JPS59194056A - Fuel control device for engine - Google Patents

Fuel control device for engine

Info

Publication number
JPS59194056A
JPS59194056A JP6980183A JP6980183A JPS59194056A JP S59194056 A JPS59194056 A JP S59194056A JP 6980183 A JP6980183 A JP 6980183A JP 6980183 A JP6980183 A JP 6980183A JP S59194056 A JPS59194056 A JP S59194056A
Authority
JP
Japan
Prior art keywords
fuel
acceleration
value
increased amount
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6980183A
Other languages
Japanese (ja)
Other versions
JPH0522058B2 (en
Inventor
Masahiko Matsuura
松浦 正彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP6980183A priority Critical patent/JPS59194056A/en
Publication of JPS59194056A publication Critical patent/JPS59194056A/en
Publication of JPH0522058B2 publication Critical patent/JPH0522058B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1486Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
    • F02D41/1488Inhibiting the regulation
    • F02D41/1491Replacing of the control value by a mean value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent the lowering of output and the increasing of fuel cost at the time of acceleration for sure by memorizing the increased amount of fuel and rewriting and correcting the increased amount of fuel in accordance with the turbulence of the air-fuel ratio at the time of acceleration for obtaining a proper increased amount of fuel constantly. CONSTITUTION:In a control part 21 to control fuel for supplying to an engine 1 from a fuel supply means such as a fuel injection valve 5 and the like, a fuel increasing means 22 to increase the amount of fuel in accordance with the output of an acceleration detection means 23 is provided. For obtaining a proper increased amount of fuel at the time of acceleration by this increasing means 23, a memory means 24 to memorize the increased amount of fuel, an air-fuel ratio change detection means 25, and a rewriting means 26 for the increased amount of fuel are provided. The air-fuel ratio change detection means 25 is constructed to compare the fuel lean time for acceleration obtained on the basis of the output of an O2 sensor with the fuel lean time of stationary operation for detecting the turbulence of the air-fuel ratio at the time of acceleration. The increased amount of fuel in the memory means 24 is rewrited and corrected in the rewriting means 26 for reducing this turbulence.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はエンジンの燃料制御装置に関し、とくに、加速
時の燃料制御を適正に行うための装置に関J−るもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a fuel control device for an engine, and particularly to a device for appropriately controlling fuel during acceleration.

(従来技術) 従来、特公昭4.7−38665号公報にみられるよう
に、吸気管負圧およびエンジン回転数等に応じて燃料噴
ffJ量を制御1lII′?l−る基本的な燃料制御に
加え、加速時に燃料を増量するようにした制御装置が知
られている。この装置は加速性能の向上を図るものであ
って、加速時には吸入空気量の急激な増加にJ:って燃
料不足が生じるという傾向が本来的にあることから、こ
の場合に燃料を補うようにしたものである。しかし、こ
の従来の装置ぐは、加速時の燃料増量値を予め実験的に
求めているに一す”ぎなかったため、エンジン毎の性能
のばらつきや経年変化があった場合に、上記増量値が必
ずしも適正な偵とならず、増量値が大きすぎて燃費が悪
化したり、増量値が小さ寸ぎて充分な加速が得られなか
ったりすることがあった。
(Prior Art) Conventionally, as seen in Japanese Patent Publication No. 4.7-38665, the amount of fuel injection ffJ is controlled according to intake pipe negative pressure, engine speed, etc. 1lII'? In addition to basic fuel control, a control device is known that increases the amount of fuel during acceleration. This device aims to improve acceleration performance, and since there is an inherent tendency for fuel shortage to occur due to a sudden increase in the amount of intake air during acceleration, it is necessary to supplement the fuel in this case. This is what I did. However, this conventional device only experimentally determines the fuel increase value during acceleration, so if there are variations in performance between engines or changes over time, the above fuel increase value may not always be accurate. There have been cases in which the engine has not achieved an appropriate engine speed, and the increase value has been too large, resulting in poor fuel efficiency, or the increase value has been too small, resulting in insufficient acceleration.

