JPH0522058B2 - - Google Patents

Info

Publication number
JPH0522058B2
JPH0522058B2 JP58069801A JP6980183A JPH0522058B2 JP H0522058 B2 JPH0522058 B2 JP H0522058B2 JP 58069801 A JP58069801 A JP 58069801A JP 6980183 A JP6980183 A JP 6980183A JP H0522058 B2 JPH0522058 B2 JP H0522058B2
Authority
JP
Japan
Prior art keywords
fuel
air
fuel ratio
acceleration
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58069801A
Other languages
Japanese (ja)
Other versions
JPS59194056A (en
Inventor
Masahiko Matsura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP6980183A priority Critical patent/JPS59194056A/en
Publication of JPS59194056A publication Critical patent/JPS59194056A/en
Publication of JPH0522058B2 publication Critical patent/JPH0522058B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1486Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
    • F02D41/1488Inhibiting the regulation
    • F02D41/1491Replacing of the control value by a mean value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はエンジンの燃料制御装置に関し、とく
に、加速時の燃料制御を適正に行うための装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel control device for an engine, and particularly to a device for appropriately controlling fuel during acceleration.

〔従来の技術〕 従来、特公昭47−38665号公報にみられるよう
に、吸気管負圧およびエンジン回転数等に応じて
燃料噴射量を制御する基本的な燃料制御に加え、
加速時に燃料を増量するようにした制御装置が知
られている。この装置は加速性能の向上を図るも
のであつて、加速時には吸入空気量の急激な増加
によつて燃料不足が生じるという傾向が本来的に
あることから、この場合に燃料を補うようにした
ものである。
[Prior art] Conventionally, as seen in Japanese Patent Publication No. 47-38665, in addition to basic fuel control that controls the fuel injection amount according to intake pipe negative pressure, engine speed, etc.
A control device that increases the amount of fuel during acceleration is known. This device aims to improve acceleration performance, and since there is an inherent tendency for a fuel shortage to occur due to a sudden increase in the amount of intake air during acceleration, it is designed to supplement fuel in this case. It is.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、この従来の装置では、加速時の燃料増
量値を予め実験的に求めているにすぎなかつたた
め、エンジン毎の性能のばらつきや経年変化があ
つた場合に、上記増量値が必ずしも適正な値とな
らず、増量値が大きすぎて燃費が悪化したり、増
量値が小さすぎて充分な加速が得られなかつたり
することがあつた。
However, with this conventional device, the fuel increase value during acceleration is simply determined experimentally in advance, so if there are variations in performance between engines or changes over time, the above fuel increase value may not necessarily be the appropriate value. In some cases, the increase value was too large, resulting in poor fuel efficiency, or the increase value was too small, resulting in insufficient acceleration.

本発明の目的は、このような従来装置の欠点を
解消し、エンジン毎の性能のばらつきや経年変化
があつても加速時の燃料増量値を適正に維持する
ことのできるようにこの燃料増量値を学習により
修正し、特に、種々の運転領域においても適正に
燃料増量値の修正を行なうことができるエンジン
の燃料制御装置を提供することにある。
The purpose of the present invention is to eliminate the drawbacks of such conventional devices, and to improve the fuel increase value during acceleration so that it can be maintained at an appropriate level even when there are variations in performance between engines and changes over time. It is an object of the present invention to provide a fuel control device for an engine that can correct the fuel increase value through learning and, in particular, can appropriately correct the fuel increase value even in various operating ranges.

