制御信号を平滑化して
該Wm化信号に基づくエンジンの制御精度を高めるよう
にし、たエンジンの流量信号平滑化装置を提供すること
を目的とする。
The present invention has been made in view of these conventional problems, and includes a means for accurately detecting the vicinity of full engine opening based on the amount of intake air per rotation, for example, and detecting the degree of smoothing in the vicinity of full opening. In addition to increasing the degree of smoothing by delaying it for a predetermined period of time when entering near full throttle, it is possible to improve the transient response and not be affected by intake pulsation while controlling the intake air flow rate or the control signal based on this. It is an object of the present invention to provide an engine flow rate signal smoothing device that smoothes and improves the control accuracy of the engine based on the Wm signal.

以下誰何図面を参照して本発明の一実施例を説明する。An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例をブロック線図で示したもの
で、図示しないエンジンの吸気系に設りられた空気流量
センサから与えられた吸入空気流量信号に基づいて全開
検出装置2がエンジン全開近傍を検出し7たとき切換え
遅れ調節装置3を介して平滑化切換え装置1の平滑化程
度を切換え、エンジン全開近傍時の吸気脈動に適合した
平滑化を行う。エンジンが全開近傍でなくなったときは
直ちに部分負荷運転時に合わせて平滑化の程度を下げる
FIG. 1 is a block diagram showing an embodiment of the present invention, in which a full-open detection device 2 is activated based on an intake air flow rate signal given from an air flow rate sensor installed in the intake system of an engine (not shown). When the engine is detected to be in the vicinity of full throttle, the degree of smoothing of the smoothing switching device 1 is switched via the switching delay adjustment device 3 to perform smoothing appropriate to the intake pulsation when the engine is in the vicinity of full throttle. When the engine is no longer near full throttle, the degree of smoothing is immediately lowered to match partial load operation.

第2図は第1図の実施例の詳細な動作を示すフローチャ
ー1・であり、本実施例では空気流量センサからの吸入
空気流量Q信号と、回転速度センづ・からの回転速度N
信号に基づいて燃料の基本噴射パルス幅1゛pを求め、
このパルス幅の値を平滑化するようにしでいる。
FIG. 2 is a flowchart 1 showing the detailed operation of the embodiment shown in FIG.
Determine the basic fuel injection pulse width 1゛p based on the signal,
The value of this pulse width is smoothed.

このフローチャー1・に示ず演算は10ミリ秒毎に行わ
れるもので、まず吸入空気流量Qをある程度平滑化した
上で(ステップS + ) 、Q/NxK (ただしN
はエンジン回転数、Kは定数)により基本噴射パルス幅
Tpが計算さ屁(ステ・ノブS2)、メモリにストアさ
れる(ステップS3)。次いで、前回求められたTpつ
まり10ミリ秒前のT、  (以下口”r pという)
が5ミリ秒以上か否かを判別しくステップS4)、5ミ
リ秒以下であればメモリから新’r pを続出しくステ
・ノブS++)、Tp−新・rpを基本噴射量として以
降これに補正を施した;〃料噴射量が演算される。一方
、旧Tpが5ミリ秒以」二であれば新”r’ pをメモ
リから読出しくステップS6)、新1” pについても
それが5ミリ秒以上か否かを判別しくステップS7)、
5ミリ秒以下の場合には前述の如<Tp=新Tpとして
以降の演算に用いる(ステップ39)。そして新Tpも
5ミリ秒以上のときにはじめζ1゛pの平滑化がT p
−新”T”pxl/84−11」TpX7/8で算出さ
れる(ステップSo)。
This calculation, which is not shown in Flowchart 1, is performed every 10 milliseconds. First, the intake air flow rate Q is smoothed to some extent (step S +), and then Q/NxK (however, N
The basic injection pulse width Tp is calculated (steer knob S2) and stored in the memory (step S3). Next, the previously determined Tp, that is, the T 10 milliseconds ago, (hereinafter referred to as "r p")
Step S4) determines whether or not is longer than 5 milliseconds, and if it is shorter than 5 milliseconds, new 'rp is continuously outputted from the memory. Correction has been made; the amount of fuel injection is calculated. On the other hand, if the old Tp is longer than 5 milliseconds, the new r'p is read out from the memory (step S6), and it is determined whether the new Tp is longer than 5 milliseconds (step S7).
If it is less than 5 milliseconds, it is used in subsequent calculations as <Tp=new Tp as described above (step 39). And the new Tp also starts smoothing of ζ1゛p when it is longer than 5 milliseconds.
- New "T"pxl/84-11" TpX7/8 is calculated (step So).