(発明の目的) 本発明の目的は、このような従来装置の欠点を解消し、
エンジン毎の性能のばらつきや経年変化があっても加速
時の燃料増量値を適正に維持づ−ることのできる装置を
提供することにある。
(Object of the invention) The object of the present invention is to eliminate the drawbacks of such conventional devices,
It is an object of the present invention to provide a device capable of appropriately maintaining a fuel increase value during acceleration even if there are variations in performance among engines or changes over time.

(発、明の描成) 第1図の全体構成図に示づ−ように、エンジン1の吸気
通路2に装備された燃料噴射弁5等(その他の1Rft
’?としては気化器がある。)を制御づる制御部21に
は、加速検出手段23からの検出信号に応じて燃料を増
量Jる態別増量手段22が含まれている。この増量手段
2.2による加速時の燃料増m値を適止化するため、燃
料増rfi値を記憶する記憶手段24と、空燃比変動検
出手段25と、燃料増G1値の書き換え手段26とが設
【ノられている。
(Drawing of the invention) As shown in the overall configuration diagram of FIG.
'? There is a vaporizer. ) includes a type increasing means 22 for increasing the amount of fuel according to a detection signal from an acceleration detecting means 23. In order to optimize the fuel increase m value during acceleration by the increase means 2.2, a storage means 24 for storing the fuel increase RFI value, an air-fuel ratio fluctuation detection means 25, and a fuel increase G1 value rewriting means 26 are provided. is established.

空燃比変動検出手段25は、02tンザからの検出信号
に基づいて求めた加速時の燃わ1リ一ン時間を定常運転
時の燃料リーン時間と比較し、あるいは、加速時の]−
ンジン振vJ(加速へジテーション)を検出する等によ
り、加速時の空燃比のみだれを検出するようにしている
。71(ぎ換え手段26は、上記検出手段25の出)J
を受けて空燃比のみだれを小さくりるように上記記憶手
段24に記憶される燃料増量値を書き換え修正するにう
にしている。
The air-fuel ratio fluctuation detecting means 25 compares the fuel lean time during acceleration determined based on the detection signal from the 02t sensor with the fuel lean time during steady operation, or compares the fuel lean time during acceleration with the fuel lean time during acceleration.
A drop in the air-fuel ratio during acceleration is detected by detecting engine vibration vJ (acceleration hesitation). 71 (The switching means 26 is an output of the detecting means 25)J
In response to this, the fuel increase value stored in the storage means 24 is rewritten and corrected so as to reduce the droop in the air-fuel ratio.

(実施例) 第2図において、1はエンジン、2は吸気通路、3は排
気通路である。吸気通路2には、スロットル弁4が設け
られるとともに、その下流に燃料噴射弁5が装備されて
いる。この燃料噴射弁5はマイクロコンピュータを用い
たコントロールユニット20によって制御されるように
なっている。
(Example) In FIG. 2, 1 is an engine, 2 is an intake passage, and 3 is an exhaust passage. The intake passage 2 is provided with a throttle valve 4 and a fuel injection valve 5 downstream thereof. This fuel injection valve 5 is controlled by a control unit 20 using a microcomputer.

11は吸入空気量を検出するエアフロメータ、12は吸
気マニホールド内の圧力を検出する圧力センサ、13は
エンジン回転数センサ、14はスロットル開度センサ、
15は排気ガス中の02 量によって混合気のリッチ、
リーン状態を検出づ−る02センサである。これらによ
る検出信号は上記コントロールユニット20に入力され
ている。
11 is an air flow meter that detects the amount of intake air, 12 is a pressure sensor that detects the pressure in the intake manifold, 13 is an engine rotation speed sensor, 14 is a throttle opening sensor,
15 indicates the richness of the mixture depending on the amount of 02 in the exhaust gas,
This is the 02 sensor that detects the lean state. These detection signals are input to the control unit 20.