〔課題を解決するための手段〕[Means to solve the problem]

第1図の全体構成図に示すように、エンジン1
の吸気通路2に装備された燃料噴射弁5等(その
他の装置としては気化器がある。)を制御する制
御部21には、加速検出手段23からの検出信号
に応じて燃料を増量する燃料増量手段22が含ま
れている。この増量手段22による加速時の燃料
増量値を適正化するため、燃料増量値を記憶する
第1記憶手段24と、加速時のみの空燃比のみだ
れを検出する第1空燃比変動検出手段25と、定
常時のみの空燃比のみだれを検出する第2空燃比
変動検出手段26と、上記第2空燃比変動検出手
段26の出力を受け検出された定常時のみの空燃
比のみだれを予め設定した運転領域毎に記憶する
第2記憶手段27と、上記第1空燃比変動検出手
段25および上記第2記憶手段27の出力を受け
加速時のみの空燃比のみだれと加速が行なわれた
運転領域に対応して記憶された定常時のみの空燃
比のみだれとを比較する比較手段28と、この比
較手段28の出力を受け加速時のみの空燃比のみ
だれが定常時のみの空燃比のみだれに対して大き
い状態が検出された時加速時の空燃比のみだれを
小さくするように上記第1記憶手段24に記憶さ
れる燃料増量値を書き換え修正する書き換え手段
29とが設けられている。上記第1および第2空
燃比変動検出手段25,26は、加速時および定
常時においてそれぞれ、O2センサからの検出信
号に基づいて求めた燃料リーン時間を調べ、ある
いは、エンジン振動を検出する等により、空燃比
のみだれを検出するようにしている。
As shown in the overall configuration diagram of Fig. 1, the engine 1
A control unit 21 that controls the fuel injection valve 5 (another device includes a carburetor) installed in the intake passage 2 of the fuel injection valve 21 includes a fuel injection valve that increases the amount of fuel in accordance with a detection signal from an acceleration detection unit 23. A volume increasing means 22 is included. In order to optimize the fuel increase value during acceleration by the increase means 22, a first storage means 24 for storing the fuel increase value, and a first air-fuel ratio fluctuation detection means 25 for detecting a drop in the air-fuel ratio only during acceleration. , a second air-fuel ratio fluctuation detection means 26 for detecting air-fuel ratio droop only during steady state; and a preset air-fuel ratio droop detected by receiving the output of the second air-fuel ratio fluctuation detecting means 26. A second storage means 27 stores data for each operating region, and receives the outputs of the first air-fuel ratio fluctuation detection means 25 and the second storage means 27, and stores information on the air-fuel ratio only during acceleration and in the operating region where acceleration was performed. Comparing means 28 for comparing the correspondingly stored air-fuel ratio sloping only during steady state, and receiving the output of this comparing means 28, the air-fuel ratio sagging only during acceleration is compared with the air-fuel ratio sloping only during steady state. A rewriting means 29 is provided for rewriting and correcting the fuel increase value stored in the first storage means 24 so as to reduce the droop in the air-fuel ratio during acceleration when a large condition is detected. The first and second air-fuel ratio fluctuation detection means 25 and 26 check the fuel lean time determined based on the detection signal from the O 2 sensor during acceleration and steady state, or detect engine vibration, etc. Accordingly, a drop in the air-fuel ratio is detected.

〔作用〕[Effect]

上記構成によると、加速時に、加速時のみの空
燃比のみだれが、そのときの運転領域と同一運転
領域での定常時の空燃比のみだれと比較されるこ
とにより、正しくその運転領域での定常時と比べ
た加速時の空燃比のみだれの大きさが調べられ、
これに基づいて燃料増量値の修正が精度よく行な
われる。
According to the above configuration, when accelerating, the air-fuel ratio drop only during acceleration is compared with the air-fuel ratio drop during steady state in the same operating region as the operating region at that time, thereby correctly determining the steady state in that operating region. The size of the drop in the air-fuel ratio during acceleration compared to normal conditions was investigated.
Based on this, the fuel increase value is corrected with high accuracy.

〔実施例〕〔Example〕

第2図において、1はエンジン、2は吸気通
路、3は排気通路である。吸気通路2には、スロ
ツトル弁4が設けられるとともに、その下流に燃
料噴射弁5が装備されている。この燃料噴射弁5
はマイクロコンピユータを用いたコントロールユ
ニツト20によつて制御されるようになつてい
る。
In FIG. 2, 1 is an engine, 2 is an intake passage, and 3 is an exhaust passage. The intake passage 2 is provided with a throttle valve 4 and a fuel injection valve 5 downstream thereof. This fuel injection valve 5
is controlled by a control unit 20 using a microcomputer.