これにより新Tpの変動が大きくてもTpとしては変動
が小さくなる。このように新旧2つのTpが両者とも5
ミリ秒以上の大きい値のときはじめて平滑化がなされる
。つまり5ミリ秒以上の全開運転近傍へ突入したとき最
低10ミリ秒以上の平滑化の切換え遅れをもつ。逆に全
開近傍から脱出する場合は前記演算を行うと直ちにTp
の平滑化処理を停止する。
As a result, even if the new Tp has a large variation, the variation in Tp becomes small. In this way, both old and new Tp are 5
Smoothing is performed only when the value is large, such as milliseconds or more. In other words, when entering near full-throttle operation for 5 milliseconds or more, there is a smoothing switching delay of at least 10 milliseconds or more. Conversely, when escaping from near full-open, Tp
Stop the smoothing process.

したがって通常(部分負荷運転時)は吸入空気流量Qの
平滑化のみを行い全開近傍ではそれに加えて基本噴射パ
ルス幅Tpによる平滑化をも行う。
Therefore, normally (during partial load operation), only the intake air flow rate Q is smoothed, and in the vicinity of full opening, smoothing is also performed using the basic injection pulse width Tp.

第3図は上述の切換えによる平滑化処理を受りたTpの
パルス幅変動率とエンジン吸入負圧との関係を示したも
のである。実線は本発明を実施することにより得られた
もの、破線は本発明によらないものであり、破線図示の
如くエンジン全開に伴い急激に増すはずのパルス幅変動
率が本発明によれば僅かな増加であり、しかもパルス幅
変動率の最大領域はエンジン全開時そのものではなく近
傍となっており、平滑化が速やかに行われることが明ら
かである。
FIG. 3 shows the relationship between the pulse width fluctuation rate of Tp that has undergone the smoothing process by the above-mentioned switching and the engine intake negative pressure. The solid line is the result obtained by implementing the present invention, and the broken line is the result not obtained by the present invention.As shown by the broken line, the pulse width fluctuation rate, which should increase rapidly as the engine is fully opened, is slightly reduced according to the present invention. Moreover, the maximum region of the pulse width fluctuation rate is not at the time when the engine is fully opened, but near it, and it is clear that smoothing is performed quickly.

第4図は加減速時における燃料噴射パルス幅Tpの変化
の様子を示したもので、パルス幅変化を示す3つの階段
状波形中実線によるものが本発明、破線はエンジン全開
近傍時用の平滑化を行わない場合、一点鎖線は本発明に
よる切換え遅れを行わない場合の各波形である。すなわ
ち切換え遅れを行わないと平滑化により応答性が劣化す
るため加速操作に追従できず(1点鎖線)またエンジン
全開近傍時の平滑化を行わないと脈動を伴・うものとな
る(破線)。この点、本発明では加速時の応答性に優れ
しかも加速後のエンジン全開近傍での吸気脈動の影響も
回避できるのである。
Figure 4 shows how the fuel injection pulse width Tp changes during acceleration and deceleration.The solid lines of the three step-like waveforms showing pulse width changes are the ones according to the present invention, and the broken lines are smooth lines for when the engine is near full throttle. When switching is not performed, the dashed-dotted lines are each waveform when the switching delay according to the present invention is not performed. In other words, if the switching delay is not performed, the response will deteriorate due to smoothing, making it impossible to follow acceleration operations (dotted chain line), and if smoothing is not performed when the engine is near full throttle, pulsation will occur (dashed line). . In this regard, the present invention has excellent responsiveness during acceleration, and can also avoid the influence of intake pulsation near full engine opening after acceleration.