コントロールユニット20は、図示しないマイクロプロ
セツサ、メモリ、インターフェース等からなり、そのメ
モリにエンジン回転数と吸気マニホールド圧力とに対応
づけた燃料噴射量のROMマツプを有し、このROMマ
ツプから運転状態に応じた燃料基準制御値が求められる
ようにしている。そして、定常運転時の燃料制御は、0
2セン1ノ15からの信号に応じたフィードバック制御
により上記燃料基準制御値を補正しで、リッチ状態のと
ぎは燃料を増量し、リーン状態のときは燃料を減量する
ようにしてJ3す、従って、リッチ状態とリーン状態と
が適宜間隔で繰返されるようになっている。ざらに、上
記メモリには、加速の程度を示Jスロツ1−ル聞度変化
率と運転状態を承り燃料噴用パルス幅とに対応づ(プて
加速時の燃料増量値を決める補正係数を記憶するように
した補正係数学習値用マツプと、エンジン回転数と負荷
(吸気マニホールド圧力)とに対応づりC定常運り・ム
時のリーン時間(リーン状態の持続時間)を記憶するツ
ー211,1間用マツプとが含まれている5、これらの
マツプの記憶1aはド(き換えることができるようにな
っている。また、加速運転状態の検出は、スロットル開
度センサ14がらの検出信号に基づい(その変化を1l
iJへることにより行われるようにしている。この検出
に基づいて、加速時に、リーン状態であればマツプから
読み出される補正係数によって燃料噴射量を増量し、一
方、この時のり−ン時間を定常運転時のリーン時間と比
較し、その差に応じて上記補正係数を書き換えるように
している。このようにして、前述の全体M4成図に承り
各手段が実質的にコントロールユニット20に含まれる
ようにしている。
The control unit 20 is composed of a microprocessor (not shown), memory, interface, etc., and has a ROM map of fuel injection amount corresponding to the engine speed and intake manifold pressure in the memory, and the operating state can be determined from this ROM map. A corresponding fuel standard control value is determined. The fuel control during steady operation is 0.
The above fuel standard control value is corrected by feedback control according to the signal from the second sensor 1/15, and the amount of fuel is increased when the engine is in a rich state, and decreased when the engine is in a lean state. , the rich state and lean state are repeated at appropriate intervals. Roughly speaking, the above memory stores a correction coefficient that determines the fuel increase value during acceleration in accordance with the rate of change in the J slot which indicates the degree of acceleration and the pulse width for fuel injection depending on the operating condition. A map for correction coefficient learning values that is stored, and a tool 211 that stores the lean time (duration of lean state) during steady operation and operation in correspondence with the engine speed and load (intake manifold pressure). The memory 1a of these maps can be changed. Also, the acceleration operation state can be detected using the detection signal from the throttle opening sensor 14. Based on (the change is 1l)
This is done by going to iJ. Based on this detection, during acceleration, if the condition is lean, the fuel injection amount is increased according to the correction coefficient read from the map.Meanwhile, the lean time at this time is compared with the lean time during steady operation, and the difference is calculated. The above correction coefficient is rewritten accordingly. In this way, each means is substantially included in the control unit 20 in accordance with the above-mentioned overall M4 diagram.

この装置の制御を実行するフローチャートを第3図乃至
第6図に示づ。
Flowcharts for controlling this device are shown in FIGS. 3 to 6.

第3図に示すメインルーチンにおいて、ステップ31で
のイニシトライズの後、ステップ32で前記圧力センサ
12からのマニホールド圧力検出信号がA/D変換され
る。ついで、加速判別のためのザブルーチン(I ) 
J:iよび加速時用補正係数の円さ変え修正のためのリ
ーブルーチン(I)を経た後、ステップ32に戻ってフ
ローが繰返される。
In the main routine shown in FIG. 3, after initialization in step 31, the manifold pressure detection signal from the pressure sensor 12 is A/D converted in step 32. Next, subroutine (I) for acceleration determination
After passing through the leave routine (I) for correcting the roundness of J:i and the acceleration correction coefficient, the process returns to step 32 and repeats the flow.