11は吸入空気量を検出するエアフロメータ、
12は吸気マニホールド内の圧力を検出する圧力
センサ、13はエンジン回転数センサ、14はス
ロツトル開度センサ、15は排気ガス中のO2
によつて混合気のリツチ、リーン状態を検出する
O2センサである。これらによる検出信号は上記
コントロールユニツト20に入力されている。
11 is an air flow meter that detects the amount of intake air;
12 is a pressure sensor that detects the pressure in the intake manifold, 13 is an engine speed sensor, 14 is a throttle opening sensor, and 15 is a sensor that detects whether the mixture is rich or lean based on the amount of O 2 in the exhaust gas.
It is an O2 sensor. These detection signals are input to the control unit 20.

コントロールユニツト20は、図示しないマイ
クロプロセツサ、メモリ、インターフエース等か
らなり、そのメモリにエンジン回転数と吸気マニ
ホールド圧力とに対応づけた燃料噴射量のROM
マツプを有し、このROMマツプから運転状態に
応じた燃料基準制御値が求められるようにしてい
る。そして、定常運転時の燃料制御は、O2セン
サ15からの信号に応じたフイードバツク制御に
より上記燃料基準制御値を補正して、リツチ状態
のときは燃料を減量し、リーン状態のときは燃料
を増量するようにしており、従つて、リツチ状態
とリーン状態とが適宜間隔で繰返されるようにな
ついる。さらに、上記メモリには、加速の程度を
示すスロツトル開度変化率と運転状態を示す燃料
噴射パルス幅とに対応づけて加速時の燃料増量値
を決める補正系数を記憶するようにした補正系数
学習値用マツプ(第1記憶手段に相当)と、エン
ジン回転数と負荷(吸気マニホールド圧力)とに
対応づけて定常運転時のみのリーン時間(リーン
状態の持続時間)を予め設定した運転領域毎に記
憶するリーン時間用マツプ(第2記憶手段に相
当)とが含まれている。これらのマツプの記憶値
は書き換えることができるようになつている。ま
た、加速運転状態の検出は、スロツトル開度セン
サ14からの検出信号に基づいてその変化を調べ
ることにより行われる。
The control unit 20 includes a microprocessor (not shown), a memory, an interface, etc., and stores a ROM of fuel injection amount corresponding to the engine speed and intake manifold pressure in the memory.
A fuel reference control value corresponding to the operating condition can be determined from this ROM map. Fuel control during steady operation is performed by correcting the above fuel reference control value through feedback control according to the signal from the O 2 sensor 15, reducing the amount of fuel when the engine is in a rich state, and increasing the amount of fuel when the engine is in a lean state. Therefore, the rich state and lean state are repeated at appropriate intervals. Furthermore, the memory stores a correction system that determines the fuel increase value during acceleration in association with the throttle opening change rate that indicates the degree of acceleration and the fuel injection pulse width that indicates the operating state. Lean time (duration of lean state) only during steady operation is set for each operating region in advance, in association with the value map (corresponding to the first storage means), engine speed and load (intake manifold pressure). A lean time map (corresponding to second storage means) to be stored is included. The stored values of these maps can be rewritten. Further, the acceleration driving state is detected by examining a change in the detection signal from the throttle opening sensor 14.