又、第5図に示すように等噴射パルス幅(基本噴射パル
スTp)とエンジン全開については回転速度の略々全域
に亘り良好に対応して変化し、その差は小さいから等パ
ルス幅から全開への移行は円滑に推移する。従って基本
噴射パルス幅Tpを設定値と比較することにより、工°
ンジンの全間近(・Yを良好に検出することができ、該
検出に基づく平滑化の切換制御により全運転領域におい
て、吸入空気流量信号及びこれに基づく噴射量等の制御
を高精度に行えることが明らかである。
Furthermore, as shown in Fig. 5, the constant injection pulse width (basic injection pulse Tp) and the engine full throttle change in good correspondence over almost the entire rotational speed range, and the difference between them is small, so the constant injection pulse width (basic injection pulse Tp) and the engine full throttle change in a good manner. The transition will be smooth. Therefore, by comparing the basic injection pulse width Tp with the set value, the
It is possible to detect the full range of the engine (・Y) well, and by controlling smoothing switching based on this detection, the intake air flow rate signal and the injection amount based on this can be controlled with high precision in the entire operating range. is clear.

尚、」二記実施例では平滑化の対象を基本噴射パルス幅
Tpとしたが、前段階の吸入空気流iQを対象としても
勿論よく、また、上記平滑化切換えを10ミリ秒以上、
20ミリ秒以上遅らせたが、これはそれ以上にしてもよ
い。ただし1秒以上は噴射パルス幅変動が大となるから
避けた方がよい。
In the second embodiment, the basic injection pulse width Tp was the target of smoothing, but it is of course possible to target the intake air flow iQ at the previous stage.
Although the delay was set at 20 milliseconds or more, the delay may be longer than that. However, it is better to avoid a time longer than 1 second because the fluctuation in the injection pulse width becomes large.

又、上記実施例は基本噴射量によりエンジンの全開近傍
を検出し、これにより噴射量信号を直接又は吸入空気流
量信号の平滑化を介して平滑化するものを示したが、本
発明はQ/N即ぢ1回転当りの吸入空気量によってエン
ジン全開近傍を検出し、これにより吸入空気流量信号又
はこれに基づく制御信号を平滑化するものであればよく
例えば吸入空気流量信号に基づく点火時期制御信号の平
滑化にも適用できる。この場合も点火時期のばらつきを
抑制できる。
Furthermore, in the above embodiment, the basic injection amount is used to detect when the engine is near full throttle, and the injection amount signal is thereby smoothed directly or through smoothing of the intake air flow rate signal. Any device that detects the vicinity of full engine opening based on the amount of intake air per revolution and smoothes the intake air flow rate signal or the control signal based on this is sufficient, for example, the ignition timing control signal based on the intake air flow rate signal. It can also be applied to smoothing. In this case as well, variations in ignition timing can be suppressed.

以上説明したように本発明によれば、エンジン全開近傍
を例えばQ/Hの値によって検出し該検出時所定の時間
遅れをもって吸入空気流量信号又はこれに基づく制御信
号の平滑化をエンジン全開時に適したものに切換えるよ
うにしたため、エンジンの応答性を損なうことなく、し
かも吸気脈動の影響を受けずに前記信号に基づく制御を
高精度かつ安定したものとすることができる。
As explained above, according to the present invention, the vicinity of the fully open engine is detected by, for example, the value of Q/H, and upon detection, smoothing of the intake air flow rate signal or the control signal based on the signal is performed with a predetermined time delay when the engine is fully open. Therefore, the control based on the signal can be made highly accurate and stable without impairing the responsiveness of the engine and without being affected by intake pulsation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック線図、第2図
は本発明の第1図の実施例の詳細な動作を示すフローヂ
ャ−1・、第3図は本発明による燃料噴射パルス幅の変
動特性を従来のそれと対比して示した特性図、第4図は
本発明による燃料噴射パルス幅の過渡特性を示す図、第
5図は本発明におりる等パルス幅方式を従来の絞り弁開
度切換方式と対比して示す特性図である。 ■・・・平滑化切換装置  2・・・全開検出装置3・
・・切換え遅れ調節装置 特許出願人  日産自動車株式会社 代理人  弁理士 笹 島 富二雄 第2図 第4図 ら 工
FIG. 1 is a block diagram showing one embodiment of the present invention, FIG. 2 is a flowchart showing the detailed operation of the embodiment of FIG. 1 of the present invention, and FIG. 3 is a fuel injection pulse according to the present invention. Figure 4 is a diagram showing the transient characteristics of the fuel injection pulse width according to the present invention, and Figure 5 is a diagram showing the width fluctuation characteristics compared with the conventional one. It is a characteristic diagram shown in comparison with the throttle valve opening degree switching method. ■... Smoothing switching device 2... Fully open detection device 3.
...Switching delay adjustment device patent applicant Fujio Sasashima Patent attorney, Nissan Motor Co., Ltd. Figure 2 Figure 4