加速判別のためのりブルーチン(I>においては、第4
図に示すように、ステップ33でスロワ1〜ル聞しレン
リ14からの信号のΔ/D変換が行われ、ステップ34
で今回検出時と前回検出時とのスロットル開度差(θ−
θh−θn−1)が求められる。次に、このスロワ開度
差聞度差θと予め定められた基準値θ1どが比較されて
θ2二θ1か盃かにより加速運転状態と定常運転状態と
が区別され(ステップ35)、加速運転状態でdつれば
′区別埴Aが1とされ、定常運転状態であれば区別値へ
がOとされて、レジスタに記1息される(ステップ36
.37>。
For acceleration determination (in I>, the fourth
As shown in the figure, in step 33, the signals from the throwers 1 to 14 are subjected to Δ/D conversion, and in step 34
is the difference in throttle opening between the current detection and the previous detection (θ−
θh−θn−1) is obtained. Next, this thrower opening degree difference θ is compared with a predetermined reference value θ1, etc., and an accelerated operation state and a steady operation state are distinguished depending on θ2, θ1, or a cup (step 35). If the condition is d, the discrimination value A is set to 1, and if the operation is in steady state, the discrimination value is set to O, and the value is recorded in the register (step 36).
.. 37>.

加速時用補正係数の書き変え修正のためのりブルーチン
(It )において1よ、第5図に示づように、ステッ
プ38で定常運転(△−0)か否かが判別される。定常
運転が行、1′)れでいる場合、ステップ3って前記0
2センリ15からの4.イんに基づいてリーン状態から
リッチ状態に変、1つったか否かが判別され、リッチ状
態(こ変わっIことさ、そのときの運転状態におけるリ
ーン時間tが検出さFLで、リーン時間用マツプ中の記
憶1(fiがJlぎ変えられるくステップ40)。
In the routine (It) for rewriting the acceleration correction coefficient, as shown in FIG. 5, it is determined in step 38 whether or not the operation is steady (Δ-0). If the steady operation is in step 1'), step 3 is
4 from 2 Senri 15. The lean state changes from the lean state to the rich state based on the current state. Inside memory 1 (step 40, when fi is changed).

加)*運転が行われでいる場合は、ステップ41でリー
ン状態からリッチ状態)コ変わったか否かが判別され、
変わっていな【プればさらにリーン状態か否かが判別さ
れ(ステップ42)、リーン状態てあれぽリーン時間計
測値Kかに+1と増加される〈ステップ43)。つまり
、リーン状態となってからリッチ状態に変わるまで、リ
ーン時間バ1測値Kが一定時間毎に増加することにより
、加速時のリーン時間が検出される。そして、リッチ状
態に変わったとき、加速時のリーン時間にとリーン時間
用マツプから求められる定常運転時のリーン時間とが比
較されてに≧tか否かが判別される(ステップ44)、
、に≧1であれば、このときの条件に対応する補正係数
学習値用マツプ中の補正係数学習値cAがmΔCΔだり
加算されたIITjに川さ変えられて記憶される(ステ
ップ45)。ここで、mは上記両リーン時間の差(K−
t)に応じた値、八〇Aは設定値である。一方、1((
tであれば、補正係数学習値CAがΔC八だ(プ減粋さ
れ、この減算された値が1より大きければマツプ中の補
正係数学習値がこの値に書き変えられて記憶され、減算
された値が1J:り小さくなる場合はCAが1と記憶さ
れる(ステップ47〜49)。ステップ48でOAが1
とされるのは、加速時に燃料が減量されることのないよ
うにするためである。
*If the operation is being performed, it is determined in step 41 whether or not the lean state has changed from the rich state.
If there is no change, it is further determined whether or not the lean state is reached (step 42), and if the lean state is determined, the lean time measurement value K is incremented by +1 (step 43). In other words, the lean time during acceleration is detected by increasing the measured value K of the lean time bar 1 at regular intervals from the lean state to the rich state. When the state changes to a rich state, the lean time during acceleration is compared with the lean time during steady operation determined from the lean time map, and it is determined whether ≧t (step 44).
, if ≧1, the correction coefficient learning value cA in the correction coefficient learning value map corresponding to the condition at this time is changed to IITj, which is added by mΔCΔ, and is stored (step 45). Here, m is the difference between the two lean times (K-
The value corresponding to t), 80A, is the set value. On the other hand, 1((
If t, the correction coefficient learning value CA is ΔC8 (P is subtracted, and if this subtracted value is larger than 1, the correction coefficient learning value in the map is rewritten to this value, memorized, and subtracted. If the value is smaller than 1J, CA is stored as 1 (steps 47 to 49).In step 48, OA is
This is to prevent fuel from being reduced during acceleration.