そして、定常時のみの空燃比のみだれとして定
常運転中にリーン時間が検出され、この定常運転
中に検出されるリーン時間は運転領域毎に上記リ
ーン時間用マツプに記憶される。また、上記加速
検出に基づいて、加速時に、リーン状態であれば
マツプから読み出される補正係数によつて燃料噴
射量を増量し、一方、この時のリーン時間をその
加速が行なわれた運転領域に対応する定常運転時
のリーン時間(リーン時間用マツプから読み出さ
れた値)と比較し、その差に応じて上記補正係数
を書き換えるようにしている。このようにして、
前述の全体構成図に示す各手段が実質的にコント
ロールユニツト20に含まれるようにしている。
Lean time is detected during steady operation as a drop in the air-fuel ratio only during steady state, and the lean time detected during steady operation is stored in the lean time map for each operating region. Also, based on the above acceleration detection, when accelerating, if the lean condition is present, the fuel injection amount is increased according to the correction coefficient read from the map, and on the other hand, the lean time at this time is adjusted to the operating region where the acceleration was performed. It is compared with the corresponding lean time during steady operation (value read from the lean time map), and the correction coefficient is rewritten according to the difference. In this way,
Each means shown in the above-mentioned overall configuration diagram is substantially included in the control unit 20.

この装置の制御を実行するフローチヤートを第
3図乃至第6図に示す。
Flowcharts for controlling this device are shown in FIGS. 3 to 6.

第3図に示すメインルーチンにおいて、ステツ
プ31でのイニシヤライズの後、ステツプ32で前記
圧力センサ12からのマニホールド圧力検出信号
がA/D変換される。ついで、加速判別のための
サブルーチン()および加速時用補正係数の書
き変え修正のためのサブルーチン()を経た
後、ステツプ32に戻つてフローが繰返される。
In the main routine shown in FIG. 3, after initialization in step 31, the manifold pressure detection signal from the pressure sensor 12 is A/D converted in step 32. Next, after passing through the subroutine () for determining acceleration and the subroutine () for rewriting and correcting the correction coefficient for acceleration, the process returns to step 32 and the flow is repeated.

加速判別のためのサブルーチン()において
は、第4図に示すように、ステツプ33でスロツト
ル開度センサ14からの信号のA/D変換が行わ
れ、ステツプ34で今回検出時と前回検出時とのス
ロツトル開度差(θ=θn−θo-1)が求められる。
次に、このスロツトル開度差θと予め定められた
基準値θ1とが比較されてθ≧θ1か否かにより加速
運転状態と定常運転状態とが区別され(ステツプ
35)、加速運転状態であれば区別値Aが1とされ、
定常運転状態であれば区別値Aが0とされて、レ
ジスタに記憶される(ステツプ36,37)。
In the subroutine () for acceleration determination, as shown in FIG. 4, in step 33, the signal from the throttle opening sensor 14 is A/D converted, and in step 34, the signals from the current detection and the previous detection are converted. The throttle opening difference (θ=θn−θo -1 ) is determined.
Next, this throttle opening difference θ is compared with a predetermined reference value θ 1 , and depending on whether θ≧θ 1 , an accelerating operating state and a steady operating state are distinguished (step
35), if it is in an accelerated driving state, the discrimination value A is set to 1,
If the operating state is steady, the discrimination value A is set to 0 and stored in the register (steps 36 and 37).

加速時用補正係数の書き変え修正のためのサブ
ルーチン()においては、第5図に示すよう
に、ステツプ38で定常運転(A=0)か否かが判
別される。定常運転が行われている場合、ステツ
プ39で前記O2センサ15からの信号に基づいて
リーン状態からリツチ状態に変わつたか否かが判
別され、リツチ状態に変わつたとき、そのときの
運転状態におけるリーン時間tが検出され、リー
ン時間用マツプ中の当該運転領域に対応する記憶
値が書き変えられる(ステツプ40)。
In the subroutine () for rewriting and correcting the correction coefficient for acceleration, as shown in FIG. 5, it is determined in step 38 whether or not the operation is steady (A=0). When steady operation is being performed, it is determined in step 39 whether the lean state has changed to the rich state based on the signal from the O 2 sensor 15, and when the state has changed to the rich state, the operating state at that time is determined. The lean time t at is detected, and the stored value corresponding to the relevant operating region in the lean time map is rewritten (step 40).