Claims (1)

【特許請求の範囲】[Claims] エンジンの全負荷近傍の運転状態を検出するエンジン全
開検出手段と、該エンジン全開検出手段の検出信号を所
定時間遅らせて出力するディレィ手段と、前記吸入空気
流量Q又はこれに基づく制御信号を前記ディレィ手段か
らの信号入力時はエンジン全負荷近傍運転に対応した程
度で平滑化し、非入力時はエンジンの部分負荷運転時に
対応した程度での平滑化を行う平滑化切換装置とを設け
て構成したことを特徴とするエンジンの流量信号平滑化
装置。
engine full-open detection means for detecting an operating state near full load of the engine; delay means for delaying and outputting the detection signal of the engine full-open detection means by a predetermined time; When a signal is input from the means, it is smoothed to an extent corresponding to engine operation at near full load, and when no signal is input, it is smoothed to an extent corresponding to engine partial load operation. An engine flow signal smoothing device characterized by:
JP57197812A 1982-11-12 1982-11-12 Flow rate signal smoothing apparatus for engine Pending JPS5988623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57197812A JPS5988623A (en) 1982-11-12 1982-11-12 Flow rate signal smoothing apparatus for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57197812A JPS5988623A (en) 1982-11-12 1982-11-12 Flow rate signal smoothing apparatus for engine

Publications (1)

Publication Number Publication Date
JPS5988623A true JPS5988623A (en) 1984-05-22

Family

ID=16380750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57197812A Pending JPS5988623A (en) 1982-11-12 1982-11-12 Flow rate signal smoothing apparatus for engine

Country Status (1)

Country Link
JP (1) JPS5988623A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480743A (en) * 1987-09-22 1989-03-27 Japan Electronic Control Syst Fuel supply control device for internal combustion engine
JPH01147131A (en) * 1987-12-04 1989-06-08 Japan Electron Control Syst Co Ltd Electronic control fuel injection system for internal combustion engine
US6341594B1 (en) * 1999-05-31 2002-01-29 Daimlerchrysler Ag Method for setting a specifiable target speed in a vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480743A (en) * 1987-09-22 1989-03-27 Japan Electronic Control Syst Fuel supply control device for internal combustion engine
JPH01147131A (en) * 1987-12-04 1989-06-08 Japan Electron Control Syst Co Ltd Electronic control fuel injection system for internal combustion engine
US6341594B1 (en) * 1999-05-31 2002-01-29 Daimlerchrysler Ag Method for setting a specifiable target speed in a vehicle

Similar Documents

Publication Publication Date Title
US4636957A (en) Method for controlling operating state of an internal combustion engine with an overshoot preventing function
JPS62258137A (en) Fuel control device for electronic fuel injection engine
JPS59103930A (en) Control method of internal-combustion engine
JP4248145B2 (en) How to control ignition
JPS5988623A (en) Flow rate signal smoothing apparatus for engine
JPH04159438A (en) Misfire detection method for internal combustion engine
JPH04166637A (en) Air-fuel ratio controller of engine
JPS63314371A (en) Ignition timing controller for internal combustion engine
JPH08284734A (en) Engine speed measuring device of spark ignition type internal combustion engine
JPH03117646A (en) Number of idling revolution control device for engine
KR100369162B1 (en) Method for throttle valve open value detect controlled of engine
JPS6166825A (en) Acceleration judging device of internal-combustion engine
JPH04194347A (en) Controller of engine
JPS60198341A (en) Car engine output controller
JP2688635B2 (en) Fuel injection control device
JP2582617B2 (en) Internal combustion engine deceleration control device
JPS60261947A (en) Accelerative correction of fuel injector
JPS63124867A (en) Control device for engine
JP2612386B2 (en) Supercharging pressure detection device for supercharged internal combustion engine
JPH0337354A (en) Fuel injection timing controller of engine
KR970044779A (en) Idle feedback control device using engine speed and its method
JPH0522058B2 (en)
JPS6223546A (en) Electronically controlled fuel injection device for internal-combustion engine
KR20010098271A (en) Method for maintaining transient air amount of automobiles
JPS62286849A (en) Engine controller for vehicle