このように書き換えが行われた後はリーン時間計測値1
くがOとされる(ステップ50)。
After rewriting in this way, the lean time measurement value 1
is set to O (step 50).

第6図は割り込み処理ルーチンを示し、このルーチンは
例えばBTDC60’でスタートし、先ずステップ51
で周期81測によりエンジン回転数が剖粋され、ステッ
プ52でエンジン回転数JJよびマニホールド圧力から
運転状態が検出される。
FIG. 6 shows an interrupt processing routine, which starts, for example, at BTDC60' and first begins at step 51.
In step 52, the engine rotational speed is determined by periodic measurement 81, and the operating state is detected from the engine rotational speed JJ and the manifold pressure.

次に、ステップ533でMδ石噴射I?iのROMンツ
ブから運転状態に応じた燃籾基1(j制御値T1が計算
され、さらにステップ54t”02セン1す′15から
の信号に基づくフィードバック補正が行われて定常運転
時において適正な燃料制御λ11鎮−11′が求められ
る。その後、ステップ55C加速運転(A=1)か否か
が判別され、加速運転時である場合はざらにリーン状態
か否かが判別され(ステップ56)、リーン状態であれ
ば、補正係数学習値用マツプから求められるスロットル
開度変化率等に対応した学習値OAが上記燃料制御値z
’iこ乗粋され、増量された燃rNI唱gFJ ffi
 Tが計算される(ステップ57)。そして、この場合
は増量された燃料III′!躬ff1Tをもって、また
定常運転時である場合および加速時でもリーン状態でな
い場合は前記燃料制御値−l i / をもって、所定
の噴射タイミングに達したとき燃料噴射が行われる(ス
テップ58゜59)。
Next, in step 533, Mδ stone injection I? The fuel fuel base 1 (j control value T1) corresponding to the operating condition is calculated from the ROM block of i, and further feedback correction is performed based on the signal from step 54t" The fuel control λ11-11' is determined. Then, in step 55C, it is determined whether or not the engine is in acceleration operation (A=1), and if it is in acceleration operation, it is roughly determined whether or not it is in a lean state (step 56). , in the lean state, the learned value OA corresponding to the throttle opening change rate etc. found from the correction coefficient learning value map is the fuel control value z.
'I got rid of this and increased the amount of fuel I got FJ ffi
T is calculated (step 57). And in this case, the increased amount of fuel III'! Fuel injection is performed when a predetermined injection timing is reached, using the fuel control value -l i / when the engine is in steady operation or not in a lean state even during acceleration (steps 58 and 59).

以上のフローチA・−トに従って制御が11ねれること
により、加速時でリーン状態のとき燃料が増量され、こ
の増量値(補正係数学習値cA>が当初は不適正であっ
ても、前記のステップ45,46で書ぎ換え修正されて
、次に同条件の加速が行われるときに修正された増量値
が与えられる。そして、ある程度この動作が繰返された
後は、マツプに記憶された学習値CΔが高精度に修正さ
れ、加速操作に応じて即座に適正値だ(〕増吊された燃
料が供給されることとなる。
By controlling the control according to the above flowchart A.--T, the amount of fuel is increased when the fuel is in a lean state during acceleration, and even if this increased amount (correction coefficient learning value cA> is initially inappropriate), It is rewritten and corrected in steps 45 and 46, and the corrected increase value is given the next time acceleration under the same conditions is performed.After this operation is repeated to a certain extent, the learning value stored in the map is The value CΔ is corrected with high precision, and the increased fuel is immediately supplied to the appropriate value in response to the acceleration operation.