加速運転が行われている場合は、ステツプ41で
リーン状態からリツチ状態に変わつたか否かが判
別され、変わつていなければさらにリーン状態か
否かが判別され(ステツプ42)、リーン状態であ
ればリーン時間計測値KがK+1と増加される
(ステツプ43)。つまり、リーン状態となつてから
リツチ状態に変わるまで、リーン時間計測値Kが
一定時間毎に増加することにより、加速時のリー
ン時間が検出される。そして、リツチ状態に変わ
つたときに、その時点で求められる加速時のみの
空燃比のみだれを示すリーン時間Kと、加速が行
なわれた運転領域に対応して記憶された定常時の
みの空燃比のみだれとしてリーン時間用マツプか
ら求められる定常運転時のリーン時間tとが比較
され、K≧tか否かが判別される(ステツプ44)。
K≧tであれば、このときの条件に対応する補正
係数学習値用マツプ中の補正係数学習値CA
mΔCAだけ加算された値に書き変えられて記憶さ
れる(ステツプ45)。ここで、mは上記両リーン
時間の差(K−t)に応じた値、ΔCAは設定値で
ある。一方、K<tであれば、補正係数学習値
CAがΔCAだけ減算され、この減算された値が1よ
り大きければマツプ中の補正係数学習値がこの値
に書き変えられて記憶され、減算された値が1よ
り小さくなる場合はCAが1と記憶される(ステ
ツプ47〜49)。ステツプ48でCAが1とされるの
は、加速時に燃料が減量されることのないように
するためである。このように書き換えが行われた
後はリーン時間計測値Kが0とされる(ステツプ
50)。
If accelerating operation is being performed, it is determined in step 41 whether the lean state has changed to the rich state, and if there has been no change, it is further determined whether the lean state has been reached (step 42). If so, the measured lean time value K is increased to K+1 (step 43). In other words, the lean time during acceleration is detected by increasing the lean time measurement value K at regular intervals from the lean state until the rich state. When the state changes to a rich state, the lean time K indicating the drooping of the air-fuel ratio only during acceleration determined at that time, and the air-fuel ratio only during steady state stored corresponding to the operating region in which acceleration was performed. The lean time t obtained during steady operation is compared with the lean time t obtained from the lean time map, and it is determined whether K≧t (step 44).
If K≧t, the correction coefficient learning value C A in the correction coefficient learning value map corresponding to this condition is
The value is rewritten and stored by adding mΔC A (step 45). Here, m is a value corresponding to the difference (K-t) between the two lean times, and ΔC A is a set value. On the other hand, if K<t, the correction coefficient learning value
C A is subtracted by ΔC A , and if this subtracted value is larger than 1, the correction coefficient learning value in the map is rewritten to this value and stored, and if the subtracted value is smaller than 1, C A is stored as 1 (steps 47-49). The reason why C A is set to 1 in step 48 is to prevent the fuel from being reduced during acceleration. After rewriting in this way, the lean time measurement value K is set to 0 (step
50).