なお、空燃比のみだれに応じて燃料増量値を書き換え修
正する手段としては、上記実施例のG、Iかにも、例え
ば加速へジテーシコンによる振動を検出し、これに応じ
て補正係数学習値CAを書き換え修止づるようにしU 
’bよい。また、加’r”<’411i)の燃料の増量
は、定時噴q・1パルスのパルス幅を人ぎくするJ、う
にしてもよいし、臨時噴射パルスを出力するようにして
もよい。さらに燃料供給を燃料In用弁で行うものに限
らり゛気化器で行う0のでしょい。
In addition, as a means for rewriting and correcting the fuel increase value according to the deterioration of the air-fuel ratio, in the G and I of the above embodiment, for example, vibration caused by the acceleration control is detected, and the correction coefficient learning value CA is adjusted accordingly. Rewrite and fix U
'b Good. Further, the amount of fuel in addition 'r''<'411i) may be increased by narrowing the pulse width of the regular injection q.1 pulse, or by outputting an extraordinary injection pulse. Furthermore, only those that supply fuel with a fuel in valve are ``0'', which uses a carburetor.

(発明の効果) 以上のように、本発明は、加速時の燃料増量値を記憶し
、かつ、加速時の空燃比のみだれに応じC燃料jl’、
i 桁値を書き換え修正するようにしでいるため、エン
ジン毎の性能のばらつきや経年変化があってb1学習に
より上記燃Δ’jl増らt値を適正化し、加速時の出力
低下や燃費の態化を1ift実に防止することができる
ものである。
(Effects of the Invention) As described above, the present invention stores the fuel increase value at the time of acceleration, and changes the amount of fuel C fuel jl',
Since the i digit value is rewritten and corrected, there are variations in performance between engines and changes over time, so b1 learning increases the above fuel Δ'jl and optimizes the t value, reducing the output drop during acceleration and the fuel efficiency. This can actually prevent 1ift.

【図面の簡単な説明】 第1図は本発明装置の全体4’:’i或図、第2図は実
施例を示づ(■略図、9′!3図乃至第6図+a、フロ
ーチャー1〜である。 1・・・エンジン、5・・・燃オ′301f′1川弁、
22・・・燃お1増量手段、23・・・加速検出手段、
24・・・記憶手段、25・・・空燃比変動検出1段、
26・・・@き換え手段。 特許出願人    東洋工業株式会社 第  1  図 −3・ 第  2  図 3 第  3  図 第4図 第  5  図 第  6
[BRIEF DESCRIPTION OF THE DRAWINGS] Fig. 1 shows the entire device of the present invention 4':'i or Fig. 2 shows an embodiment (■Schematic diagram, Fig. 9'!3 to Fig. 6+a, flowchart). 1~. 1... Engine, 5... Gaso'301f'1 River valve,
22... Fuel 1 increasing means, 23... Acceleration detection means,
24... Storage means, 25... Air-fuel ratio fluctuation detection stage 1,
26...@Replacement means. Patent applicant Toyo Kogyo Co., Ltd. Figure 1-3, Figure 2 Figure 3 Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 1、]ニンジンの加速時に加速検出手段からの検出信号
を受けて燃わ1を増量する燃料増量手段を備えたエンジ
ンの燃料制御装置において、上記燃料増量手段による燃
料増量値を記憶づ゛る記憶手段と、加速時の?11!燃
比のみだれを検出りる空燃比変動検出手段と、この検出
手段の出力を受けて空燃比のみだれを小さくするJ:う
に上記記憶手段に記憶される燃料増量値を書き換え修正
する書き換え手段とを備えたことを特徴とザるエンジン
のガ;δ斜制御g直。
1.] In a fuel control device for an engine equipped with a fuel increasing means for increasing the amount of fuel 1 in response to a detection signal from an acceleration detecting means when the carrot is accelerated, the fuel increasing value by the fuel increasing means is stored. Means and when accelerating? 11! an air-fuel ratio fluctuation detection means for detecting a drop in the fuel ratio; and a rewriting means for rewriting and correcting the fuel increase value stored in the storage means, which reduces the drop in the air-fuel ratio in response to the output of the detection means. The engine is characterized by having: δ tilt control g straight.
JP6980183A 1983-04-19 1983-04-19 Fuel control device for engine Granted JPS59194056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6980183A JPS59194056A (en) 1983-04-19 1983-04-19 Fuel control device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6980183A JPS59194056A (en) 1983-04-19 1983-04-19 Fuel control device for engine