第6図は割り込み処理ルーチンを示し、このル
ーチンは例えばBTDC60゜でスタートし、先ずス
テツプ51で周期計測によりエンジン回転数が計算
され、ステツプ52でエンジン回転数およびマニホ
ールド圧力から運転状態が検出される。次に、ス
テツプ53で燃料噴射量のROMマツプから運転状
態に応じた燃料基準制御値Tiが計算され、さら
にステツプ54でO2センサ15からの信号に基づ
くフイードバツク補正が行われて定常運転時にお
いて適正な燃料制御値Ti′が求められる。その後、
ステツプ55で加速運転(A=1)か否かが判別さ
れ、加速運転時である場合はさらにリーン状態か
否かが判別され(ステツプ56)、リーン状態であ
れば、補正係数学習値用マツプから求められるス
ロツトル開度変化率等に対応した学習値CAが上
記燃料制御値Ti′に乗算され、増量された燃料噴
射量Tが計算される(ステツプ57)。そして、こ
の場合は増量された燃料噴射量Tをもつて、また
定常運転時である場合および加速時でもリーン状
態でない場合は前記燃料制御値Ti′をもつて、所
定の噴射タイミングに達したとき燃料噴射が行わ
れる(ステツプ58,59)。
FIG. 6 shows an interrupt handling routine. This routine starts at, for example, 60° BTDC, first, in step 51, the engine speed is calculated by periodic measurement, and in step 52, the operating state is detected from the engine speed and manifold pressure. . Next, in step 53, a fuel reference control value Ti according to the operating condition is calculated from the ROM map of the fuel injection amount, and further, in step 54, feedback correction is performed based on the signal from the O 2 sensor 15, and during steady operation, An appropriate fuel control value Ti' is determined. after that,
In step 55, it is determined whether or not acceleration operation (A=1) is being performed, and if it is during acceleration operation, it is further determined whether or not it is in a lean state (step 56), and if it is in a lean state, a correction coefficient learning value map is The fuel control value Ti' is multiplied by the learning value C A corresponding to the rate of change in the throttle opening degree determined from the above, and the increased fuel injection amount T is calculated (step 57). In this case, when the predetermined injection timing is reached, with the increased fuel injection amount T, or with the fuel control value Ti′ when the operation is steady or when the lean state is not present even during acceleration. Fuel injection takes place (steps 58, 59).

以上のフローチヤートに従つて制御が行われる
ことにより、加速時でリーン状態のとき燃料が増
量され、この増量値(補正係数学習値CA)が当
初は不適正であつても、前記のステツプ45,46で
書き換え修正される。この場合、定常運転時のみ
のリーン時間が運転領域毎にリーン時間用マツプ
に記憶され、加速時には、加速時のみのリーン時
間が同一運転領域での定常時のみのリーン時間と
比較されることにより、加速時と定常時との空燃
比のみだれの違いが正しく調べられ、これに基づ
いて上記修正が精度よく行なわれる。この修正後
は、次に同条件の加速が行われるときに修正され
た増量値が与えられる。そして、ある程度この動
作が繰返された後は、マツプに記憶された学習値
CAが高精度に修正され、加速操作に応じて即座
に適正値だけ増量された燃料が供給されることと
なる。
By performing control according to the above flowchart, the amount of fuel is increased when the fuel is in a lean state during acceleration, and even if this increased amount (correction coefficient learning value C A ) is initially inappropriate, the above steps are performed. It will be rewritten and corrected in 45 and 46. In this case, the lean time only during steady operation is stored in the lean time map for each operating region, and when accelerating, the lean time only during acceleration is compared with the lean time only during steady state operation in the same operating region. , the difference in air-fuel ratio deterioration between acceleration and steady state is correctly investigated, and based on this, the above-mentioned correction is performed with high precision. After this correction, the corrected increase value will be given the next time acceleration is performed under the same conditions. After this operation is repeated to a certain extent, the learned value stored in the map
C A is corrected with high precision, and fuel that is increased by the appropriate amount is immediately supplied in response to acceleration operations.

なお、空燃比のみだれに応じて燃料増量値を書
き換え修正する手段としては、上記実施例のほか
にも、例えば加速時の振動とその運転領域に対応
して記憶された定常時の振動とを比較して加速へ
ジテーシヨンを調べ、これに応じて補正係数学習
値CAを書き換え修正するようにしてもよい。ま
た、加速時の燃料の増量は、定時噴射パルスのパ
ルス幅を大きくするようにしてもよいし、臨時噴
射パルスを出力するようにしてもよい。さらに燃
料供給を燃料噴射弁で行うものに限らず気化器で
行うものでもよい。
In addition to the above-mentioned embodiments, as a means for rewriting and correcting the fuel increase value according to the drop in the air-fuel ratio, for example, it is possible to use a method that uses vibrations during acceleration and vibrations during steady state stored corresponding to the operating range. The acceleration transition may be checked by comparison, and the correction coefficient learning value C A may be rewritten and corrected accordingly. Further, the amount of fuel during acceleration may be increased by increasing the pulse width of the regular injection pulse, or by outputting a temporary injection pulse. Furthermore, the fuel supply is not limited to a fuel injection valve, and may be supplied by a carburetor.