Publications (2)

Publication Number Publication Date
JPS59194056A true JPS59194056A (en) 1984-11-02
JPH0522058B2 JPH0522058B2 (en) 1993-03-26

Family

ID=13413205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6980183A Granted JPS59194056A (en) 1983-04-19 1983-04-19 Fuel control device for engine

Country Status (1)

Country Link
JP (1) JPS59194056A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61223245A (en) * 1985-03-29 1986-10-03 Mazda Motor Corp Controller for engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5718440A (en) * 1980-07-08 1982-01-30 Nippon Denso Co Ltd Air-fuel ratio control method
JPS57143136A (en) * 1981-02-26 1982-09-04 Toyota Motor Corp Method of controlling air fuel ratio of internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5718440A (en) * 1980-07-08 1982-01-30 Nippon Denso Co Ltd Air-fuel ratio control method
JPS57143136A (en) * 1981-02-26 1982-09-04 Toyota Motor Corp Method of controlling air fuel ratio of internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61223245A (en) * 1985-03-29 1986-10-03 Mazda Motor Corp Controller for engine
JPH051375B2 (en) * 1985-03-29 1993-01-08 Mazda Motor

Also Published As

Publication number Publication date
JPH0522058B2 (en) 1993-03-26

Similar Documents

Publication Publication Date Title
US5143040A (en) Evaporative fuel control apparatus of internal combustion engine
JPH0363654B2 (en)
US5150686A (en) Evaporative fuel control apparatus of internal combustion engine
US4461261A (en) Closed loop air/fuel ratio control using learning data each arranged not to exceed a predetermined value
JPH07151020A (en) Canister purge controller and control method thereof
JPH01125533A (en) Fuel injection controller for internal combustion engine
JP2544817Y2 (en) Evaporative fuel control system for internal combustion engine
JPS59194056A (en) Fuel control device for engine
JPS5937245A (en) Air-fuel ratio controlling apparatus for engine
JPH0571431A (en) Evaporated fuel controller of internal combustion engine
JP3777794B2 (en) Evaporative fuel treatment system for lean combustion internal combustion engine
JPS6056138A (en) Air-fuel ratio adjusting apparatus for internal- combustion engine
JPH0515906B2 (en)
JPS63105264A (en) Ignition timing control device for electronic controlled fuel injection type internal combustion engine
JP3531213B2 (en) Evaporative fuel processing control device for internal combustion engine
JP2808214B2 (en) Air-fuel ratio control device for internal combustion engine with evaporative fuel control device
JPH0710050Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JPS61135950A (en) Air-fuel ratio feedback control method for electronically controlled engine
JPH0744748Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH0517398Y2 (en)
JPH01125534A (en) Fuel injection controller for internal combustion engine
JPH01130033A (en) Air-fuel ratio controlling method for internal combustion engine
JPS58144654A (en) Engine controlling apparatus
JPS6183468A (en) Control device of engine
JPS59147844A (en) Air-fuel ratio control device