〔発明の効果〕 以上のように、本発明は、加速時の燃料増量値
を記憶し、かつ、加速時のみの空燃比のみだれと
定常時のみの空燃比のみだれとの比較に基づいて
燃料増量値を書き換え修正するようにしているた
め、エンジン毎の性能のばらつきや経年変化があ
つても、学習により上記燃料増量値を適正化し、
加速時の出力低下や燃費の悪化を確実に防止する
ことができる。とくに、定常運転中に検出する定
常時のみの空燃比のみだれを運転領域毎に記憶
し、加速時のみの空燃比のみだれと加速が行なわ
れた運転領域に対応して記憶された定常時のみの
空燃比のみだれとの比較に基づいて燃料増量値の
修正をなつているので、種々の運転領域で精度よ
く上記修正をなうことができるものである。
[Effects of the Invention] As described above, the present invention stores the fuel increase value during acceleration, and increases the fuel amount based on the comparison between the air-fuel ratio drop only during acceleration and the air-fuel ratio drop only during steady state. Since the fuel increase value is rewritten and corrected, even if there are variations in performance between engines or changes over time, the fuel increase value can be optimized by learning.
It is possible to reliably prevent a decrease in output during acceleration and a deterioration in fuel efficiency. In particular, the air-fuel ratio slump detected during steady operation is stored for each operating region, and the air-fuel ratio slump only during acceleration is stored corresponding to the operating region in which acceleration occurs. Since the fuel increase value is corrected based on the comparison with the air-fuel ratio, the above correction can be made with high accuracy in various operating ranges.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の全体構成図、第2図は実
施例を示す概略図、第3図乃至第6図はフローチ
ヤートである。 1…エンジン、5…燃料噴射弁、22…燃料増
量手段、23…加速検出手段、24…第1記憶手
段、25…第1空燃比変動検出手段、26…第2
空燃比変動検出手段、27…第2記憶手段、28
…比較手段、29…書き換え手段。
FIG. 1 is an overall configuration diagram of the apparatus of the present invention, FIG. 2 is a schematic diagram showing an embodiment, and FIGS. 3 to 6 are flowcharts. DESCRIPTION OF SYMBOLS 1... Engine, 5... Fuel injection valve, 22... Fuel increase means, 23... Acceleration detection means, 24... First storage means, 25... First air-fuel ratio fluctuation detection means, 26... Second
Air-fuel ratio fluctuation detection means, 27...second storage means, 28
... Comparison means, 29... Rewriting means.

Claims (1)

【特許請求の範囲】[Claims] 1 エンジンの加速時に加速検出手段からの検出
信号を受けて燃料を増量する燃料増量手段を備え
たエンジンの燃料制御装置において、上記燃料増
量手段による燃料増量値を記憶する第1記憶手段
と、加速時のみの空燃比のみだれを検出する第1
空燃比変動検出手段と、定常時のみの空燃比のみ
だれを検出する第2空燃比変動検出手段と、上記
第2空燃比変動検出手段の出力を受け検出された
定常時のみの空燃比のみだれを予め設定した運転
領域毎に記憶する第2記憶手段と、上記第1空燃
比変動検出手段および上記第2記憶手段の出力を
受け加速時のみの空燃比のみだれと加速が行なわ
れた運転領域に対応して記憶された定常時のみの
空燃比のみだれとを比較する比較手段と、この比
較手段の出力を受け加速時のみの空燃比のみだれ
が定常時のみの空燃比のみだれに対して大きい状
態が検出された時加速時の空燃比のみだれを小さ
くするように上記第1記憶手段に記憶される燃料
増量値を書き換え修正する書き換え手段とを備え
たことを特徴とするエンジンの燃料制御装置。
1. A fuel control device for an engine comprising a fuel increasing means for increasing the amount of fuel in response to a detection signal from an acceleration detecting means when the engine accelerates, comprising: a first storage means for storing a fuel increase value by the fuel increasing means; The first to detect the air-fuel ratio drop only when
an air-fuel ratio fluctuation detection means, a second air-fuel ratio fluctuation detection means for detecting air-fuel ratio droop only during steady state, and an air-fuel ratio droop detected only during steady state in response to the output of the second air-fuel ratio fluctuation detection means. a second storage means for storing the following information for each preset operating region; and a second storage means that receives the outputs of the first air-fuel ratio fluctuation detection means and the second storage means to store the air-fuel ratio only during acceleration and the operating region in which acceleration was performed. a comparison means for comparing the air-fuel ratio difference only during steady state stored correspondingly to the air-fuel ratio difference only during steady state; and rewriting means for rewriting and correcting the fuel increase value stored in the first storage means so as to reduce the droop in the air-fuel ratio during acceleration when a large state is detected. Device.
JP6980183A 1983-04-19 1983-04-19 Fuel control device for engine Granted JPS59194056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6980183A JPS59194056A (en) 1983-04-19 1983-04-19 Fuel control device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6980183A JPS59194056A (en) 1983-04-19 1983-04-19 Fuel control device for engine

Publications (2)

Publication Number Publication Date
JPS59194056A JPS59194056A (en) 1984-11-02
JPH0522058B2 true JPH0522058B2 (en) 1993-03-26

Family

ID=13413205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6980183A Granted JPS59194056A (en) 1983-04-19 1983-04-19 Fuel control device for engine

Country Status (1)

Country Link
JP (1) JPS59194056A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61223245A (en) * 1985-03-29 1986-10-03 Mazda Motor Corp Controller for engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5718440A (en) * 1980-07-08 1982-01-30 Nippon Denso Co Ltd Air-fuel ratio control method
JPS57143136A (en) * 1981-02-26 1982-09-04 Toyota Motor Corp Method of controlling air fuel ratio of internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5718440A (en) * 1980-07-08 1982-01-30 Nippon Denso Co Ltd Air-fuel ratio control method
JPS57143136A (en) * 1981-02-26 1982-09-04 Toyota Motor Corp Method of controlling air fuel ratio of internal combustion engine

Also Published As

Publication number Publication date
JPS59194056A (en) 1984-11-02

Similar Documents

Publication Publication Date Title
US4391253A (en) Electronically controlling, fuel injection method
JPH0363654B2 (en)
US4501240A (en) Idling speed control system for internal combustion engine
JPS6335825B2 (en)
US5150686A (en) Evaporative fuel control apparatus of internal combustion engine
JP2610641B2 (en) Fuel injection amount control device for internal combustion engine
US5228336A (en) Engine intake air volume detection apparatus
US4357828A (en) Method of indicating a basic air-fuel ratio condition of an internal combustion engine
JPH0522058B2 (en)
JPH0573910B2 (en)
JPH0689686B2 (en) Air-fuel ratio controller for engine
JPS6232338B2 (en)
JPS63314371A (en) Ignition timing controller for internal combustion engine
JP2934253B2 (en) Knocking control device for internal combustion engine
JP2502500B2 (en) Engine controller
KR0154019B1 (en) Air/fuel ratio control device and method of engin state
JPH0515906B2 (en)
JPH04342857A (en) Electronic control device of internal combustion engine
JPS6026171A (en) Ignition time controller for engine
JPH0517398Y2 (en)
JPH07117023B2 (en) Engine controller
JP2582617B2 (en) Internal combustion engine deceleration control device
JPS61135950A (en) Air-fuel ratio feedback control method for electronically controlled engine
JP2811852B2 (en) Air-fuel ratio control device for internal combustion engine
JPS6062661A (en) Ignition-timing controller for engine